JPH0653399U - Paraglider - Google Patents

Paraglider

Info

Publication number
JPH0653399U
JPH0653399U JP8573692U JP8573692U JPH0653399U JP H0653399 U JPH0653399 U JP H0653399U JP 8573692 U JP8573692 U JP 8573692U JP 8573692 U JP8573692 U JP 8573692U JP H0653399 U JPH0653399 U JP H0653399U
Authority
JP
Japan
Prior art keywords
air chamber
air
wing
paraglider
wing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8573692U
Other languages
Japanese (ja)
Inventor
憲司 村上
Original Assignee
憲司 村上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 憲司 村上 filed Critical 憲司 村上
Priority to JP8573692U priority Critical patent/JPH0653399U/en
Publication of JPH0653399U publication Critical patent/JPH0653399U/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 翼自体が作り出す乱気流を整流し、翼体の張
りを補助し、翼形状を変更することなく揚力面ですぐ
れ、かつ操縦性も向したパラグライダーを提供する。 【構成】 従来のラム圧を保ちパラグライダーの翼形を
形成する第1気室とは別に独立した別気室14をつくり
その圧力を噴出穴より噴出する事で、翼体が発生する乱
気流や翼上面を流れる空気の流れの剥離を少なくした
り、吊索9を膨張圧の袋24で補強したり気室を翼形状
にして翼体側面に取り付け横方向の揚力を発生させ翼の
張りを増加させると共に、補助気室で別個に操舵を行う
用途を持った複数の気室を有するパラグライダー。
(57) [Summary] (Modified) [Purpose] A paraglider that rectifies the turbulence created by the wing itself, assists in the tension of the wing body, has excellent lift without changing the shape of the wing, and is also maneuverable. provide. [Structure] By forming a separate air chamber 14 separate from the first air chamber that forms the airfoil of a paraglider while maintaining the conventional ram pressure and ejects the pressure from the ejection holes, the turbulence and wing generated by the wing body are generated. The separation of the air flow on the upper surface is reduced, the hanging rope 9 is reinforced with an inflation pressure bag 24, the air chamber is made into a wing shape, and it is attached to the side surface of the wing body to generate a lateral lift and increase the wing tension. A paraglider that has multiple air chambers and has the purpose of steering separately in the auxiliary air chamber.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この発明は外気を取り入れてラム圧により翼型に膨張し、揚力を発生して滑空 飛行が可能なパラグライダーの改良に関する。 The present invention relates to an improvement in a paraglider capable of gliding flight by taking in outside air, expanding it into a wing shape by ram pressure, and generating lift.

【0002】[0002]

【従来技術】[Prior art]

翼体が不通気性布地からなり、前面に開口を有する多数の気室を並列状に画成 し、各気室に外気を取り入れてラム圧により翼形に膨張させ、その上下面におけ る気流によって揚力を発生して滑空飛行が可能なパラグライダーが実用されてい る。 このパラグライダーは、自然の動力源である上昇気流を利用して対気速度 を維持する限りは操縦可能とするものであり、その主体とする不通気性布地から なる翼体は、柔軟で折り畳んだ状態ではかさが小さく、携行に便利で最も簡単な 飛行構造物とされる。 従来よりパラグライダーによる滑空飛行において飛行に よって翼体自身が生じる抵抗、又、抵抗による乱気流が飛行性能を阻害しており この抵抗や抵抗により生じる乱気流を少なくする為に、翼形の改良が行われて来 た。又、パラグライダーは翼後縁を引き込む事で操縦するので翼の相対風に対す る迎角が変化する為に、翼の上面を流れる空気が剥離して失速状態に陥り易い性 質があった。また操縦者が翼体の下に吊索でぶら下がる為に、翼体は横方向に広 がらなければならないが、 広がりは翼自体が前進することで生まれる揚力と下 に引く重力の釣合で飛行するものである為に、下に引く力が翼の巾と同じではな く,点でぶら下がる為に翼の広がる力を逆に狭める力になる欠点が有った。 さらに吊索は柔軟であるので引っ張り作用には耐えるが、圧縮には耐えられない 物性があるために、翼体を下から保持する力は皆無であった。 又、翼後縁に取り付けた操縦索によって引き込むことにより翼後縁を下に折り曲 げることにより抵抗とし操縦をおこなっている為に、引き込みにより翼後縁部が 翼の形状の理想カーブより大きくなり上面を流れる空気の流れが剥離して非常に 危険な失速に陥る危険性があった。 The airfoil is made of non-breathable fabric, and a large number of air chambers with openings in the front are defined in parallel.The outside air is taken into each air chamber and expanded to the airfoil by the ram pressure. Paragliders that are capable of gliding by generating lift due to airflow are in practical use. This paraglider is capable of maneuvering as long as it maintains the airspeed by utilizing the updraft, which is a natural power source, and its main body is an air-impermeable wing body that is flexible and folded. It is considered to be the simplest flying structure that is small in size and convenient to carry. Conventionally, in the gliding flight by a paraglider, the resistance generated by the wing itself due to the flight and the turbulence due to the resistance hinders the flight performance.In order to reduce this resistance and the turbulence caused by the resistance, the airfoil has been improved. I came. In addition, since the paraglider operates by pulling in the trailing edge of the wing, the angle of attack of the wing relative to the relative wind changes, so the air flowing over the upper surface of the wing tends to separate and fall into a stall condition. In addition, the wing body must spread laterally because the operator hangs with a rope below the wing body, but the spread is due to the balance of the lift created by the forward movement of the wing itself and the gravity pulling down. Because of this, the force of pulling downward is not the same as the width of the wing, but there is a drawback that it becomes a force that narrows the spreading force of the wing because it hangs at a point. Furthermore, since the slings are flexible, they can withstand the pulling action, but have physical properties that cannot withstand compression, so there was no force to hold the wings from below. In addition, since the trailing edge of the wing is bent by pulling it in with the steering rope attached to the trailing edge, the trailing edge of the wing is drawn from the ideal curve of the shape of the wing. There was a risk that the air flow would become large and the air flow on the upper surface would separate, resulting in a very dangerous stall.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記するように、翼体は柔軟な布地と柔軟な吊索で出来ているため、理想的な 翼の形を形成保持する事が困難で、柔軟翼の為に翼体の膨張携帯が崩れるとより 沢山の抵抗を生み、乱気流が発生する原因になり翼形の改良だと、翼の厚みを薄 くしたりアスペクト比を上げて抵抗を減少させたりするには柔軟な翼である為に 限界があり、過ぎればつぶれ易く危険な翼となる。 迎角が上がり翼上面の空気 の流れが剥離するとパラグライダーは失速に陥り危険な状態になる。 この翼体 が前進する空気抵抗を軽減する為には 翼体ができるだけ張りをもって広がって いることが大切であるが、 翼体の下の点で操縦者がぶら下がる為に、翼体を広 げる力に反して、翼体を縮める力となって働く力があり 吊索は柔軟である為に 翼体の動きと操縦者の動きの誤差が生じる恐れがある。 As mentioned above, since the wing body is made of flexible cloth and flexible hangers, it is difficult to form and maintain the ideal wing shape, and if the flexible wing collapses the expansion and carrying of the wing body. The improvement of the airfoil creates more resistance and causes turbulence, and the improvement of the airfoil limits the flexibility of thinning the blade and increasing the aspect ratio to reduce the resistance. Yes, if it passes, it will easily collapse and become a dangerous wing. If the angle of attack rises and the air flow on the upper surface of the wing separates, the paraglider will stall and become dangerous. In order to reduce the air resistance that this wing body advances, it is important that the wing body spread as tightly as possible, but since the operator hangs at a point below the wing body, widen the wing body. Contrary to the force, there is a force that acts as a force to contract the wing body, and since the suspension line is flexible, an error may occur between the wing body movement and the pilot movement.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成させるためのこの発明の要旨とするところは、翼体が不通気 性布地からなり、前面に開口を有する多数の気室を並列状に画成し、外気を各気 室に取入れラム圧によって翼形に膨張し滑空飛行するパラグライダーにおいて、 同じように別の前面開口部より取り入れた空気を気室を後ろに行く程細くして圧 力を高めさせた上で、抵抗、乱気流の発生する場所へ向かった極細の噴射部を翼 体適所に設ける事と、翼の側面に横方向に翼の原理を利用する為に横方向に翼形 の第2気室を設けたパラグライダー及び翼先端部で別れた上面を流れる空気の流 れを剥離しにくい様に翼先端部や適所から噴き出す空気の流れで迎角の上がった 低速の時に流れを攪乱し剥離を防ぐ噴出部を持った調節弁を付けた事を特徴とす るパラグライダーであり 吊索に空気圧で腰をもたせることにより安定を図るパ ラグライダーである。 The gist of the present invention for achieving the above-mentioned object is that the wing body is made of an impermeable fabric, and a large number of air chambers having openings in the front surface are defined in parallel, and outside air is provided in each air chamber. In a paraglider that expands into a wing shape due to the intake ram pressure and glides, the air similarly taken in from another front opening is made thinner toward the rear of the air chamber to increase the pressure, and then resistance and turbulence And a paraglider equipped with a wing-shaped second air chamber in the lateral direction in order to utilize the principle of the wing in the lateral direction on the side surface of the wing. To prevent separation of the air flow that separates from the upper surface of the blade tip, there is a jet part that disturbs the flow at low speed when the angle of attack rises with the flow of air jetting from the blade tip or the appropriate place to prevent separation. Paraglider characterized by having a control valve A path lug rider to stabilize by to have a waist at is pneumatically slings.

【作用】[Action]

上記のごとく構成したこの発明によれば、開口を通じて翼体の各気室に取り 入れられ膨張する第1気室とは別に独立した開口を持つ第2気室の翼形で横方向 へ揚力を発生させ翼体を横に引っ張り広げ、別の第2気室の噴射部から吹き出す 加速された空気の流れが翼体の作り出す乱気流を整流したり攪乱したりすること にある。 According to the present invention configured as described above, the airfoil of the second air chamber having an opening independent from the first air chamber which is taken into each air chamber of the wing body through the opening and expands the lift force in the lateral direction. It is to generate and spread the wing body laterally and blow it out from the injection part of another second air chamber. The accelerated air flow rectifies or disturbs the turbulence created by the wing body.

【0005】[0005]

【実施例】【Example】

以下、この発明の実施例を図面に基づいて説明する。図1において、図はパラ グライダー全体(1)を示し、その主要構成は、翼体(3)とこの翼体(3)に 取着した複数本の吊索(9)からなり、 翼体(3)は柔軟な不通気性布地で作 られており、翼体上面(5)と翼体下面(6)との間をリブ(7)で仕切り、前 面に開口部(11)を有する多数の第1気室(13)を並列状に画成し、外気を 開口部(11)から取り入れてラム圧によって航空機の翼形に膨張するものであ る。 吊索(9)には搭乗者(2)がハーネス(4)を装着してぶら下がり、 操縦索(10)を操作することによりパラグライダー(1)を操縦するものであ る。 尚、上記するパラグライダー(1)の基本構成としては周知のものである 。 Embodiments of the present invention will be described below with reference to the drawings. In Fig. 1, the figure shows the entire paraglider (1), the main structure of which consists of a wing body (3) and a plurality of suspension ropes (9) attached to this wing body (3). 3) is made of a soft and impermeable fabric, and has ribs (7) between the upper surface (5) and the lower surface (6) of the airfoil, and has many openings (11) on the front surface. The first air chamber (13) is defined in parallel, and the outside air is taken in through the opening (11) and expanded to the airfoil of the aircraft by the ram pressure. A passenger (2) attaches a harness (4) to the hanging rope (9) and hangs down, and operates a paraglider (1) by operating a control rope (10). The basic configuration of the paraglider (1) described above is well known.

【0006】 図2は 従来のパラグライダーの翼体(3)の断面図であり 翼体(3)の 前進により起こる空気の流れ乱れを示した図であり、前から来た相対風はよどみ 点(22)で最も圧力を高められ、その点から別れて翼体(3)を巡る方向に変 わる、翼体(3)上面と下面の流れの速度の差で揚力が発生するが同時に障害物 である翼体(3)の後ろには必ず乱気流が発生し揚力と正比例して抵抗力が発生 して後ろに引っ張る力が発生する。この乱気流による抵抗を少なくする為にこの 考案はなされている。[0006] Fig. 2 is a cross-sectional view of a conventional paraglider wing body (3), which shows turbulence of the air flow caused by the forward movement of the wing body (3), and the relative wind coming from the front has a stagnation point ( 22) The pressure is increased most, and the point is separated from that point and changes to the direction around the wing body (3). Lift force is generated by the difference in the flow velocity between the upper surface and the lower surface of the wing body (3), but at the same time an obstacle is generated. A turbulent air flow is always generated behind a certain wing body (3), a resistance force is generated in direct proportion to the lift force, and a pulling force is generated behind. This invention has been made to reduce the resistance due to this turbulence.

【0007】 図3は 翼体の斜視図で翼体(3)の翼上面での気流の剥離発生を減少させ る為に、 第1気室開口部(11)より取り入れられる空気とは別に、リブ(7 )に第1気室開口部(11)とは別に取り付けられたパイプ型第2気室(18) の開口部(16)から取り入れられた空気を翼上面(5)に露出した噴出部(1 5)まで導き噴射する事で乱気流を整流したり流れの剥離を阻止するものである 事を示している。 スタビライザー(8)と翼下面(6)との間に三角形で後ろ に行くほど細くなった所での噴出部(15)を持つ第2気室(14)を設けこの 第2気室開口部(16)から取り入れた空気を翼後縁の乱気流発生箇所に噴射す る事で翼体(3)後ろに発生する乱気流を整流させる。 図4は、このパイプ型第2気室(18)をリブ(7)に取り付けた前面図で ある。 リブ(7)に取り付ける事により従来のパラグライダーの特性柔軟性を 保ち一体性が得られ、翼体(1)の形成を保持する第1気室(13)の膨張圧力 には影響を与えないで行え、尚、思い通りの場所へ誘導する事が可能になる。 図5は、このパイプ型第2気室(18)をリブ(7)に取り付けた断面図で ある。 リブ(7)に取り付ける事によりどの様な方向へも空気を導く事が可能 になり噴出部(15)を思う所へ又分散し設ける事が出来る。 図6は、翼体(3)を後方より見た斜視図であり、翼体前縁部に噴出部を持 つ第2気室(14)が形成され噴出部(15)が上部に見え、パイプ型第2気室 (18)を取り付けた図である。 図7は、 図6の断面図であり通常飛行姿勢の時には、噴出部を持つ第2気 室は形成されない状態を示している。 通常飛行姿勢では相対風に押されて第2 気室布(21)は翼体(3)の形状通りに翼体(3)に張り付いている、 その 時にはパイプ型第2気室の開口部(16)は塞がれており空気はパイプ型第2気 室の噴出部(15)からは噴出されない。 この場合、第1気室の開口部(11 )の空気流入を妨げないように 開口部(11)に被る箇所には 通気性材料( 17)を用いる。 図8は、 同じく断面図であり、迎角が上がった状態を示している。 迎角 が上がる事によりよどみ点(22)が下に下がる為に、翼体前縁部に張り付いて いた噴出部を持つ第2気室(14)の第2気室形成用布(21)は風によりはね 上げられるがその側面に取り付けられた第2気室形成用布(21)で、ある程度 以上のはね上げを阻止され、自動的に噴出部を持つ第2気室(14)を形成する 。 第9図はこの部分の拡大断面図で空気の流れを矢印で示したものであるが、 噴出部を持つ第2気室(14)を形成すると 翼体前縁部の付け根に形成してあ る噴出部(15)より空気が吹き出され翼上面(5)の空気の流れを攪乱すると 同時に、 吹き出し部を持つ第2気室(14)が形成されると、 その中に開口 しているパイプ型第2気室(18)の開口部(16)より空気が押し込まれパイ プ型第2気室(18)の噴出部(15)より空気が吹き出され翼上面(5)の後 縁の空気の流れを整流することが出来る。FIG. 3 is a perspective view of the wing body. In order to reduce the occurrence of airflow separation on the wing upper surface of the wing body (3), in addition to the air taken in from the first air chamber opening (11), Air blown out from the opening (16) of the pipe type second air chamber (18) attached to the rib (7) separately from the first air chamber opening (11), exposed on the blade upper surface (5) It is shown that turbulence is rectified and flow separation is prevented by guiding and injecting to the part (15). A second air chamber (14) is provided between the stabilizer (8) and the lower surface (6) of the wing, which has a triangular shape and a jetting portion (15) at a portion that becomes narrower toward the rear, and this second air chamber opening ( By injecting the air taken in from 16) to the turbulent airflow generation point on the trailing edge of the blade, the turbulent airflow generated behind the blade body (3) is rectified. FIG. 4 is a front view of the pipe type second air chamber (18) attached to the rib (7). By attaching to the rib (7), the characteristic flexibility of the conventional paraglider can be maintained and the integrity can be obtained, and the expansion pressure of the first air chamber (13) that holds the formation of the wing body (1) is not affected. You can do it, and you can guide it to the place you want. FIG. 5 is a cross-sectional view in which the pipe type second air chamber (18) is attached to the rib (7). By attaching it to the rib (7), it is possible to guide air in any direction, and it is possible to disperse the ejection part (15) to desired places. FIG. 6 is a perspective view of the wing body (3) seen from the rear side, in which the second air chamber (14) having a jet portion is formed at the leading edge portion of the wing body and the jet portion (15) can be seen in the upper part. It is the figure which attached the pipe type 2nd air chamber (18). FIG. 7 is a cross-sectional view of FIG. 6 and shows a state in which the second air chamber having the ejection portion is not formed in the normal flight attitude. In the normal flight attitude, the second air chamber cloth (21) is pushed by the relative wind and sticks to the wing body (3) according to the shape of the wing body (3). At that time, the opening of the pipe type second air chamber Since (16) is closed, air is not ejected from the ejection part (15) of the pipe-type second air chamber. In this case, a breathable material (17) is used at the portion covered by the opening (11) so as not to hinder the inflow of air into the opening (11) of the first air chamber. FIG. 8 is a sectional view of the same and shows a state where the angle of attack is increased. The stagnation point (22) is lowered due to the elevation of the attack angle, and thus the second air chamber forming cloth (21) of the second air chamber (14) having the ejection portion attached to the leading edge of the wing body The second air chamber forming cloth (21), which is repelled by the wind, is attached to the side surface of the second air chamber forming cloth (21), and the second air chamber (14) having the ejection portion is automatically formed by preventing the repulsion of the second air chamber to a certain extent or more. To do. FIG. 9 is an enlarged cross-sectional view of this portion, and shows the air flow with arrows. When the second air chamber (14) having the jet portion is formed, it is formed at the base of the blade leading edge. When the second air chamber (14) having a blow-out portion is formed at the same time that air is blown out from the blow-out portion (15) and disturbs the air flow on the upper surface (5) of the blade, the pipe that opens into the second air chamber (14) is formed. The air is pushed from the opening (16) of the second mold air chamber (18) and is blown out from the ejection portion (15) of the second pipe air chamber (18), and the air on the trailing edge of the upper surface (5) of the blade is blown. The flow of can be rectified.

【0008】 図10は翼体(3)に、横方向に揚力の発生するように翼形第2気室(23 )を取り付け、スタビライザー(8)と翼下面(6)との間に後ろに噴出部(1 5)を持つ噴出部を持つ第2気室(14)の前面図である。 図11は 図10と同じであるが、横方向の翼形第2気室(23)に空気を 取り込む通気穴(20)の前面図であり。 この通気穴(20)は逆止弁が付け てあり翼形第2気室(23)は独立した圧力を保てるようになっている。 図12は、パラグライダーで揚力と重力を矢印で現している 下方向へ引く 力の重力で翼体上方向に発生する揚力が発生するのであるが、同時に従来のパラ グライダーでは、このメカニックでは必然的に下に引く力で翼体の側面から内側 へ翼を縮める力も発生する為に 横に広げなくてはならない翼体が阻害されつぶ れ易いパラグライダーであった。 図13は、翼体側面に横方向に揚力が発生 する様に翼形第2気室(23)を取り付けたことにより、 図2で示した揚力が 横方向に発生する為に、図12の内側に翼を縮める力が、逆に外方向に翼体(3 )を広げる力となり翼体(3)の上下面の張りを増大させそこを流れる流れをス ムースにさせ、揚力を安定的に発生させ尚かつ翼体(3)の張強度を上げて安定 性を増大する事が出来る。 図14は、翼形第2気室(23)を翼体側面に取り付けた斜視図であり、矢 印は空気の流れを示している。 この翼形第2気室(23)を1mにして相対 風が35Km/hの時には、12Kgf程度の外向きの引っ張り力が発生する。 但し、翼体側面方向に対して直角になる角度で翼形は形成されなくてはならな い。 図15は、 図14を下から見た図であり、矢印は空気の流れを示しており 翼形第2気室(23)が空気の流れに対して翼断面を形成している為に、太い矢 印の様に横方向に様力が発生することを示している。 この翼形第2気室(23 )の形成方法は、前面の第2気室開口部(16)から空気を取り入れる方法で 図10の前面図の方法と、図11で示した様に、点線矢印の空気の流れが示す第 1気室(13)より通気穴(20)を通じて空気を取入れ逆止弁で独立した気室 を形成する方法がある。 図16は、 図14の側面図であり、矢印は空気の流れを示している。通常 の翼の揚力はこの空気の流れで得る事が出来る。 太い矢印が揚力の発生を示し ている。 この翼形を翼体側面に横方向に発生するように取り付ければ横方向に 揚力の発生するのが理解出来る。 翼形第2気室が翼体側面(12)に取り付け てある。FIG. 10 shows that the airfoil second air chamber (23) is attached to the airfoil (3) so that lift is generated in the lateral direction, and the airfoil second air chamber (23) is provided between the stabilizer (8) and the lower surface (6) of the airfoil behind the airfoil. It is a front view of the 2nd air chamber (14) which has a spray part which has a spray part (15). FIG. 11 is the same as FIG. 10, but is a front view of a vent hole (20) for introducing air into the lateral airfoil second chamber (23). This vent hole (20) is provided with a check valve so that the airfoil second air chamber (23) can maintain an independent pressure. In Fig. 12, the lift force generated by the paraglider is expressed by the arrow, and the lift force generated in the upward direction of the wing body is generated by the gravity of the downward pulling force. At the same time, however, this mechanic is inevitable in the conventional paraglider. It was a paraglider that was easily crushed because the wing body that had to be spread laterally was blocked because the force that pulls the wing downward also contracted the wing from the side of the wing to the inside. FIG. 13 shows that the lift shown in FIG. 2 is generated in the lateral direction by installing the airfoil second air chamber (23) so that the lift is generated in the lateral direction on the side surface of the wing body. On the contrary, the force that contracts the wing inward becomes the force that spreads the wing body (3) outward, increasing the tension on the upper and lower surfaces of the wing body (3), making the flow through it smooth and making the lift force stable. It is possible to increase the tensile strength of the wing body (3) while increasing the stability. FIG. 14 is a perspective view in which the airfoil second air chamber (23) is attached to the side surface of the wing body, and the arrows indicate the flow of air. When the airfoil second air chamber (23) is set to 1 m 2 and the relative wind is 35 Km / h, an outward pulling force of about 12 Kgf is generated. However, the airfoil must be formed at an angle that is perpendicular to the lateral direction of the airfoil. FIG. 15 is a view of FIG. 14 seen from below, in which the arrows indicate the flow of air, and because the airfoil second air chamber (23) forms a blade cross section with respect to the flow of air, A thick arrow indicates that a lateral force is generated in the lateral direction. This airfoil second air chamber (23) is formed by taking in air from the second air chamber opening (16) on the front surface, as shown in the front view of FIG. 10 and the dotted line as shown in FIG. There is a method in which air is taken in through the vent hole (20) from the first air chamber (13) indicated by the flow of air and an independent air chamber is formed by a check valve. FIG. 16 is a side view of FIG. 14, and the arrows show the flow of air. Normal wing lift can be obtained by this air flow. Thick arrows indicate the generation of lift. It can be understood that a lift is generated in the lateral direction if this airfoil is attached to the side surface of the airfoil so as to generate it in the lateral direction. An airfoil second air chamber is attached to the side surface (12) of the airfoil.

【0009】 図17は、吊索(9)を取り巻くようににチューブ状の第3気室(24)を 設け、翼下面に取り付けた第2気室(14)より圧縮空気を送りこみ膨らませ状 態を示した全体の斜視図である。従来の吊索(9)では柔軟な材料の為、、引き 延ばす力には耐えるものの、圧縮する力には耐えられないものであったが、この チューブ状の第3気室(24)によって翼体(3)がつぶれた時等の吊索(9) に掛かる圧縮力に対し反発保持する為に、翼体(3)の張りを作るのに役立つ。 図18はこの部分を拡大した図である。 翼体(3)の前進で相対風が第1 気室開口部(11)より入り翼形を形成すると同時に、翼下面(6)の吊索(9 )の取り付け位置に形成する第2気室(14)の開口部(16)より同じように 空気を取入れ第2気室(14)が膨張する。 この膨張した空気を第2気室(1 4)の噴出部(15)より吊索(9)を巻いて取り付けたチューブ状第3気室( 24)にチューブ型第3気室空気取入れ口(25)を通じて送り込み吊索(9) の廻りに巻くようにして取り付けてあるチューブ型第3気室(24)を膨張させ て自動的に吊索の腰を作り圧縮力に耐えるようにするものである。 図19は、翼下面(6)に吊索ハンガー(19)で取り付けた吊索(9)に チューブ状の第3気室(24)を取り付けた断面図である、第3気室(24)は 中空になっており、図20のように吊索(9)を取り巻いてあるので第3気室の 空気取入れ口(25)は、チューブ状の第3気室(24)に空気が入って第3気 室が膨張することにより、図21の示すように吊索(5)との間に挟まれて第3 気室の空気が逆流するのを防ぐ為に第3気室(24)の圧力が保たれテンション を保持する為に吊策に腰が出来、吊索(9)に掛かる圧縮力に対抗する力をを増 大させることにより翼体の安定を増す事が出来る。In FIG. 17, a tubular third air chamber (24) is provided so as to surround the suspension rope (9), and compressed air is sent from the second air chamber (14) attached to the lower surface of the blade to expand the air. It is the whole perspective view which showed the state. Since the conventional suspension cord (9) is made of a flexible material, it can withstand the stretching force but cannot withstand the compression force. It is useful for tensioning the wing body (3) in order to hold it repulsively against the compressive force applied to the suspension rope (9) when the body (3) is crushed. FIG. 18 is an enlarged view of this portion. When the wing body (3) advances, the relative wind enters from the first air chamber opening (11) to form a wing shape, and at the same time, the second air chamber forms at the attachment position of the suspension rope (9) on the lower surface (6) of the wing. Air is similarly taken in through the opening (16) of (14) and the second air chamber (14) is expanded. This expanded air is attached to the tube-shaped third air chamber (24), which is attached by winding the suspension rope (9) from the jetting portion (15) of the second air chamber (14), to the tube-type third air chamber air intake ( The third tube-type air chamber (24), which is attached so as to be wound around the suspension rope (9) and is expanded through 25), automatically forms the waist of the suspension rope and withstands the compressive force. is there. FIG. 19 is a cross-sectional view in which the tube-shaped third air chamber (24) is attached to the hanging rope (9) attached to the lower surface (6) of the wing by the hanging rope hanger (19). 20 is hollow, and the suspension rope (9) is surrounded as shown in FIG. 20, so that the air intake port (25) of the third air chamber is a tube-shaped third air chamber (24) in which air enters. The expansion of the third air chamber causes the air in the third air chamber (24) to be prevented from flowing back due to being sandwiched between the hanging rope (5) as shown in FIG. Since the pressure is maintained and the tension is maintained, the suspension measures can be made lean, and the stability of the wing can be increased by increasing the force that opposes the compressive force applied to the suspension rope (9).

【0010】 図22は従来のパラグライダーの翼後縁部の折れ曲がらせて操舵する状態を 示している。これは従来からパラグライダーは翼体の形状を後縁に取り付けた操 縦索(10)を引き込むことで後縁を下に折り曲げ折り曲げた部分に相対風があ たり抵抗を増加させることで操縦するものでその為に翼形を変形させるので翼体 上面を流れる空気の流れが矢印で示す様に剥離し失速が起こる可能性がある。 図23は翼体後縁を折れ曲がらせる代わりに外気を導入して舵面を形成する補 助気室(26)を操縦索(10)を引き込む事により翼体の形状を変化させるこ となく折れ曲がり抵抗として操舵出来るの様子をしめしている。 図24は操舵索(10)を引き込まない時の状態を示してる。 補助気室(2 6)が外気を前進する事で開口部(16)より取り入れる為に補助気室の内圧で 翼下面にはりつくので操舵しない時は抵抗にならない。 図25はこの補助気室(26)の取り付けた斜視図で、図26に示すように補 助気室(26)は開口部(16)より空気を取り入れることで補助気室(26) として設け操舵すると同時に補助気室(26)に取り付けた噴出部(15)より 補助気室(26)に取り入れた空気を噴射する事により操舵板で発生する乱気流 を少しでも拡散整流させる事が出来る。FIG. 22 shows a state in which the rear edge portion of the wing of the conventional paraglider is bent and steered. Conventionally, paragliders are operated by pulling in the steering rope (10) with the shape of the wing attached to the trailing edge and bending the trailing edge downward to cause relative wind in the bent portion and increase resistance. Therefore, since the airfoil is deformed, the air flow on the upper surface of the airfoil may separate as shown by the arrow and stall may occur. In FIG. 23, instead of bending the trailing edge of the wing body, the shape of the wing body is changed by drawing in the control line (10) into the auxiliary air chamber (26) that forms the control surface by introducing outside air. It shows how it can be steered as a bending resistance. FIG. 24 shows a state when the steering rope (10) is not retracted. Since the auxiliary air chamber (26) takes in the air from the opening (16) by advancing the outside air, the internal pressure of the auxiliary air chamber clings to the lower surface of the wing, so there is no resistance when not steering. FIG. 25 is a perspective view of the auxiliary air chamber (26) attached. As shown in FIG. 26, the auxiliary air chamber (26) is provided as an auxiliary air chamber (26) by taking in air from the opening (16). By injecting the air taken into the auxiliary air chamber (26) from the jet part (15) attached to the auxiliary air chamber (26) at the same time as steering, the turbulent airflow generated in the steering plate can be diffused and rectified even a little.

【0011】[0011]

【考案の効果】[Effect of device]

以下、この発明の効果は、翼体形成の根本である、第1気室に影響を与える 事なく、独立した第2気室を形成させ、第1気室だけでは不十分な横方向の力を 発生させ、吊索に腰を持たせて翼体の張りを作り、翼の変形を出す事なく操縦出 来る事により翼を安定形成させると同時に翼の前進によって必然的に発生する空 気抵抗を軽減したり、又、翼の迎角の変化によって生じる失速を自動的に防ぐ効 果を出す為の考案である。 Below, the effect of the present invention is to form the independent second air chamber without affecting the first air chamber, which is the basis of the formation of the wing body, and the lateral force which is insufficient with only the first air chamber. The wing is tensioned by making the suspension rope have a waist, and the wing body is tensioned so that the wing can be stably formed by maneuvering without deforming the wing, and at the same time the air resistance inevitably generated by the forward movement of the wing. This is a device for reducing the effect of the wing and automatically preventing stall caused by changes in the attack angle of the wing.

【0012】[0012]

【図面の簡単な説明】[Brief description of drawings]

【図1】は パラグライダーの使用状態の斜視図、1] is a perspective view of the paraglider in use,

【図2】は 翼体の断面図であり、翼体を流れる空気の
流れを矢印で示してある。
FIG. 2 is a cross-sectional view of the airfoil, in which the flow of air flowing through the airfoil is indicated by arrows.

【図3】は スタビライザーと翼下面にまたがって取り
付けられた噴出部を持つ第2気室と、第1気室内のリブ
に取り付けられた噴出部を持つパイプ型第2気室を取り
付けた斜視図である。
FIG. 3 is a perspective view in which a stabilizer and a second air chamber having a jet portion attached to the lower surface of the blade and a pipe-type second air chamber having a jet portion attached to a rib in the first air chamber are attached. Is.

【図4】は パイプ型第2気室をリブに取り付けた前面
図。
FIG. 4 is a front view in which a pipe-type second air chamber is attached to a rib.

【図5】は パイプ型第2気室をリブに取り付けた断面
図。
FIG. 5 is a cross-sectional view in which a pipe-type second air chamber is attached to a rib.

【図6】は 翼体前縁部に噴出部を持つ第2気室を取り
付けて、第2気室が形成された斜視図。
FIG. 6 is a perspective view in which a second air chamber having a jet portion is attached to the front edge portion of the wing body to form the second air chamber.

【図7】は 翼体前縁部に噴出部を持つ第2気室を取り
付けて、第2気室が形成されていない時の図。
FIG. 7 is a view when a second air chamber having a jet portion is attached to the front edge portion of the wing body and the second air chamber is not formed.

【図8】は 翼体前縁部に噴出部を持つ第2気室を取り
付けて、第2気室が形成された断面図。
FIG. 8 is a cross-sectional view in which a second air chamber having a jet portion is attached to the front edge portion of the wing body to form the second air chamber.

【図9】は 翼体前縁部に噴出部を持つ第2気室を取り
付けて、第2気室が形成された部分の拡大断面図。
FIG. 9 is an enlarged cross-sectional view of a portion where a second air chamber having a jet portion is attached to the front edge portion of the wing body and the second air chamber is formed.

【図10】は 翼下面とスタビライザーの間に第2気室
を取り付けた翼体側面に翼形第2気室を取り付けた前面
図で 翼形第2気室の空気を前面より取り入れる方式。
FIG. 10 is a front view in which the wing-shaped second air chamber is attached to the side surface of the wing body where the second air chamber is attached between the lower surface of the wing and the stabilizer, and the air in the wing-shaped second air chamber is taken in from the front.

【図11】は 翼下面とスタビライザーの間に第2気室
を取り付けた翼体側面に翼形第2気室を取り付けた前面
図で 翼形第2気室の空気を第1気室や隣の第2気室よ
り取り入れる方式。
[Fig. 11] is a front view in which a wing-shaped second air chamber is attached to the side surface of the wing body in which a second air chamber is attached between the lower surface of the wing and the stabilizer. The method of taking in from the 2nd air chamber.

【図12】従来のバラグライダーでの揚力と重力の力の
方向を示した前面図
FIG. 12 is a front view showing the directions of lift force and gravity force in a conventional Baraglider.

【図13】翼体側面に横方向の翼形
第2気室を設けた時のパラグライダーでの揚力と重力の
力の方向を示した前面図。
FIG. 13 is a front view showing the directions of lift and gravity in a paraglider when a lateral airfoil second air chamber is provided on the side surface of the wing body.

【図14】翼体側面に横方向の翼形第2気室を設けた時
のパラグライダーの斜視図で空気の流れを矢印で示し
た。
FIG. 14 is a perspective view of the paraglider when a lateral airfoil second air chamber is provided on the side surface of the airfoil, and the air flow is indicated by arrows in the perspective view.

【図15】翼体側面に横方向の翼形第2気室を設けた時
のパラグライダーを下から見た図で空気の流れを矢印で
示した。 これで図2で示した翼形が横方向に形成され
ている事がわかる。 図10の方式では先端部の第2気
室開口部より空気を取り入れるが、 図11の隣の気室
から空気を取り入れる方式は点線の矢印で空気の流れを
示している。 太めの矢印は揚力の発生方向を示してい
る。
FIG. 15 is a view of the paraglider when the lateral airfoil second air chamber is provided on the side surface of the wing body as seen from below, and the air flow is indicated by arrows. This shows that the airfoil shown in FIG. 2 is formed laterally. In the method of FIG. 10, air is taken in from the second air chamber opening at the tip, but in the method of taking air from the adjacent air chamber in FIG. 11, the flow of air is shown by the dotted arrows. Thick arrows indicate the direction of lift generation.

【図16】翼体側面に横方向の翼形第2気室を設けた時
のパラグライダーの側面図で空気の流れを矢印で示し
た。
FIG. 16 is a side view of a paraglider in which a lateral airfoil second air chamber is provided on a side surface of a wing body, and an air flow is indicated by an arrow in a side view.

【図17】吊策にチューブ型第3気室を取り付けた状態
の全体斜視図
FIG. 17 is an overall perspective view showing a state in which a tube-type third air chamber is attached to a suspension device.

【図18】翼下面に第2気室を作り、吊策にチューブ型
第3気室を作る部分的斜視図
FIG. 18 is a partial perspective view in which a second air chamber is formed on the lower surface of the wing, and a tube-type third air chamber is formed in the suspension.

【図19】翼下面に第2気室を作り、吊策にチューブ型
第3気室を作る断面図
FIG. 19 is a cross-sectional view in which a second air chamber is formed on the lower surface of the wing and a tube-type third air chamber is formed as a suspension measure.

【図20】吊策に巻き付けたチューブ型第3気室と空気
取入れ口
FIG. 20 is a tube-type third air chamber wrapped around a suspension device and an air intake port.

【図21】第3気室の膨張によって第3気室と吊策との
間の空気取入れ口が塞がれた状態をしめしている。
FIG. 21 shows a state in which the air intake port between the third air chamber and the suspending device is blocked by the expansion of the third air chamber.

【図22】従来の操舵での翼断面図FIG. 22 is a cross-sectional view of a blade in conventional steering.

【図23】補助気室の操舵板を取り付けた翼の操舵中の
翼断面図
FIG. 23 is a cross-sectional view of a wing with a steering plate attached to the auxiliary air chamber during steering.

【図24】補助気室の操舵板を取り付けた翼の操舵して
いない時の翼断面図
FIG. 24 is a wing cross-sectional view of a wing to which a steering plate for an auxiliary air chamber is attached when the wing is not steered.

【図25】補助気室の操舵板を取り付けた斜視図FIG. 25 is a perspective view in which a steering plate for an auxiliary air chamber is attached.

【図26】補助気室の操舵板を取り付けた部分の拡大図FIG. 26 is an enlarged view of a portion of the auxiliary air chamber where the steering plate is attached.

【0013】[0013]

【符号の説明】[Explanation of symbols]

1 パラグライダー全体 2 搭乗者 3 翼体 4 ハーネス 5 翼体上面 6 翼体下面 7 リブ 8 スタビライザー 9 吊索 10 操縦索 11 第1気室開口部 12 翼体側面 13 第1気室 14 第2気室 15 噴出部 16 開口部 17 通気性材料 18 パイプ型第2気室 19 吊索用ハンガー 20 通気穴 21 第2気室形成用布 22 よどみ点 23 翼形第2気室 24 チューブ型第3気室 25 チューブ型第3気室空気取入れ口 26 補助気室 1 Paraglider as a whole 2 Passenger 3 Wing body 4 Harness 5 Upper surface of wing body 6 Lower surface of wing body 7 Rib 8 Stabilizer 9 Suspension rope 10 Control rope 11 First air chamber opening 12 Wing body side surface 13 First air chamber 14 Second air chamber 15 Ejection part 16 Opening part 17 Breathable material 18 Pipe type second air chamber 19 Hanging hanger 20 Vent hole 21 Second air chamber forming cloth 22 Stagnation point 23 Airfoil second air chamber 24 Tube type third air chamber 25 Tube type third air chamber Air intake port 26 Auxiliary air chamber

Claims (6)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 翼体が不通気性布地からなり、前面に開
口を有する多数の気室を並列状に画成し、外気を第1気
室に取入れラム圧によって翼形に膨張し滑空飛行するパ
ラグライダーにおいて、第1気室とは別に独立した噴出
部を持つ第2気室を翼面適所に設け外気を取入れ前記第
2気室より取り込まれた空気を噴出する噴射部を適所に
設けたことを特徴とするパラグライダー。
1. A wing body is made of an impermeable fabric, and defines a number of air chambers having openings at the front side in parallel. The outside air is taken into the first air chamber and expanded into a wing shape by the ram pressure to glide. In the paraglider, a second air chamber having an ejection portion independent of the first air chamber is provided at an appropriate position on the wing surface, and an injection unit for injecting outside air and ejecting the air taken in from the second air chamber is provided at an appropriate position. Paraglider characterized by that.
【請求項2】 翼体が不通気性布地からなり、前面に開
口を有する多数の気室を並列状に画成し、外気を第1気
室に取入れラム圧によって翼形に膨張し滑空飛行するパ
ラグライダーにおいて、噴出部を持つ第2気室を別個に
スタビライザーと翼体との間に設け前記第2気室より取
り込まれ空気を噴出する噴射部を適所に設けると共に翼
体側部に横方向に翼形に形成された第3気室を取り付け
たことを特徴とするパラグライダー。
2. The wing body is made of an impermeable fabric, and defines a number of air chambers having openings at the front side in a parallel manner. The outside air is taken into the first air chamber and expanded into a wing shape by the ram pressure to glide. In the paraglider, a second air chamber having a jet portion is separately provided between the stabilizer and the blade body, and a jet portion for jetting air taken in from the second air chamber is provided at a proper position and laterally on a side portion of the blade body. Paraglider characterized by attaching a third air chamber formed in a wing shape.
【請求項3】 翼体が不通気性布地からなり、前面に開
口を有する多数の気室を並列状に画成し、外気を第1気
室に取入れラム圧によって翼形に膨張し滑空飛行するパ
ラグライダーにおいて、第2気室を翼本体の前縁部に迎
角の変化で自動形成させ前記第2気室より取り込まれた
空気を翼上面に噴出する噴射部を適所に設けたことを特
徴とするパラグライダー。
3. The wing body is made of an impermeable fabric, and defines a number of air chambers having openings at the front side in parallel. The outside air is taken into the first air chamber and expanded into a wing shape by the ram pressure to glide. In the paraglider, the second air chamber is automatically formed at the front edge of the wing body with a change in angle of attack, and an injection unit for ejecting the air taken in from the second air chamber to the upper surface of the wing is provided at an appropriate position. Paraglider.
【請求項4】 翼体が不通気性布地からなり、前面に開
口を有する多数の気室を並列状に画成し、外気を第1気
室に取入れラム圧によって翼形に膨張し滑空飛行するパ
ラグライダーにおいて、パイプ型第2気室を第1気室の
内部のリブに取り付け外気を取入れ膨張した空気を後縁
に向かって膨張した空気を噴射部を適所に設けたことを
特徴とするパラグライダー。
4. The wing body is made of an impermeable fabric, and defines a plurality of air chambers having openings at the front side in parallel. The outside air is taken into the first air chamber and expanded into a wing shape by ram pressure to glide. Paraglider characterized in that the pipe-type second air chamber is attached to a rib inside the first air chamber to take in the outside air and expand the expanded air toward the trailing edge to provide an injection portion at a proper position. .
【請求項5】 翼体が不通気性布地からなり、前面に開
口を有する多数の気室を並列状に画成し、外気を第1気
室に取入れラム圧によって翼形に膨張し滑空飛行するパ
ラグライダーにおいて、翼体後部下面に外気を導入し舵
面を形成する補助気室を設け、前記補助気室はその前部
が翼体に取り付けられ、後部は可動可能に形成されてお
り、前記補助気室の上面後部に補助翼内の空気を噴出さ
せる噴出部を適所に設けたことを特徴とするパラグライ
ダー。
5. The wing body is made of an impermeable fabric, and defines a number of air chambers having openings at the front side in a parallel manner. The outside air is taken into the first air chamber and expanded into a wing shape by the ram pressure to glide. In the paraglider to be provided, an auxiliary air chamber that introduces outside air into the lower surface of the rear portion of the wing body to form a control surface is provided, the front portion of the auxiliary air chamber is attached to the wing body, and the rear portion is movably formed. A paraglider characterized in that a jet portion for jetting air in the auxiliary blade is provided at a proper position at a rear portion of an upper surface of the auxiliary air chamber.
【請求項6】 請求項1の第2気室の噴射部に吊索の外
周をチューブ型で中空の第3気室を取り付けた事を特徴
とするパラグライダー。
6. A paraglider, characterized in that a tubular third hollow air chamber is attached to the outer periphery of the suspension line at the injection portion of the second air chamber of claim 1.
JP8573692U 1991-12-19 1992-10-30 Paraglider Pending JPH0653399U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8573692U JPH0653399U (en) 1991-12-19 1992-10-30 Paraglider

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11463991 1991-12-19
JP3-114639 1991-12-19
JP8573692U JPH0653399U (en) 1991-12-19 1992-10-30 Paraglider

Publications (1)

Publication Number Publication Date
JPH0653399U true JPH0653399U (en) 1994-07-19

Family

ID=26426740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8573692U Pending JPH0653399U (en) 1991-12-19 1992-10-30 Paraglider

Country Status (1)

Country Link
JP (1) JPH0653399U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108657428A (en) * 2018-05-18 2018-10-16 深圳市百川融创科技有限公司 Zither parafoil
WO2020026847A1 (en) * 2018-08-03 2020-02-06 浩幸 横山 Paraglider

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108657428A (en) * 2018-05-18 2018-10-16 深圳市百川融创科技有限公司 Zither parafoil
CN108657428B (en) * 2018-05-18 2024-05-10 深圳市百川融创科技有限公司 Kite parafoil
WO2020026847A1 (en) * 2018-08-03 2020-02-06 浩幸 横山 Paraglider
JPWO2020026847A1 (en) * 2018-08-03 2021-08-02 浩幸 横山 Paraglider

Similar Documents

Publication Publication Date Title
US4191349A (en) Parachute having an improved multi-cell canopy
US4129272A (en) Aerofoil structure
US4811920A (en) Aerial device
US4399969A (en) Gliding parachute
US5244169A (en) Inflatable structure paraglider
US4406433A (en) Leading edge inlet for ram air pressurized airfoil
US3498565A (en) Maneuverable glide parachute
CA1052359A (en) Kites
US4846424A (en) Controllable airfoil kite
US5362017A (en) Parawing
US5201482A (en) RAM air inflatable gliding wing
US5174529A (en) RAM air multi-cell wing type canopy
US4116406A (en) Hang glider having inflatable airfoil
CN110271658B (en) Leading edge structure for an airflow control system of an aircraft
JPH0653399U (en) Paraglider
US4930726A (en) Built-in control flaps for a multi-cell wing type canopy
US20190184300A1 (en) Modified delta wing kite with inflatable fuselage
US4209148A (en) Flying wing
US5169092A (en) Paraglider canopy
WO2020026847A1 (en) Paraglider
US4637576A (en) Parachute with leading-edge slats
KR20130035789A (en) Paraglider with inlets separated from each other
US5078344A (en) Ribless ram air parachute
US4776538A (en) Parachute with leading-edge slats
KR940001341B1 (en) Paraglider