JPH0652985B2 - Gate circuit - Google Patents

Gate circuit

Info

Publication number
JPH0652985B2
JPH0652985B2 JP60276926A JP27692685A JPH0652985B2 JP H0652985 B2 JPH0652985 B2 JP H0652985B2 JP 60276926 A JP60276926 A JP 60276926A JP 27692685 A JP27692685 A JP 27692685A JP H0652985 B2 JPH0652985 B2 JP H0652985B2
Authority
JP
Japan
Prior art keywords
power supply
cathode
self
thyristor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60276926A
Other languages
Japanese (ja)
Other versions
JPS62138057A (en
Inventor
秀喜 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP60276926A priority Critical patent/JPH0652985B2/en
Publication of JPS62138057A publication Critical patent/JPS62138057A/en
Publication of JPH0652985B2 publication Critical patent/JPH0652985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ゲートターンオフサイリスタや静電誘導サイリスタ(以
下SITYと称する)などの自己消弧形サイリスタのゲ
ート回路のうち、スナバコンデンサのエネルギーを負方
向ゲート電流を供給するための直流電源へ回生するもの
の改良に関するもので、特に大容量の直流電源が必要と
なる高周波応用分野での効果が期待されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] In a gate circuit of a self-extinguishing thyristor such as a gate turn-off thyristor or an electrostatic induction thyristor (hereinafter referred to as STY), the energy of a snubber capacitor is converted to a negative direction gate current. The present invention relates to an improvement of a regenerative DC power supply for supplying a power source, and is expected to be particularly effective in a high frequency application field requiring a large capacity DC power source.

〔従来の技術〕[Conventional technology]

スナバコンデンサのエネルギーをゲート回路の電源へ回
生する技術の一例として、先に本発明者の発表した特開
昭60-49665号がある。これは、負方向ゲート電流用電源
のみではなく、正方向ゲート電流用電源としても利用す
る方式に関するものであるが、本発明では正方向ゲート
電流用電源とは直接関係がないため、負方向ゲート電流
用電源に関連する部分のみを抜粋して第2図に示す。
As an example of the technique for regenerating the energy of the snubber capacitor to the power source of the gate circuit, there is JP-A-60-49665, which was previously announced by the present inventor. This relates not only to the negative direction gate current power supply but also to the system used as the positive direction gate current power supply. However, in the present invention, since it is not directly related to the positive direction gate current power supply, the negative direction gate current power supply is used. Fig. 2 shows only the part related to the current power supply.

第2図において、1は自己消弧形サイリスタで、ここで
はSITYの例で示してある。2はスナバコンデンサ、
3はダイオード、4は負方向ゲート電流供給用直流電
源、5はスイッチング素子、6はリアクトルである。
In FIG. 2, reference numeral 1 is a self-extinguishing thyristor, which is shown here as an example of SITY. 2 is a snubber capacitor,
3 is a diode, 4 is a DC power supply for supplying a negative direction gate current, 5 is a switching element, and 6 is a reactor.

SITY1の消弧時にはスイッチング素子5を閉路させ、直
流電源4から負方向ゲート電流を供給する。SITY1が消
弧すると、一般にはアノード〜カソード間電圧が上昇
し、スナバコンデンサ2はダイオード3を通して充電さ
れ、通常のスナバ動作を行う。
When the SITY 1 is extinguished, the switching element 5 is closed to supply the negative direction gate current from the DC power supply 4. When SITY 1 is extinguished, the voltage between the anode and the cathode generally rises, the snubber capacitor 2 is charged through the diode 3, and the normal snubber operation is performed.

SIYTの点弧時には図示してない回路から正方向ゲ
ート電流を供給するが、SITY1が点弧するとそのアノー
ド〜カソード間は導通状態になり、アノード〜カソード
間電圧も2〜3V程度の小さい値になる。すると、消弧
時にスナバコンデンサ2に充電された電荷は、コンデン
サ2→SITY1のアノード→SITY1のカソード→直流電源4
→リアクトル6→コンデンサ2の径路で放電し、直流電
源4を充電すると共に、リアクトル6の電磁エネルギー
に変換される。
SIYT supplies positive gate current from a circuit not shown in the point at the arc of 1, between the anode-cathode when Sity 1 ignites becomes conductive, small order 2~3V also the anode-cathode voltage It becomes a value. Then, the electric charge charged in the snubber capacitor 2 when extinguishing the cathode → DC power source 4 of the anode → Sity 1 capacitor 2 → Sity 1
→ Reactor 6 → Discharged along the path of the capacitor 2 to charge the DC power supply 4 and converted into electromagnetic energy of the reactor 6.

コンデンサ2の電圧がほぼ零ボルトとなった後は、リア
クトル6→ダイオード3→直流電源4→リアクトル6の
径路で電流が循環し、リアクトル6の電磁エネルギーは
直流電源4へ移行する。結局、スナバコンデンサ2に蓄
えられた電荷は、ほとんど直流電源4に回生されること
になる。よって、直流電源4には小容量のものを使用す
ることができ、経済的にも省スペースの点でも有効なゲ
ート回路である。
After the voltage of the capacitor 2 becomes almost zero volt, a current circulates in the path of the reactor 6, the diode 3, the DC power supply 4, and the reactor 6, and the electromagnetic energy of the reactor 6 is transferred to the DC power supply 4. After all, the electric charge stored in the snubber capacitor 2 is almost regenerated to the DC power supply 4. Therefore, a small capacity DC power supply 4 can be used, which is an effective gate circuit in terms of economy and space saving.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、第2図に示したゲート回路では次に述べ
るような不都合が生じることがある。すなわち、直流電
源4に回生されるエネルギーWRは、スナバコンデンサ2
の容量CS,オフ時のSITY1のアノード〜カソード間電圧V
A,SITY1の動作周波数でほぼ定まり、およそ次式のよ
うになる。
However, in the gate circuit shown in FIG. 2, the following inconvenience may occur. That is, the energy W R regenerated by the DC power supply 4 is the snubber capacitor 2
Capacity C S , anode-cathode voltage V of SITY 1 when off
It is almost determined by the operating frequency of A and SITY 1 , and is approximately as follows.

一方、SITY1の負方向ゲート電流により消費される直流
電源4のエネルギーWPは、SITY1のオフゲート電荷を
QGQ,直流電源4の電圧をVNとすると、大略 WP=QGQVN(W) ………(2) で表される。
On the other hand, the energy W P of the DC power source 4 that is consumed by the negative gate current of Sity 1 is off-gate charge of Sity 1
When the voltage of Q GQ and the DC power supply 4 is V N , it is roughly expressed by W P = Q GQ V N (W) ……… (2).

(1)式のアノード〜カソード間電圧VA,動作周波数は
主回路上の要求に定まり、スナバコンデンサ2の容量CS
もSITY1の過電圧やdv/dt耐量により選定される故、回
生エネルギーWRもおのずから定まってしまう。
(1) of the anode-cathode voltage V A, the operating frequency is Sadamari the requirements on the main circuit, the snubber capacitor 2 capacitor C S
Is also selected according to the overvoltage and dv / dt tolerance of SITY 1 , so the regenerative energy W R is naturally determined.

一方、消費エネルギーWPはオフゲート電荷QGQに依存し
ているが、これはアノード電流値やジャンクション温
度、ゲートドライブのやり方などにより変動し一定では
ない。
On the other hand, the energy consumption W P depends on the off-gate charge Q GQ, which varies depending on the anode current value, the junction temperature, the gate drive method, etc. and is not constant.

直流電源4としては常に消費エネルギーWPが回生エネル
ギーWRよりも僅かに大きく、不足分のみを外部から供給
するという形が望ましいが、オフゲート電荷QGQの変動
のため常にこの条件を満たすことができるとは限らず、
時には回生エネルギーWRが消費エネルギーWP以上になる
ことも起こり得る。
For the DC power supply 4, it is desirable that the energy consumption W P is always slightly larger than the regenerative energy W R and only the shortage is supplied from the outside, but this condition is always satisfied because of fluctuations in the off-gate charge Q GQ. Not always possible,
Occasionally, the regenerative energy W R may exceed the consumed energy W P.

このような場合には回生エネルギーに直流電源4内部の
コンデンサが充電され過電圧状態となり、SITY1のゲー
ト逆耐圧やスイッチング素子5の耐圧をおびやかすこと
になる 〔問題点を解決するための手段〕 本発明は前記のような点に鑑み、直流電源に回生される
エネルギーWRが負方向ゲート電流により消費される直流
電源のエネルギーWPを超えて直流電源の電圧が上昇し始
めた場合には、回生電流のバイパス回路を設けて回生動
作を中止させるようにしたものである。
In such a case, the capacitor inside the DC power supply 4 is charged with the regenerative energy to cause an overvoltage state, which impairs the gate reverse breakdown voltage of SITY 1 and the breakdown voltage of the switching element 5 [Means for solving the problem] In view of the above points, the invention is such that when the energy W R regenerated by the DC power source exceeds the energy W P of the DC power source consumed by the negative direction gate current and the voltage of the DC power source starts to rise, A regenerative current bypass circuit is provided to stop the regenerative operation.

すなわち、カソードを自己消弧形サイリスタのカソード
に接続された第1のダイオードとコンデンサとの直列接
続体を自己消弧形サイリスタのアノード〜カソード間に
接続し、陽極を自己消弧形サイリスタのカソードに接続
された直流電源と第1のスイッチング素子との直列接続
体を自己消弧形サイリスタのゲート〜カソード間に接続
し、アノードを直流電源の陰極と接続された第2のダイ
オードとリアクトルとの直列接続体を直流電源の陰極と
第1のダイオードのアノード間に接続し、自己消弧形サ
イリスタのカソードと第2のダイオードのカソード間に
第2のスイッチング素子を接続すると友に、直流電源電
圧検出回路を設けて、直流電源電圧が所定の値以上とな
った時に第2のスイッチング素子を閉路させるようにし
たものである。
That is, a series connection body of a first diode and a capacitor whose cathode is connected to the cathode of the self-extinguishing thyristor is connected between the anode and the cathode of the self-extinguishing thyristor, and the anode is the cathode of the self-extinguishing thyristor. A series connection body of a DC power source and a first switching element connected to is connected between the gate and the cathode of the self-extinguishing thyristor, and an anode of a second diode and a reactor connected to the cathode of the DC power source. If the series connection is connected between the cathode of the DC power supply and the anode of the first diode, and the second switching element is connected between the cathode of the self-extinguishing thyristor and the cathode of the second diode, the DC power supply voltage A detection circuit is provided so that the second switching element is closed when the DC power supply voltage exceeds a predetermined value.

〔実施例〕〔Example〕

第1図は本発明にかかるゲート回路の一実施例を示すつ
なぎ図で、第2図と同一の符号は同一部分を示し、7は
ダイオード、8は電圧検出回路、9はスイッチング素子
である。
FIG. 1 is a connection diagram showing an embodiment of a gate circuit according to the present invention. The same reference numerals as those in FIG. 2 denote the same parts, 7 is a diode, 8 is a voltage detection circuit, and 9 is a switching element.

次に第1図回路の動作を説明する。直流電源4の電圧が
正常範囲にある場合は、電圧検出回路8からスイッチン
グ素子9にオフ指令が与えられて開路しており、リアク
トル6と直列にダイオード7が挿入されている他は第2
図の回路と全く同様の動作を行う。
Next, the operation of the circuit shown in FIG. 1 will be described. When the voltage of the DC power supply 4 is within the normal range, the voltage detection circuit 8 gives an OFF command to the switching element 9 to open the circuit, and the diode 7 is inserted in series with the reactor 6 and the second
It operates in exactly the same way as the circuit shown.

直流電源4の電圧が所定の値を超えると、電圧検出回路
8がこれを検出してスイッチング素子9を閉路させる。
すると、スナバコンデンサ2の充電電荷は、コンデンサ
2→SITY1のアノード→SITY1のカソード→スイッチング
素子9→リアクトル6→コンデンサ2の径路を通り放電
され、コンデンサ2の電圧がほぼ零になった後は、リア
クトル6→ダイオード3→スイッチング素子9→リアク
トル6の径路で電流が流れるため、直流電源4への回生
は中止される。ダイオード7はスイッチング素子9が閉
路されたとき直流電源4が短絡されるのを防止するため
に必要である。
When the voltage of the DC power supply 4 exceeds a predetermined value, the voltage detection circuit 8 detects this and closes the switching element 9.
Then, the electric charge of the snubber capacitor 2 is through discharge cathode → path of the switching device 9 → the reactor 6 → capacitor 2 in the anode → Sity 1 capacitor 2 → Sity 1, after the voltage of the capacitor 2 becomes substantially zero Since a current flows through the path of reactor 6 → diode 3 → switching element 9 → reactor 6, regeneration to DC power supply 4 is stopped. The diode 7 is necessary to prevent the DC power supply 4 from being short-circuited when the switching element 9 is closed.

直流電源4の電圧が正常範囲以下となった時点で、再び
スイッチング素子9を開路させて回生動作を再開する。
このように安定した動作を行わせるため、電圧検出回路
8にはヒステリシス特性をもたせてある。
When the voltage of the DC power supply 4 falls below the normal range, the switching element 9 is opened again to restart the regenerative operation.
In order to perform a stable operation as described above, the voltage detection circuit 8 has a hysteresis characteristic.

〔作用〕[Action]

前記のように、直流電源4の電圧が正常範囲以上になる
と、電圧検出回路8がこれを検出してスイッチング素子
9を閉路せしめて回生動作を中止せしめ、直流電源4の
電圧が正常範囲以下になると、スイッチング素子9を開
路せしめて回生動作を開始するように制御し、直流電源
4の電圧を正常範囲内に維持する。
As described above, when the voltage of the DC power supply 4 is above the normal range, the voltage detection circuit 8 detects this and closes the switching element 9 to stop the regenerative operation, and the voltage of the DC power supply 4 falls below the normal range. Then, the switching element 9 is controlled to be opened to start the regenerative operation, and the voltage of the DC power supply 4 is maintained within the normal range.

従って、直流電源4の電圧が過電圧状態となってSITY1
やスイッチング素子5の耐圧をおびやかしたり、直流電
源4の電圧が異常に低下して正常な消弧動作が行えなく
なるような事態を避けることができる。
Therefore, the voltage of the DC power supply 4 becomes an overvoltage state and the SITY 1
It is possible to avoid a situation in which the withstand voltage of the switching element 5 is impaired, or the voltage of the DC power supply 4 is abnormally lowered to prevent normal arc extinguishing operation.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明によれば、スナバエ
ネルギーをゲート回路電源に回生するゲート回路におい
て、簡単な回路の追加により回生量の制御を行いゲート
回路電源が異常になるのを防止することができ、小容量
の直流電源を用いた自己消弧形サイリスタのゲート回路
の実現に寄与することができる。
As described in detail above, according to the present invention, in the gate circuit that regenerates the snubber energy to the gate circuit power supply, the regeneration amount is controlled by adding a simple circuit to prevent the gate circuit power supply from becoming abnormal. Therefore, it is possible to contribute to the realization of a gate circuit of a self-turn-off thyristor using a small capacity DC power supply.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかるゲート回路の一実施例を示すつ
なぎ図、第2図は従来のスナバエネルギー回生を行うゲ
ート回路の一例を示すつなぎ図である。 1……静電誘導サイリスタ、2……コンデンサ、3,7
……ダイオード、4……直流電源、5,9……スイッチ
ング素子、6……リアクトル、8……電圧検出回路。
FIG. 1 is a connection diagram showing an embodiment of a gate circuit according to the present invention, and FIG. 2 is a connection diagram showing an example of a conventional gate circuit for performing snubber energy regeneration. 1 ... Electrostatic induction thyristor, 2 ... Capacitor, 3, 7
...... Diode, 4 ...... DC power supply, 5, 9 ...... Switching element, 6 ...... Reactor, 8 ...... Voltage detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】カソードを自己消弧形サイリスタのカソー
ドに接続された第1のダイオードとコンデンサとの直列
接続体を自己消弧形サイリスタのアノード〜カソード間
に接続し、陽極を自己消弧形サイリスタのカソードに接
続された直流電源と第1のスイッチング素子との直列接
続体を自己消弧形サイリスタのゲート〜カソード間に接
続し、アノードを直流電源の陰極と接続された第2のダ
イオードとリアクトルとの直列接続体を直流電源の陰極
と第1のダイオードのアノード間に接続し、自己消弧形
サイリスタのカソードと第2のダイオードのカソード間
に第2のスイッチング素子を接続すると共に、直流電源
電圧検出回路を設けて、直流電源電圧が所定の値以上と
なった時に第2のスイッチング素子を閉路させることを
特徴とする自己消弧形サイリスタのゲート回路。
1. A self-extinguishing thyristor having a first diode connected to a cathode of a self-extinguishing thyristor in series connection with a capacitor is connected between an anode and a cathode of the self-extinguishing thyristor, and an anode of the self-extinguishing thyristor. A series connection body of a DC power source connected to the cathode of the thyristor and the first switching element is connected between the gate and the cathode of the self-extinguishing thyristor, and an anode of the second diode connected to the cathode of the DC power source. The series connection with the reactor is connected between the cathode of the DC power supply and the anode of the first diode, and the second switching element is connected between the cathode of the self-extinguishing thyristor and the cathode of the second diode, and the DC Self-extinguishing, characterized in that a power supply voltage detection circuit is provided to close the second switching element when the DC power supply voltage exceeds a predetermined value. Gate circuit of the form thyristor.
JP60276926A 1985-12-11 1985-12-11 Gate circuit Expired - Lifetime JPH0652985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276926A JPH0652985B2 (en) 1985-12-11 1985-12-11 Gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276926A JPH0652985B2 (en) 1985-12-11 1985-12-11 Gate circuit

Publications (2)

Publication Number Publication Date
JPS62138057A JPS62138057A (en) 1987-06-20
JPH0652985B2 true JPH0652985B2 (en) 1994-07-06

Family

ID=17576322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276926A Expired - Lifetime JPH0652985B2 (en) 1985-12-11 1985-12-11 Gate circuit

Country Status (1)

Country Link
JP (1) JPH0652985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024068051A1 (en) 2022-09-26 2024-04-04 Schott Vtf Panel, glazing and closure means for a device for heat treatment using microwaves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024068051A1 (en) 2022-09-26 2024-04-04 Schott Vtf Panel, glazing and closure means for a device for heat treatment using microwaves

Also Published As

Publication number Publication date
JPS62138057A (en) 1987-06-20

Similar Documents

Publication Publication Date Title
US4510400A (en) Switching regulator power supply
JP3872444B2 (en) Hybrid DC electromagnetic contactor
US20210203232A1 (en) Power supply control device and power supply device
US5675481A (en) Drive signal controlled under-voltage lockout circuit
JPH0652985B2 (en) Gate circuit
JP2001069672A (en) Charging and discharging controller
US4212054A (en) DC Power source
US5656870A (en) Current control for superconducting magnetic energy storage system
JP2008035573A (en) Electricity accumulation device employing electric double layer capacitor
JPS6215023B2 (en)
EP0740384B1 (en) Startup protection for a switch mode power supply
CN112448603A (en) Power conversion device
JP3057992B2 (en) Charge / discharge circuit
JPH06115836A (en) Inverter device of elevator
JPS586078A (en) Inverter
JPH02164236A (en) Uninterruptible power supply
CN212695914U (en) Switching power supply and electrical equipment
JP6975768B2 (en) Voltage converter
JP2002110006A (en) Direct current breaker
JP3404996B2 (en) Power circuit
JP2529659B2 (en) Snubber circuit of self-extinguishing type switching element
JP2825874B2 (en) Battery charging / discharging circuit for power supply unit
JP2000116131A (en) Power converter
JPH118970A (en) Chopper circuit
JPH06319292A (en) Load drive equipment and drive method