JPH0653594A - Method for obtaining high output of narrow band excimer laser - Google Patents
Method for obtaining high output of narrow band excimer laserInfo
- Publication number
- JPH0653594A JPH0653594A JP20633192A JP20633192A JPH0653594A JP H0653594 A JPH0653594 A JP H0653594A JP 20633192 A JP20633192 A JP 20633192A JP 20633192 A JP20633192 A JP 20633192A JP H0653594 A JPH0653594 A JP H0653594A
- Authority
- JP
- Japan
- Prior art keywords
- narrow band
- resonator
- laser
- amplifier
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、狭帯域エキシマレーザ
高出力化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for increasing the output of a narrow band excimer laser.
【0002】[0002]
【従来の技術】一般に、エキシマレーザは、固体レーザ
に比較して、コヒーレンスが悪いため、現在の主流は、
レーザスペクトルの狭帯域化を図る設計が一般的であ
る。その狭帯域化を図る手段としては、波長選択素子と
して二枚のエタロンを使用する方法が知られている。例
えば、図5に示す狭帯域エキシマレーザ発振器は、全反
射鏡1、共振器2、部分透過鏡9を順に配置し、共振器
2と部分透過鏡9との間にエタロン3,4を挿入し、レ
ーザ光18を狭帯域化する方法である。2. Description of the Related Art Generally, excimer lasers have poor coherence as compared with solid-state lasers.
A design for narrowing the band of the laser spectrum is general. As a means for narrowing the band, a method of using two etalons as a wavelength selection element is known. For example, in the narrow band excimer laser oscillator shown in FIG. 5, a total reflection mirror 1, a resonator 2 and a partial transmission mirror 9 are arranged in this order, and etalons 3 and 4 are inserted between the resonator 2 and the partial transmission mirror 9. This is a method of narrowing the band of the laser light 18.
【0003】更に、図6に示す狭帯域エキシマレーザ発
振器は、全反射鏡1、共振器2、SP光分離鏡20を順
に配置し、SP光分離鏡20によりp偏光波22とS偏
光波21とに分離してp偏光波22をエタロン3,4で
狭帯域化し、更にこれを全反射鏡19で共振器2へ戻し
て増幅し高出力化する方法である。Further, in the narrow band excimer laser oscillator shown in FIG. 6, a total reflection mirror 1, a resonator 2 and an SP light separating mirror 20 are arranged in order, and a p polarized wave 22 and an S polarized wave 21 are made by the SP light separating mirror 20. In this method, the p-polarized wave 22 is narrowed to a narrow band by the etalons 3 and 4, and is further returned to the resonator 2 by the total reflection mirror 19 so as to be amplified and output high.
【0004】ここで、「エタロン」とは、正式には、
「ファブリ−ペローエタロン」といい、C.Fabry
とA.Perotにより考案された干渉計の一種である
が、ここでは「エタロン」と略称する。その構造は、フ
ァブリ−ペロー干渉計の二枚の平面板の間隔を固定し、
その間の空気層の厚さを厳密に一定に保ったものであ
る。その他の構造、基本原理、用途はファブリ−ペロー
干渉計と同様である。Here, the "etalon" is, officially,
It is called "Fabry-Perot Etalon", C.I. Fabry
And A. It is a type of interferometer devised by Perot, but is abbreviated as "etalon" here. The structure fixes the distance between the two plane plates of the Fabry-Perot interferometer,
The thickness of the air layer during that time is kept strictly constant. Other structures, basic principles, and applications are similar to those of the Fabry-Perot interferometer.
【0005】[0005]
【発明が解決しようとする課題】従来構造により、レー
ザスペクトルを狭帯域化する場合には、エタロン3,4
を、増幅された高出力レーザ光が通過するため、その耐
光強度が問題となる。しかし、エタロンの耐光強度は充
分とは言えず、また、メーカによっても異なることか
ら、発振波長幅がpmオーダの光が得られるエキシマレ
ーザの発振出力はせいぜい数〜数十ワットであった。When the laser spectrum is narrowed by the conventional structure, the etalons 3, 4 are used.
Since the amplified high-power laser light passes through, the light resistance strength thereof becomes a problem. However, since the light resistance of the etalon cannot be said to be sufficient and the etalon varies depending on the manufacturer, the oscillation output of the excimer laser capable of obtaining light with an oscillation wavelength width of pm order is at most several to several tens of watts.
【0006】本発明は、上記従来技術に鑑みて成された
ものであり、狭帯域化と高出力化とを二つの素子に分離
することにより、エタロンの耐光強度を問題とすること
なく、狭帯域エキシマレーザを高出力化する方法を提供
することを目的とする。The present invention has been made in view of the above-mentioned prior art, and by separating the narrow band and the high output into two elements, the light resistance strength of the etalon does not become a problem, and It is an object of the present invention to provide a method for increasing the output of a band excimer laser.
【0007】[0007]
【課題を解決するための手段】斯かる目的を達成する本
発明の構成はレーザを狭帯域化する共振器と、狭帯域化
したレーザを増幅する増幅器とからなり、レーザ発振出
力20W以上、レーザ発振波長幅5pm以下を得る発振
器において、共振器側のレーザ発振空間をアパーチャー
により直径3mm以下に抑え、共振器長1.5m以下と
すると共にエタロンにビームを入射して狭帯域発振光を
得て、該狭帯域発振光を直径8mm以上、12mm以下
に拡大して増幅器へ注入する共に共振器と増幅器の間に
戻り光防止用アパーチャーを配置したことを特徴とす
る。The structure of the present invention which achieves such an object comprises a resonator for narrowing the band of a laser and an amplifier for amplifying the narrowed laser, and a laser oscillation output of 20 W or more, a laser In an oscillator that obtains an oscillation wavelength width of 5 pm or less, the laser oscillation space on the resonator side is suppressed to a diameter of 3 mm or less by an aperture, the resonator length is set to 1.5 m or less, and a beam is incident on the etalon to obtain a narrow band oscillation light. The narrow-band oscillation light is expanded to a diameter of 8 mm or more and 12 mm or less and injected into the amplifier, and a return light preventing aperture is arranged between the resonator and the amplifier.
【0008】[0008]
【実施例】以下、本発明について、図面に示す一実施例
を参照して詳細に説明する。図1に、本発明の一実施例
を示す。同図に示すように、本実施例では、狭帯域発振
により狭帯域小出力光16を得る共振器2と、狭帯域小
出力光16を増幅して狭帯域増幅光17とする増幅器1
3とを主要な構成要素としている。The present invention will be described in detail below with reference to an embodiment shown in the drawings. FIG. 1 shows an embodiment of the present invention. As shown in the figure, in this embodiment, a resonator 2 that obtains a narrow band small output light 16 by narrow band oscillation and an amplifier 1 that amplifies the narrow band small output light 16 into a narrow band amplified light 17.
3 and 3 are the main components.
【0009】即ち、共振器側には、全反射鏡1、アパー
チャー5、共振器2、アパーチャー6、エタロン3,
4、部分透過鏡9が配置されている。ここで、共振器2
としては、LUMONICS社製エキシマレーザ発振器
EX−600を使用した。この共振器2には、その両端
にそれぞれ合成石英窓7,8が設けられている。全反射
鏡1の反射率は100%、部分透過鏡9の反射率は80
%である。That is, on the resonator side, a total reflection mirror 1, an aperture 5, a resonator 2, an aperture 6, an etalon 3,
4. A partial transmission mirror 9 is arranged. Here, the resonator 2
As the above, an excimer laser oscillator EX-600 manufactured by LUMONICS was used. The resonator 2 is provided with synthetic quartz windows 7 and 8 at both ends thereof. The reflectance of the total reflection mirror 1 is 100%, and the reflectance of the partial transmission mirror 9 is 80%.
%.
【0010】アパーチャー5,6の直径は、3mm以下
が望ましく、本実施例では、2mmとした。このように
共振器2でのビーム径を3mm以下としているのは、ビ
ーム径6mmではエタロン3,4を損傷してしまい、ま
た、ビーム径3〜6mmの間では、実験してしていない
が、実績のある3mm以下が目安と考えるられるためで
ある。エタロン3は、反射率70%、エアギャップ70
μmである。エタロン4は、反射率70%、エアギャッ
プ700μmである。The diameters of the apertures 5 and 6 are preferably 3 mm or less, and in this embodiment, they are 2 mm. The reason why the beam diameter in the resonator 2 is 3 mm or less is that the etalons 3 and 4 are damaged when the beam diameter is 6 mm, and the experiment is not performed when the beam diameter is 3 to 6 mm. This is because it is considered that the standard value is 3 mm or less, which is a track record. The etalon 3 has a reflectance of 70% and an air gap of 70.
μm. The etalon 4 has a reflectance of 70% and an air gap of 700 μm.
【0011】全反射鏡1と部分透過鏡9との間の共振器
長は、1.5m以下が望ましく、本実施例では、1.4
mとした。共振器長を1.5m以下としているのは、狭
帯域化するためには発振器側の共振器長をできるだけ短
くし、エタロンを通過する光の回数を増やす必要がある
ためであるが、しかし、我々の実験によれば、共振器長
が1.5mで発振が確認されたため、この値以下を一応
の目安とした。The resonator length between the total reflection mirror 1 and the partial transmission mirror 9 is preferably 1.5 m or less, and in this embodiment, 1.4.
m. The reason why the resonator length is set to 1.5 m or less is that it is necessary to shorten the resonator length on the oscillator side as much as possible and increase the number of times of light passing through the etalon in order to narrow the band. According to our experiments, oscillation was confirmed at a resonator length of 1.5 m, so the value below this value was used as a rough guide.
【0012】一方、増幅器側には、アパーチャー10、
ビームエキスパンダー用レンズ11,12、増幅器13
が順に配置されている。増幅器13は、共振器2と同様
のLUMONICS社製エキシマレーザ発振器EX−6
00を用いた。この増幅器13には、その両端にそれぞ
れ合成石英窓14,15が設けられている。アパーチャ
ー10は増幅器13から共振器2への戻り光を防止する
ため、アパーチャー5,6より径を大きくしする必要が
あり、本実施例では、、直径3mmとした。On the other hand, on the amplifier side, the aperture 10,
Beam expander lenses 11 and 12, amplifier 13
Are arranged in order. The amplifier 13 is an excimer laser oscillator EX-6 manufactured by LUMONICS, which is similar to the resonator 2.
00 was used. The amplifier 13 is provided with synthetic quartz windows 14 and 15 at both ends thereof. The aperture 10 needs to have a larger diameter than the apertures 5 and 6 in order to prevent light returning from the amplifier 13 to the resonator 2. In this embodiment, the diameter is 3 mm.
【0013】ビームエキスパンダー用レンズ11,12
としては、f=−50mm,f=150mmの望遠系を
用いた。これにより、ビーム径は8mm以上、12mm
以下に拡大し、増幅器内の利得媒質を有効利用すること
により、狭帯域化発振したレーザの増幅高出力を図るこ
とができる。ここで、増幅器13に入射する光を、増幅
器の電極間距離いっぱいに広げれば、増幅率が増大する
が、一般に市販されているレーザ発振器の電極間距離
は、8〜12mmであることから、この値を一応の目安
とした。Lenses 11 and 12 for beam expander
As for, a telephoto system with f = −50 mm and f = 150 mm was used. As a result, the beam diameter is 8 mm or more, 12 mm
By expanding to the following and making effective use of the gain medium in the amplifier, it is possible to increase the amplification and output of the laser that oscillates in a narrow band. Here, if the light incident on the amplifier 13 is spread to the full distance between the electrodes of the amplifier, the amplification factor increases, but since the distance between the electrodes of a commercially available laser oscillator is 8 to 12 mm, The value was used as a rough guide.
【0014】このように、本実施例の狭帯域エキシマレ
ーザ発振器は、狭帯域化する共振器と2、これを増幅す
る増幅器13とから構成されているため、共振器2にお
いて、エタロン3,4、アパーチャー5,6、部分透過
鏡9、全反射鏡1との間で狭帯域発振により狭帯域小出
力光16が得られ、この狭帯域小出力光16が増幅器1
3へ注入され、ビームエキスパンダー用レンズ11,1
2によりビーム径8mm以上、12mm以下に拡大さ
れ、増幅器13内の利得媒質を有効利用することがで
き、増幅された狭帯域増幅光17を得て、出力光18と
する。また、増幅器より反射する狭帯域増幅光17は、
アパーチャー10により阻止されて、エタロン3,4を
通過することはない。As described above, since the narrow band excimer laser oscillator of this embodiment is composed of the resonator for narrowing the band and 2 and the amplifier 13 for amplifying the resonator, the etalons 3, 4 in the resonator 2 are provided. , The apertures 5 and 6, the partial transmission mirror 9 and the total reflection mirror 1 generate narrow band small output light 16 by narrow band oscillation.
3 is injected into the beam expander lens 11, 1
2, the beam diameter is expanded to 8 mm or more and 12 mm or less, the gain medium in the amplifier 13 can be effectively used, and the amplified narrow band amplified light 17 is obtained and is used as the output light 18. Further, the narrow band amplified light 17 reflected from the amplifier is
It is blocked by the aperture 10 and does not pass through the etalons 3 and 4.
【0015】この為、本発明では、エタロンの耐光強度
に係わらず、レーザ発振出力20W以上、レーザ発振波
長幅5pm以下を得られるようになった。Therefore, in the present invention, a laser oscillation output of 20 W or more and a laser oscillation wavelength width of 5 pm or less can be obtained regardless of the light resistance strength of the etalon.
【0016】図2に、KrF発振によるエタロンの干渉
パターンの強度分布を示した。図2において、下式が成
り立つ。 発振波長幅=λFSR/Finesses FSR=1cm-1 Finesses=1/2(D1+D'1)/Σ( D'i−Di) ここで、Finesses=2.66より、波長幅2.
3×10-3(nm)、即ち、2.3pmの狭帯域発振が
得られることがわかる。FIG. 2 shows the intensity distribution of the interference pattern of the etalon due to the KrF oscillation. In FIG. 2, the following formula is established. Oscillation wavelength width = λFSR / Finesses FSR = 1 cm −1 Fineses = 1/2 (D 1 + D ′ 1 ) / Σ (D ′ i −D i ) Here, from Fineses = 2.66, the wavelength width 2.
It can be seen that a narrow band oscillation of 3 × 10 −3 (nm), that is, 2.3 pm can be obtained.
【0017】図3に、KrF発振時のレーザ出力及び増
幅率を示す。図3において、「Osc.」の丸印は、共
振器2を単体で発振させた場合のレーザ出力を示し、
「Amp.Osc.(31kV)」の丸印は、共振器2への印
加電圧を31kV一定とし、更に、増幅器13に対して
図中横軸に対応した印加電圧をかけた場合のレーザ出力
を示す。また、図3において、四角印は、共振器2への
印加電圧を31kV一定とした時に、増幅器13に対し
て図中横軸に対応した印加電圧をかけた場合のレーザ出
力が何倍となったかの増幅率を示す。FIG. 3 shows the laser output and the amplification factor during KrF oscillation. In FIG. 3, the circle mark “Osc.” Indicates the laser output when the resonator 2 is oscillated by itself.
The circle of “Amp.Osc. (31 kV)” indicates the laser output when the applied voltage to the resonator 2 is constant at 31 kV and the applied voltage corresponding to the horizontal axis in the figure is applied to the amplifier 13. Show. Further, in FIG. 3, a square mark indicates how many times the laser output when the applied voltage corresponding to the horizontal axis in the figure is applied to the amplifier 13 when the applied voltage to the resonator 2 is kept constant at 31 kV. Indicates the amplification factor of Taka.
【0018】従って、図3より、増幅器13の印加電圧
を上げることにより、30倍〜最大90倍迄の増幅率が
得られることが判る。図4は、同様に図1の構成で得ら
れた狭帯域発振出力を示した。繰り返し数200pps
で24.4Wの高出力が得られた。Therefore, it can be seen from FIG. 3 that by increasing the voltage applied to the amplifier 13, an amplification factor of 30 to 90 times can be obtained. FIG. 4 also shows the narrowband oscillation output obtained with the configuration of FIG. Repeat number 200pps
A high output of 24.4 W was obtained.
【0019】[0019]
【発明の効果】以上、実施例に示すように、本発明の狭
帯域エキシマレーザ発振方法では、狭帯域化を実施する
共振器と、それを高出力化する増幅器とから構成し、か
つ、共振器に設けられるエタロンへ高出力光が通過させ
ないようにしたので、従来の狭帯域エキシマレーザに比
較し、高出力化が可能となった。As described above, according to the narrow band excimer laser oscillation method of the present invention, as shown in the embodiments, a resonator for narrowing the band and an amplifier for increasing the output of the resonator are used. Since high output light is prevented from passing through the etalon installed in the vessel, higher output power is possible compared to conventional narrow band excimer lasers.
【図1】本発明の一実施例に係る狭帯域エキシマレーザ
発振器の構造図である。FIG. 1 is a structural diagram of a narrow band excimer laser oscillator according to an embodiment of the present invention.
【図2】KrF発振狭帯域発振光のエタロンにる干渉リ
ング強度分布図である。FIG. 2 is an interference ring intensity distribution chart of an etalon of KrF oscillation narrow band oscillation light.
【図3】KrF発振時の印加電圧と増幅率との関係を示
すグラフである。FIG. 3 is a graph showing the relationship between applied voltage and amplification factor during KrF oscillation.
【図4】KrFレーザの繰り返し数とレーザ出力の関係
を示すグラフである。FIG. 4 is a graph showing the relationship between the number of repetitions of a KrF laser and laser output.
【図5】従来の手法であるエタロンを用いた狭帯域発振
器の構成図である。FIG. 5 is a configuration diagram of a narrow band oscillator using an etalon, which is a conventional method.
【図6】従来の手法である偏光結合型狭帯域発振器の構
成図である。FIG. 6 is a configuration diagram of a polarization coupling type narrow band oscillator which is a conventional method.
1 全反射鏡 2 共振器 3,4 エタロン 5,6 アパーチャー 7,8 合成石英窓 9 部分透過鏡 10 アパーチャー 11,12 ビームエキスパンダー 13 増幅器 14,15 合成石英窓 16 狭帯域小出力光 17 狭帯域増幅光 18 出力光 19 全反射光 20 PS光分離鏡 21 S偏光波 22 P偏光波 1 Total Reflector 2 Resonator 3,4 Etalon 5,6 Aperture 7,8 Synthetic Quartz Window 9 Partial Transmission Mirror 10 Aperture 11,12 Beam Expander 13 Amplifier 14,15 Synthetic Quartz Window 16 Narrow Band Small Output Light 17 Narrow Band Amplification Light 18 Output light 19 Totally reflected light 20 PS Light separation mirror 21 S-polarized wave 22 P-polarized wave
Claims (1)
化したレーザを増幅する増幅器とからなり、レーザ発振
出力20W以上、レーザ発振波長幅5pm以下を得る発
振器において、共振器側のレーザ発振空間をアパーチャ
ーにより直径3mm以下に抑え、共振器長1.5m以下
とすると共にエタロンにビームを入射して狭帯域発振光
を得て、該狭帯域発振光を直径8mm以上、12mm以
下に拡大して増幅器へ注入する共に共振器と増幅器の間
に戻り光防止用アパーチャーを配置したことを特徴とす
る狭帯域エキシマレーザ高出力化方法。1. An oscillator comprising a resonator for narrowing the band of a laser and an amplifier for amplifying the narrow band laser, and having a laser oscillation output of 20 W or more and a laser oscillation wavelength width of 5 pm or less, a laser on the resonator side. The oscillation space is suppressed to a diameter of 3 mm or less by an aperture, the resonator length is set to 1.5 m or less, and a beam is incident on the etalon to obtain a narrow band oscillation light, and the narrow band oscillation light is expanded to a diameter of 8 mm or more and 12 mm or less. A method for increasing the output power of a narrow band excimer laser, characterized in that an aperture for preventing returning light is arranged between the resonator and the amplifier and is injected into the amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20633192A JPH0653594A (en) | 1992-08-03 | 1992-08-03 | Method for obtaining high output of narrow band excimer laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20633192A JPH0653594A (en) | 1992-08-03 | 1992-08-03 | Method for obtaining high output of narrow band excimer laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0653594A true JPH0653594A (en) | 1994-02-25 |
Family
ID=16521536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20633192A Withdrawn JPH0653594A (en) | 1992-08-03 | 1992-08-03 | Method for obtaining high output of narrow band excimer laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0653594A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140265A (en) * | 2002-10-18 | 2004-05-13 | Gigaphoton Inc | Narrow-band laser apparatus |
JP2004311766A (en) * | 2003-04-08 | 2004-11-04 | Ushio Inc | Two-stage laser device for exposure |
JP2008078372A (en) * | 2006-09-21 | 2008-04-03 | Komatsu Ltd | Laser device for exposure equipment |
JP2008103604A (en) * | 2006-10-20 | 2008-05-01 | Komatsu Ltd | Laser device |
-
1992
- 1992-08-03 JP JP20633192A patent/JPH0653594A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140265A (en) * | 2002-10-18 | 2004-05-13 | Gigaphoton Inc | Narrow-band laser apparatus |
JP2004311766A (en) * | 2003-04-08 | 2004-11-04 | Ushio Inc | Two-stage laser device for exposure |
JP2008078372A (en) * | 2006-09-21 | 2008-04-03 | Komatsu Ltd | Laser device for exposure equipment |
JP2008103604A (en) * | 2006-10-20 | 2008-05-01 | Komatsu Ltd | Laser device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05218556A (en) | Solid laser | |
US6314116B1 (en) | Single resonator for simultaneous multiple single-frequency wavelengths | |
US5043998A (en) | Narrow-bandwidth unstable resonator laser cavity | |
JPS6324687A (en) | Laser device | |
US6674782B2 (en) | Self-adapting filters for fine-tuning laser emissions | |
US5940419A (en) | Frequency doubling solid-state laser including lasant material and nonlinear optical material | |
EP0449526B1 (en) | Amplitude noise reduction for optically pumped modelocked lasers | |
JP2820103B2 (en) | Injection-locked laser device | |
JPH0653594A (en) | Method for obtaining high output of narrow band excimer laser | |
JP3176682B2 (en) | Tunable laser device | |
US5949802A (en) | High efficiency intracavity doubled laser and method | |
Corless et al. | Pulsed single-mode dye laser for coherent control experiments | |
US5230004A (en) | Narrow beam oscillator and large volume amplifier utilizing same gain medium | |
JPH0864896A (en) | High mean output pulse co2 laser | |
JP2541478B2 (en) | Exposure equipment | |
Ariga et al. | Development of a 5-kHz ultra-line-narrowed F2 laser for dioptric projection systems | |
JP2760451B2 (en) | Ultrashort pulse laser light generator | |
JP2957637B2 (en) | Narrow band laser device | |
JP3270641B2 (en) | Solid state laser | |
JPH022188A (en) | Excimer laser device | |
JP3875856B2 (en) | Wavelength variable light source and wavelength variable method | |
Chung et al. | Spectral narrowing of solid state lasers by narrow-band PTR Bragg mirrors | |
JPH07193303A (en) | Alexandrite laser regenerating and amplifying method and device | |
JPH08102564A (en) | Wavelength converting laser device | |
JP2672520B2 (en) | Dye laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991005 |