JPH065291B2 - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH065291B2
JPH065291B2 JP61155663A JP15566386A JPH065291B2 JP H065291 B2 JPH065291 B2 JP H065291B2 JP 61155663 A JP61155663 A JP 61155663A JP 15566386 A JP15566386 A JP 15566386A JP H065291 B2 JPH065291 B2 JP H065291B2
Authority
JP
Japan
Prior art keywords
rays
radiation
electrode
semiconductor
dose rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61155663A
Other languages
Japanese (ja)
Other versions
JPS6312179A (en
Inventor
博司 北口
知 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61155663A priority Critical patent/JPH065291B2/en
Publication of JPS6312179A publication Critical patent/JPS6312179A/en
Publication of JPH065291B2 publication Critical patent/JPH065291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体放射線検出器に係り、特に、α線、β
線、γ線、中性子線の二又は二以上が混在する放射線雰
囲気において、各放射線質を識別し、かつ、その線質毎
の線量率を定量的に測定するのに好適な半導体放射線検
出器に関する。 〔従来の技術〕 従来の半導体放射線検出器は、特開昭59−10836
7号に記載のように、一種類の放射線質(主にγ線)を
対象にし、高感度化あるいは線量率直線性の範囲拡大化
を目的にしている。この公知例では、半導体検出素子の
印加電圧を可変し、検出素子中に生成する空乏層厚ある
いはその広がりを制御する。空乏層は放射線の有感領域
であり、直接その検出素子の感度を制御できることにな
る。しかし、放射線の線質識別に関しては考慮されてい
なかつた。 また、特開昭56−148873号の公知例では、放射
線の線質を識別するため、一つの半導体検出素子の印加
電圧を変え、空乏層厚を目的の放射線の飛程(透過距
離)に設定する。あるいは、目的の放射線の透過力に対
応するフイルタを個別に検出素子に着脱した条件での出
力値から、各放射線の線質を識別する。 しかし、異る線質の放射線が混在している場合における
線質別の線量率の定量的測定については考慮されていな
かつた。 〔発明が解決しようとする問題点〕 上記のように、従来技術は各放射線質毎の線量率の定量
については考慮されておらず、線質毎の線量率測定が不
可欠な放射線モニタへの適用には問題があつた。 本発明の目的は、各放射線の線質毎の線量率を同時に検
出可能な半導体放射線検出器を提供することにある。 〔問題点を解決するための手段〕 電極間に挟まれた半導体の空乏層内に放射線が生ぜしめ
る電子・正孔対を電極で収集検出する半導体放射線検出
素子を複数個並設する。これらの検出素子の電極は、γ
線、β線、α線のうち透過力の強い順に、夫々、γ線の
み、γ線とβ線のみ、および上記三者を透過するように
なつている。また更に、中性子線とγ線又はγ線および
β線とを透過させる電極の裏側に中性子線と反応してα
粒子を生ずる材料を施し、このα粒子および電極を透過
したγ線又はγ線とβ線により生じた電子・正孔対を電
極で収集検出する構成の検出素子を併設する。これら検
出素子の出力間に補正係数を乗じた減算を施して上記の
各線質の線量率に夫々相当する出力を論理演算回路で算
出し、これら出力を夫々表示する表示器を備える。な
お、上記検出素子の全てを備えずに、そのうちの幾つか
を備えることによって前記各放射性のうち少くとも二者
のみの線量率を計測する構成を採ることもできる。 〔作用〕 γ線のみ電極透過させる検出素子の出力はγ線のみの線
量率を示し、これに補正係数を乗じたものをγ線および
β線のみ電極透過させる検出素子の出力から減算するこ
とにより、β線のみの線量率が算出される。このように
して得たγ線およびβ線の各線量率に相当する出力に夫
々補正係数を乗じたものをγ線、β線およびα線を電極
透過させる検出素子の出力から減算することにより、α
線のみの線量率が算出される。また、中性子線との反応
でα粒子を生ずる材料と電極裏側に施した検出素子の電
極が中性子線とγ線とを透過させるものである場合は、
該検出素子の出力から、前記得られたγ線の線量率に補
正係数を乗じたものを減算することによつて中性子線の
線量率が求まり、また該電極が中性子線、γ線およびβ
線を透過させるものである場合は、該検出素子の出力か
ら前記得られたγ線およびβ線の各線量率に夫々補正係
数を乗じたものを減算することにより中性子線の線量率
が求まる。このようにして求まつた各線質毎の線量率が
表示器に表示される。 〔実施例〕 本発明の一実施例を第1図により説明する。板状の半導
体材料1に構造の異る電極2,3,4,5)と、夫々の
出力信号線6を設ける。出力信号線6には抵抗Rを介し
て共通の印加電圧VBを印加する。半導体材料1の裏面
はオーム接触を形成する共通電極7を設ける。各出力信
号線6は増幅器8、積分器9を介して論理演算ユニツト
10へ接続する。さらに、放射線の線質(α線、β線、
γ線、中性子線)ごとの線量率を表示する表示部11を
設ける。 以上が、本実施例による半導体放射線検出器の全体構成
である。半導体材料1には高純度シリコン、テルル化カ
ドミウムなどを用いる。この検出器に印加電圧VBを印
加すると各電極に対して半導体内にそれぞれ空乏層12
が生成する。この空乏層12内に荷電粒子の放射線(α
線、β線)が入射すると電子・正孔対を作り、半導体材
料1の両面の電極より電流パルス信号として取り出され
る。空乏層12内にγ線が入射した場合は、γ線と半導
体材料との相互作用(コンプトン散乱など)で生成する
二次電子が電子・正孔対を作る。中性子線が入射した場
合は、中性子線に電荷がなく、そのままでは空乏層12
内に電子・正孔対を生成しない。この検出器の各検出素
子(各電極2,3,4,5によつて独立に空乏層を形成
した各検出部の空乏層12の厚さは、印加電圧が共通で
あることから、全く同一の大きさ形状となる。もし各電
極の構造が同一の場合は各検出素子からは放射線の線質
を識別するための有効な情報は得られない。 本発明実施例では電極2の厚さをα線とβ線の入射を阻
止し得る厚さに設け、この電極2の属する検出素子から
はγ線だけの検出を行う。そのためには、α線に比べβ
線の透過力が大きいのでβ線の阻止だけについて考慮す
ればよい。一般的にはβ線のエネルギーEは5MeV以下
であるので、電極2の材料とβ線の飛程Rから電極2の
厚さを決定できる。電極材料をアルミニウムとした場
合、β線の飛程RはR=407E1.38(mg/cm2)から求
められ、アルミニウムの密度ρから、R/ρで電極2の
厚さを決定できる。この値は約1.4mmとなる。このよ
うにして設計した電極2の属する検出素子はγ線だけを
選択的に検出する素子となる。 次に、電極3の厚さは、α線の入射を阻止し得る厚さに
設け、この電極3の属する検出素子ではβ線とγ線の入
射によつて生じる出力信号だけを取り出す。この厚さの
決定も、アルミニウム中のα線の飛程から算出すること
ができる。α線のエネルギーは239Puでは5.1MeV,
238Uでは4.1Meであり、5Meのα線を阻止するには
30μm厚程度のアルミニウムでよい。 次に、電極4の厚さは、すべての放射線の入射が可能な
厚さに設ける。これは、もつとも透過力の小さいα線の
入射を妨げない厚さで、かつ、検出素子内の電荷(電子
・正孔対)収集に支障をきたさない厚さとして、アルミ
ニウム数μmに選定すればよい。電極4の属する検出素
子ではα線、β線、γ線の入射によつて生じる出力信号
が取り出される。 半導体材料への電極取付けは一般に蒸着で容易に取付け
られる。厚い電極は薄い電極を蒸着した後所定厚さのも
のを接着する方法でも良い。この場合は半導体に蒸着し
た電極から信号線に引き出す。 次に、電極5では中性子線に感応させるため、電極4と
同一の数μmのアルミ電極を設け、その上部に6Li(リチ
ウム)を数μm設け、さらに、その上部に電極3と同一
の30μm厚のアルミニウムを設ける。この電極5の属
する検出素子では、最上部のアルミニウム層で、外部か
ら入射するα線を阻止し、中間層に設けた6Liと中性子
線の反応(n,αの核反応)で生成したα粒子および外
部から入射するβ線、γ線で生じる出力信号が取り出さ
れる。 以上の検出素子の出力を整理すると以下のようになる。 電極2の属する検出素子の出力 :γ線の検出 電極3の属する検出素子の出力 :β線、γ線の検出 電極4の属する検出素子の出力 :α線、β線、γ線の検出 電極5の属する検出素子の出力 :中性子線、β線、γ線の検出 このままでは、電極2の属する検出素子からはγ線だけ
を識別した出力信号を得ることができるが、他の電極の
属する検出素子からは線質を明確に識別した出力は得ら
れない。 第2図は、これらの検出素子出力信号にもとづいて線質
を識別した線量率を求める構成を示す。図示の如く各電
極2,3,4,5の属する各検出素子からの出力信号は
増幅器8、積分器9を介して、論理演算ユニツト10に
入力される。電極2の属する検出素子の出力は直接、線
量率補正回路((mR/hr,CPSなどの換算)20と表示素
子21から成る表示部11に送られ、γ線だけの線量率を
表示する。他方、電極3の属する検出素子の出力は、電
極2の属する検出素子の出力に補正係数f1を乗じた値
を差し引くことによつて、β線だけに依存した値とな
り、この値を表示部11に送りβ線だけの線量率を表示
する。補正係数f1は、電極2の厚さによるγ線の減衰
量補正、各検出素子間の規格化の補正を実施するもので
ある。 電極4の属する検出素子の出力は、電極2の属する検出
素子の出力に補正係数f1を乗じた値を差し引くこと
と、電極3の検出素子の出力に補正係数f2を乗じた値
を差し引くことによつて、α線だけに依存した値とな
る。この値を表示部11に送り、α線だけの線量率を表
示する。補正係数f2は電極3の厚さによるβ線の減衰
補正、各検出素子間の規格化の補正を実施するものであ
る。 電極5の属する検出素子の出力は、電極2の属する検出
素子の出力に補正係数f1を乗じた値を差し引くこと
と、電極3の属する検出素子の出力に補正係数f3を乗
じた値を差し引くことによつて、中性子線だけに依存し
た値となる。この値を表示部11に送り、中性子線だけ
の線量率を表示する補正係数f3は、各検出素子間の規
格化の補正を実施するものである。 以上の構成によつて放射線の各線質毎の線量率を測定で
きる。なお、電極4の厚さ、電極5の上部に設けるリチ
ウム層の厚さによる各種放射線の減衰は他に比べ著しく
小さく、各補正係数f1,f2,f3に含まれる各検出素
子間の規格化の補正で補償できる。また、表示部11内
の線量率補正回路20は識別した線質に応じて、γ線の
場合はmR/hr,α線、β線についてはCPm、中性子線につ
いてはn/cm2・sなどの値として、校正データをもとに換
算するものである。なお、第2図では、印加電圧の系統
の図示は省略している。 さらに、各電極の属する各検出素子の出力に設けた積分
器9以降の後段については、1チツプマイクロプロセツ
サによるデイジタル処理で同一の論理処理が容易にでき
る。 なお、言うまでもないが、第2図に示した諸要素のう
ち、第2図の左から二列(ここで第2図の縦方向すなわ
ち上下方向に配列図示したものを列ということにする)
までのみを具備し、且つ論理演算ユニツト10中の横方
向ラインで示した補正係数の回路のうち上記二列間の補
正係数f1の回路のみを具備すれば、γ線とβ線のみの
各線量率が計測可能となる。また同じく左から三列まで
のみを具備し、且つこれら三列間の補正係数f1,f2
回路のみを具備すれば、γ線、β線およびα線のみの各
線量率が計測可能となる。また同じく、左から第3列目
以外の三列のみを具備し、且つこれら三列間の補正係数
1,f3の回路のみを具備すれば、γ線、β線および中
性子線のみの各線量率が計測可能となる。 前述の実施例は、同一半導体材料1の上に電極構造の異
なる検出素子を複合して設けた例であるが、それぞれ電
極構造の異なる独立の半導体材料よりなる検出素子を組
み合せることによつても本発明は実施できる。第3図は
各検出素子22と増幅器23、論理ユニツト24、表示
部11をハイブリツト化して実装した状態を示す。各検
出素子は実際の寸法としては10mm角×1mm厚程度のも
のとすることができ、増幅器、論理ユニツト、表示部を
含めても50mm×5mmt以下の超小型に実装できる。 第1図、第2図で説明した前述の実施例では中性子線検
出用の検出素子の電極5の最上部にα線の透過のみを阻
止する30μm厚のアルミニウムを設けてたが、その代
りに、α線とβ線と透過を阻止する1.4mm厚のアルミ
ニウムを電極5の最上部に設けると共に、論理演算ユニ
ツト10中の補正係数f3の回路を削除し、それ以外は
第1図、第2図の前述実施例と同じ構成としたもので
も、α線、β線、γ線および中性子線の各線量率を計測
することができる。なお、言うまでもないが、このよう
な構成での各要素のうち、第2図図示の左から第1列お
よび第4列のみを具備し、且つこれら二列間の補正係数
1の回路のみを具備すれば、γ線と中性子線のみの各
線量率が計測可能であり、また、左から第3列目以外の
三列のみを具備し且つこれら三列間の補正係数f1,f3
の回路のみ具備すれば、γ線、β線および中性子線のみ
の各線量率が計測可能である。 第4図は変形実施例を示す。これは各検出素子の半導体
材料1の両面に同一構造の電極31,32を設けたもの
であり、両面から入射する放射線の線質別の線量率測定
を可能にする。 また、中性子線との反応物質として前記リチウム(6L
i)の代りにボロン(10B)、ヘリウム(3He)等を用い
た実施例も可能である。ヘリウムは気体なので、これを
用いる場合は第5図のように検出器33を収納するケー
ス内をヘリウム35で満たす構成となる。 また、第6図に示す如く、円柱状の半導体38の外側お
よび中心に電極36,37を設けた検出素子を用いれ
ば、より高感度で無指向性に近い放射線検出が実現でき
る。同図においてVBは印加電圧、12は空乏層、39は
検出出力を示す。 〔発明の効果〕 本発明によれば、各種放射線が混在する雰囲気におい
て、リアルタイムで各放射線線質を識別し、かつ、それ
ぞれの線量率を測定できる高機能放射線検出器を実現で
きる。また、検出素子の印加電圧がすべて同一であつて
も、入射放射線の阻止能力の異る放射線阻止材や中性子
線と(n,α)反応を起こす材料を設けるという簡単な
手段で各放射線線質に有意な出力情報を取り出し得る。
この発明によれば、放射線の線質を識別するための外的
手操作が一切不要となる。また、検出素子への印加電圧
も共通使用が可能なことから、極めて単純な回路構成と
なり、小型に実装できる。したがつて、従来のフイルム
バツチ、TLD等の個人被ばく管理測定への応用、各種
放射線モニタ、サーベイメータ等への応用を容易に展開
できる。また、中性子線、α線のモニタリングが重要と
なつている再処理施設のモニタ、再処理プロセスのイン
ラインモニタ等への適用が可能である。特に、本発明は
再処理施設のような、各種の放射線線質が混在する雰囲
均の測定に対し、その機能を大きく発揮する。
The present invention relates to a semiconductor radiation detector, and more particularly to α-rays and β-rays.
Ray, γ ray, in a radiation atmosphere in which two or more of neutron rays coexist, a semiconductor radiation detector suitable for identifying each radiation quality and quantitatively measuring the dose rate for each radiation quality . [Prior Art] A conventional semiconductor radiation detector is disclosed in JP-A-59-10836.
As described in No. 7, one type of radiation quality (mainly γ-rays) is targeted and the aim is to increase the sensitivity or expand the range of dose rate linearity. In this known example, the voltage applied to the semiconductor detection element is varied to control the thickness of the depletion layer generated in the detection element or its spread. The depletion layer is a radiation sensitive region, and the sensitivity of the detection element can be directly controlled. However, no consideration was given to the identification of radiation quality. Further, in the known example of Japanese Patent Laid-Open No. 56-148873, in order to identify the radiation quality, the applied voltage of one semiconductor detection element is changed and the depletion layer thickness is set to the target radiation range (transmission distance). To do. Alternatively, the radiation quality of each radiation is identified from the output value under the condition that the filters corresponding to the target radiation transmission power are individually attached to and detached from the detection element. However, no consideration has been given to the quantitative measurement of the dose rate for each radiation when the radiation of different radiation is mixed. [Problems to be Solved by the Invention] As described above, the prior art does not consider the quantification of the dose rate for each radiation quality, and is applied to a radiation monitor in which dose rate measurement for each radiation quality is essential. Had a problem. An object of the present invention is to provide a semiconductor radiation detector capable of simultaneously detecting the dose rate of each radiation for each radiation quality. [Means for Solving the Problems] A plurality of semiconductor radiation detecting elements for collecting and detecting electron-hole pairs generated by radiation at the electrodes are arranged in parallel in the depletion layer of the semiconductor sandwiched between the electrodes. The electrodes of these sensing elements are
Among the rays, the β rays, and the α rays, the γ rays only, the γ rays and the β rays only, and the above three elements are transmitted in the order of strong penetrating power. Furthermore, α reacts with neutron rays on the back side of the electrode that transmits neutron rays and γ rays or γ rays and β rays, and α
A detection element having a structure in which a material for generating particles is provided and electron-hole pairs generated by the γ-rays or the γ-rays and β-rays transmitted through the α-particles and the electrodes are collected and detected by the electrodes is also provided. The output of these detection elements is subtracted by multiplying it by a correction coefficient to calculate outputs corresponding to the dose rates of the respective radiation qualities by a logical operation circuit, and a display is provided to display these outputs respectively. It is also possible to adopt a configuration in which some of at least two of the radioactive substances are measured by not providing all of the above-mentioned detection elements but providing some of them. [Function] The output of the detection element that transmits only γ-rays shows the dose rate of only γ-rays, and by multiplying this by a correction coefficient, subtract it from the output of the detection element that transmits only γ-rays and β-rays. , Β-ray dose rate is calculated. By subtracting those obtained by multiplying the outputs corresponding to the respective dose rates of γ-rays and β-rays by the correction coefficient from the output of the detection element that transmits γ-rays, β-rays and α-rays, α
Line-only dose rates are calculated. Further, when the material of the α-particles that react with neutron rays and the electrode of the detection element provided on the back side of the electrode are those that transmit neutron rays and γ rays,
From the output of the detection element, the dose rate of neutron rays is obtained by subtracting the obtained dose rate of γ-rays multiplied by a correction coefficient, and the electrode is neutron rays, γ-rays and β
In the case of transmitting a ray, the dose rate of the neutron ray can be obtained by subtracting the obtained dose rates of the γ-ray and β-ray from the output of the detection element, each of which is multiplied by a correction coefficient. The dose rate thus obtained for each radiation quality is displayed on the display. [Embodiment] An embodiment of the present invention will be described with reference to FIG. Electrodes 2, 3, 4, 5) having different structures and respective output signal lines 6 are provided on the plate-shaped semiconductor material 1. A common applied voltage V B is applied to the output signal line 6 via the resistor R. The back side of the semiconductor material 1 is provided with a common electrode 7 forming an ohmic contact. Each output signal line 6 is connected to a logical operation unit 10 via an amplifier 8 and an integrator 9. Furthermore, the radiation quality (α rays, β rays,
A display unit 11 for displaying the dose rate for each γ ray or neutron ray is provided. The above is the overall configuration of the semiconductor radiation detector according to the present embodiment. As the semiconductor material 1, high-purity silicon, cadmium telluride, or the like is used. When an applied voltage V B is applied to this detector, a depletion layer 12 is formed in the semiconductor for each electrode.
Is generated. In the depletion layer 12, the charged particle radiation (α
Line, β ray) forms an electron-hole pair and is extracted as a current pulse signal from the electrodes on both sides of the semiconductor material 1. When γ-rays enter the depletion layer 12, secondary electrons generated by the interaction between the γ-rays and the semiconductor material (Compton scattering, etc.) form electron-hole pairs. When a neutron beam is incident, the neutron beam has no charge, and the depletion layer 12 remains as it is.
Do not generate electron-hole pairs inside. The thickness of the depletion layer 12 of each detection element in which the depletion layer is independently formed by the electrodes 2, 3, 4, and 5 of this detector is exactly the same because the applied voltage is common. If the structure of each electrode is the same, effective information for identifying the radiation quality of the radiation cannot be obtained from each detection element. It is provided with a thickness that can block the incidence of α-rays and β-rays, and only the γ-rays are detected from the detection element to which this electrode 2 belongs.
Since the penetrating power of rays is large, only the blocking of β rays should be considered. Generally, the energy E of β-rays is 5 MeV or less, so the thickness of the electrode 2 can be determined from the material of the electrode 2 and the range R of β-rays. When the electrode material is aluminum, the range R of β-rays is calculated from R = 407E 1.38 (mg / cm 2 ), and the thickness of the electrode 2 can be determined by R / ρ from the density ρ of aluminum. This value is about 1.4 mm. The detection element to which the electrode 2 thus designed belongs is an element for selectively detecting only γ rays. Next, the thickness of the electrode 3 is set so as to prevent the incidence of α rays, and the detection element to which the electrode 3 belongs extracts only the output signal generated by the incidence of β rays and γ rays. The determination of this thickness can also be calculated from the range of α rays in aluminum. The energy of α rays is 5.1 MeV at 239 Pu,
238 U has 4.1 Me, and aluminum having a thickness of about 30 μm is enough to block α rays of 5 Me. Next, the thickness of the electrode 4 is set so that all radiation can enter. If the thickness of aluminum is selected to be several μm, the thickness should not interfere with the incidence of α rays, which has a small penetrating power, and should not hinder the collection of charges (electron / hole pairs) in the detection element. Good. In the detection element to which the electrode 4 belongs, output signals generated by incidence of α rays, β rays, and γ rays are extracted. Electrode attachment to semiconductor materials is generally easily attached by vapor deposition. The thick electrode may be formed by depositing a thin electrode and then bonding a thin electrode having a predetermined thickness. In this case, the signal lines are led out from the electrodes deposited on the semiconductor. Next, in order to make the electrode 5 sensitive to neutron rays, an aluminum electrode of the same size as the electrode 4 of several μm is provided, 6 Li (lithium) of several μm is provided on the upper part thereof, and 30 μm which is the same as the electrode 3 is provided on the upper part thereof. Provide thick aluminum. In the detection element to which this electrode 5 belongs, the uppermost aluminum layer blocks α rays incident from the outside, and α generated by the reaction of 6 Li and neutron rays (nuclear reaction of n and α) provided in the intermediate layer. Output signals generated by the particles and β rays and γ rays incident from the outside are extracted. The outputs of the above detection elements are summarized as follows. Output of detection element to which electrode 2 belongs: Output of detection element to which detection electrode 3 of γ-rays belongs: Output of detection element to which detection electrode 4 of γ-rays and γ-rays: Detection electrode 5 of α-rays, β-rays and γ-rays Output of the detection element to which the electrode belongs: Detection of neutron rays, β rays, and γ rays As it is, an output signal that identifies only the γ ray can be obtained from the detection element to which the electrode 2 belongs, but a detection element to which another electrode belongs Does not give an output that clearly identifies the radiation quality. FIG. 2 shows a configuration for obtaining a dose rate in which the radiation quality is discriminated based on these detection element output signals. As shown in the figure, the output signal from each detection element to which each electrode 2, 3, 4, 5 belongs is input to the logic operation unit 10 via the amplifier 8 and the integrator 9. The output of the detection element to which the electrode 2 belongs is directly sent to a display unit 11 including a dose rate correction circuit (converting mR / hr, CPS, etc.) 20 and a display element 21, and displays the dose rate of only γ rays. On the other hand, the output of the detection element to which the electrode 3 belongs is subtracted by the value obtained by multiplying the output of the detection element to which the electrode 2 belongs by the correction coefficient f 1 to obtain a value that depends only on β rays, and this value is displayed. The dose rate of only the β-rays sent is displayed at 11. The correction coefficient f 1 is used to correct the attenuation of γ-rays due to the thickness of the electrode 2 and the normalization correction between the detection elements. The output of the detection element to which electrode 2 belongs is subtracted from the output of the detection element to which electrode 2 is multiplied by a correction coefficient f 1 and the output of the detection element of electrode 3 is multiplied by a correction coefficient f 2. Therefore, the value depends only on α-rays, and this value is sent to the display unit 11 so that only α-rays are transmitted. Show dose rate. Correction factor f 2 is attenuation correction of β-rays by the thickness of the electrode 3, is to implement correction of the normalized between the detecting elements. The output of the detection element that belongs electrode 5, electrode 2 by subtracting the value obtained by multiplying the output of the detection element to which the electrode 3 belongs by the correction coefficient f 1 and by subtracting the value obtained by multiplying the output of the detection element to which the electrode 3 belongs by the correction coefficient f 3 This value is sent to the display unit 11, and the correction coefficient f 3 for displaying the dose rate of only the neutron beam is for correcting the standardization between the detection elements. Then, the dose rate for each radiation quality can be measured.Attenuation of various kinds of radiation due to the thickness of the electrode 4 and the thickness of the lithium layer provided on the electrode 5 is significantly smaller than the others, and each correction coefficient f 1 , complement correction normalization between the detecting elements included in f 2, f 3 Possible. In addition, the dose rate correction circuit 20 in the display unit 11 in accordance with a beam quality was identified, mR / hr in the case of γ-rays, alpha rays, for β-ray CPm, for neutron n / cm 2 · It is converted based on the calibration data as the value of s, etc. The system of the applied voltage is not shown in Fig. 2. Further, it is provided at the output of each detection element to which each electrode belongs. The same logical processing can be easily performed by the digital processing by the one-chip microprocessor in the subsequent stages after the integrator 9. Needless to say, of the various elements shown in FIG. To two rows (Here, the rows arranged vertically in FIG. 2, that is, in the vertical direction, are called rows)
If only the circuit of the correction coefficient f 1 between the above two columns among the circuits of the correction coefficient shown by the horizontal line in the logical operation unit 10 is provided, only the γ-ray and the β-ray are provided. The dose rate can be measured. Similarly, if only the three columns from the left are provided and only the circuits of the correction factors f 1 and f 2 between these three columns are provided, it is possible to measure each dose rate of only γ rays, β rays and α rays. Become. Similarly, if only three columns other than the third column from the left are provided and only the circuits having the correction factors f 1 and f 3 between these three columns are provided, each of only γ rays, β rays and neutron rays can be obtained. The dose rate can be measured. The above-described embodiment is an example in which detection elements having different electrode structures are provided in combination on the same semiconductor material 1. However, by combining detection elements made of independent semiconductor materials having different electrode structures, The present invention can also be implemented. FIG. 3 shows a state in which the detection elements 22, the amplifier 23, the logic unit 24, and the display unit 11 are hybridized and mounted. The actual size of each detecting element can be about 10 mm square × 1 mm thick, and even if the amplifier, the logic unit and the display unit are included, they can be mounted in an extremely small size of 50 mm × 5 mmt or less. In the above-described embodiment described with reference to FIGS. 1 and 2, 30 μm thick aluminum that blocks only transmission of α rays is provided on the uppermost part of the electrode 5 of the detection element for detecting neutron rays. , 1.4 mm thick aluminum for blocking transmission of α rays and β rays is provided on the uppermost part of the electrode 5, and the circuit of the correction coefficient f 3 in the logical operation unit 10 is deleted. Even with the same configuration as the above-described embodiment of FIG. 2, each dose rate of α rays, β rays, γ rays and neutron rays can be measured. Needless to say, among the elements in such a configuration, only the first and fourth columns from the left in FIG. 2 are provided and only the circuit of the correction coefficient f 1 between these two columns is provided. If provided, each dose rate of only γ-rays and neutrons can be measured, and only three columns except the third column from the left are provided and the correction factors f 1 , f 3 between these three columns are provided.
If only the circuit of 1 is provided, each dose rate of only γ rays, β rays and neutron rays can be measured. FIG. 4 shows a modified embodiment. This has electrodes 31 and 32 of the same structure provided on both surfaces of the semiconductor material 1 of each detection element, and enables the dose rate measurement of the radiation incident from both surfaces for each radiation quality. The lithium ( 6 L
An embodiment using boron ( 10 B), helium ( 3 He) or the like instead of i) is also possible. Since helium is a gas, when it is used, the inside of the case housing the detector 33 is filled with helium 35 as shown in FIG. Further, as shown in FIG. 6, by using a detection element in which electrodes 36 and 37 are provided outside and in the center of a cylindrical semiconductor 38, radiation detection with higher sensitivity and near omnidirectionality can be realized. In the figure, V B is the applied voltage, 12 is the depletion layer, and 39 is the detection output. [Effect of the Invention] According to the present invention, it is possible to realize a high-performance radiation detector capable of identifying each radiation quality in real time and measuring each dose rate in an atmosphere in which various radiations are mixed. In addition, even if all the applied voltages to the detection elements are the same, a radiation blocking material having a different ability to block incident radiation or a material that causes a (n, α) reaction with a neutron beam can be provided by a simple means. Output information that is significant to
According to the present invention, no external manual operation for identifying the radiation quality is required. In addition, since the voltage applied to the detection element can be commonly used, the circuit configuration is extremely simple, and it can be mounted in a small size. Therefore, the application to the individual exposure control measurement such as the conventional film batch and TLD, and the application to various radiation monitors and survey meters can be easily developed. Further, it can be applied to a reprocessing facility monitor in which neutron ray and α ray monitoring are important, and an inline monitor of a reprocessing process. In particular, the present invention greatly exerts its function for the measurement of the atmosphere in which various radiation ray qualities are mixed, such as in a reprocessing facility.

【図面の簡単な説明】 第1図は本発明の一実施例を示す図、第2図は同実施例
の論理演算ユニツトの構成を示す図、第3図はハイブリ
ツト化した検出器の実装状態を示す図、第4図は電極の
変形例を示す図、第5図はガス充填型の検出器を示す
図、第6図は他の検出素子の例を示す斜視図である。 (符号の説明) 1…半導体 2,3,4,5…電極 6…出力信号線 7…電極 8…増幅器 9…積分器 10…論理演算ユニツト 11…表示部 12…空乏層 20…線量率補正回路 21…表示部 22…検出素子 23…増幅器 24…論理ユニツト R…抵抗 VB…印加電圧 31,32…電極 33…検出器 34…検出器収納ケース 35…ヘリウム 38…半導体 39…検出信号出力。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a logical operation unit of the same embodiment, and FIG. 3 is a mounting state of a hybridized detector. FIG. 4, FIG. 4 is a view showing a modification of the electrode, FIG. 5 is a view showing a gas-filled type detector, and FIG. 6 is a perspective view showing an example of another detection element. (Explanation of symbols) 1 ... Semiconductor 2, 3, 4, 5 ... Electrode 6 ... Output signal line 7 ... Electrode 8 ... Amplifier 9 ... Integrator 10 ... Logical operation unit 11 ... Display 12 ... Depletion layer 20 ... Dose rate correction circuit 21 ... display unit 22 ... detecting element 23 ... amplifier 24 ... logical Yunitsuto R ... resistance V B ... applied voltage 31, 32 electrodes 33 ... detector 34 ... detector housing case 35 ... helium 38 ... semiconductor 39 ... detection signal output .

Claims (1)

【特許請求の範囲】 【請求項1】半導体を挟んだ電極間への電圧印加により
半導体内に形成される空乏層中に電極を透過した放射線
により生ずる電子・正孔対を電極で収集検出するように
構成された放射線検出素子であつて、空乏層中に電子・
正孔対を生ぜしめる放射線としてγ線のみの電極透過を
許す放射線検出素子、γ線およびβ線のみの電極透過を
許す放射線検出素子ならびにγ線、β線およびα線の電
極透過を許す放射線検出素子のうちの少くとも前二者を
具備し、 更に、上記具備された各放射線検出素子の検出出力間に
補正係数を乗じた減算処理を施してγ線の線量率、β線
の線量率およびα線の線量率のうち少くとも前二者に夫
々相当する出力を算出する論理演算回路と、論理演算回
路のこれら出力を夫々表示する表示器とを具備したこと を特徴とする放射線検出器。 【請求項2】各放射線検出素子の電極対は共通の半導体
の異る部分に夫々設けられている特許請求の範囲第1項
記載の放射線検出器。 【請求項3】各放射線検出素子の電極対は夫々別個の半
導体に設けられている特許請求の範囲第1項記載の放射
線検出器。 【請求項4】中性子線、γ線およびβ線のみの透過を許
し且つ裏側に中性子線と反応してα粒子を生ずる材料を
施した電極間に半導体を挟み、電極間への電圧印加によ
り半導体内に形成される空乏層中に電極を透過した中性
子線と上記材料との反応で生じたα粒子ならびに電極を
透過したγ線およびβ線により生ずる電子・正孔対を電
極で収集検出するように構成された放射線検出素子を具
備すると共に、 半導体を挟んだ電極間への電圧印加により半導体内に形
成される空乏層中に電極を透過した放射線により生ずる
電子・正孔対を電極で収集検出するように構成された放
射線検出素子であつて、空乏層中に電子・正孔対を生ぜ
しめる放射線としてγ線のみの電極透過を許す放射線検
出素子、γ線およびβ線のみの電極透過を許す放射線検
出素子ならびにγ線、β線およびα線の電極透過を許す
放射線検出素子のうちの少くとも前二者を具備し、 更に、上記具備された各放射線検出素子の検出出力間に
補正係数を乗じた減算処理を施して中性子線の線量率、
γ線の線量率、β線の線量率およびα線の線量率のうち
少くとも前三者に夫々相当する出力を算出する論理演算
回路と、論理演算回路のこれらの出力を夫々表示する表
示器とを具備したこと を特徴とする放射線検出器。 【請求項5】各放射線検出素子の電極対は共通の半導体
の異る部分に夫々設けられている特許請求の範囲第4項
記載の放射線検出器。 【請求項6】各放射線検出素子の電極対は夫々別個の半
導体に設けられている特許請求の範囲第4項記載の放射
線検出器。 【請求項7】中性子線およびγ線のみの透過を許し且つ
裏側に中性子線と反応してα粒子を生ずる材料を施した
電極間に半導体を挟み、電極間への電圧印加により半導
体内に形成される空乏層中に電極を透過した中性子線と
上記材料との反応で生じたα粒子および電極を透過した
γ線により生ずる電子・正孔対を電極で収集検出するよ
うに構成された放射線検出素子を具備すると共に、 半導体を挟んだ電極間への電圧印加により半導体内に形
成される空乏層中に電極を透過した放射線により生ずる
電子・正孔対を電極で収集検出するように構成された放
射線検出素子であつて、空乏層中に電子・正孔対を生ず
る放射線としてγ線のみの電極透過を許す放射線検出素
子、γ線およびβ線のみの電極透過を許す放射線検出素
子ならびにγ線、β線およびα線の電極透過を許す放射
線検出素子のうちの少くとも第一者を具備し、 更に、上記具備された各放射線検出素子の検出出力間に
補正係数を乗じた減算処理を施して中性子線の線量率、
γ線の線量率、β線の線量率およびα線の線量率のうち
少くとも前二者に夫々相当する出力を算出する論理演算
回路と、論理演算回路のこれら出力を夫々表示する表示
器とを具備したこと を特徴とする放射線検出器。 【請求項8】各放射線検出素子の電極対は共通の半導体
の異る部分に夫々設けられている特許請求の範囲第7項
記載の放射線検出器。 【請求項3】各放射線検出素子の電極対は夫々別個の半
導体に設けられている特許請求の範囲第7項記載の放射
線検出器。
Claim: What is claimed is: 1. An electron-hole pair produced by radiation passing through an electrode in a depletion layer formed in the semiconductor when a voltage is applied between electrodes sandwiching the semiconductor, is collected and detected by the electrode. In the radiation detecting element configured as
Radiation detecting element that allows only γ-rays to pass through the electrode as radiation that causes hole pairs, radiation detecting element that allows only γ-rays and β-rays to pass through the electrode, and radiation detection that allows γ-rays, β-rays and α-rays to pass through the electrode At least the former two of the elements are provided, and further, a subtraction process in which the correction coefficient is multiplied is performed between the detection outputs of the provided radiation detection elements to perform a γ-ray dose rate, a β-ray dose rate and A radiation detector comprising a logical operation circuit for calculating outputs corresponding to at least the former two of the dose rates of α rays, and a display for displaying these outputs of the logical operation circuit, respectively. 2. The radiation detector according to claim 1, wherein the electrode pair of each radiation detection element is provided at a different portion of a common semiconductor. 3. The radiation detector according to claim 1, wherein the electrode pair of each radiation detection element is provided on a separate semiconductor. 4. A semiconductor is sandwiched between electrodes provided with a material which allows transmission of only neutron rays, γ rays and β rays, and which is provided on the back side with a material which reacts with neutron rays to generate α particles, and a voltage is applied between the electrodes. To collect and detect α-particles generated by the reaction between the neutron beam that has passed through the electrode and the above material in the depletion layer formed in the inside and electron-hole pairs generated by γ- and β-rays that have passed through the electrode In addition to being equipped with a radiation detection element configured as described above, the electrodes collect and detect electron-hole pairs generated by the radiation passing through the electrodes in the depletion layer formed in the semiconductor when a voltage is applied between the electrodes sandwiching the semiconductor. A radiation detecting element configured to perform radiation of only γ-rays as radiation that causes electron-hole pairs in the depletion layer, allowing radiation of only γ-rays and β-rays. No radiation detector In addition, at least the former two of the radiation detecting elements which allow the γ-ray, β-ray and α-ray to pass through the electrode are provided, and the detection output of each radiation detecting element provided above is multiplied by a correction coefficient. The subtraction process is applied to the neutron dose rate,
A logic operation circuit for calculating outputs corresponding to at least the former three of the γ-ray dose rate, β-ray dose rate and α-ray dose rate, and a display for displaying these outputs of the logic operation circuit, respectively. A radiation detector comprising: 5. The radiation detector according to claim 4, wherein the electrode pairs of the radiation detection elements are provided at different portions of a common semiconductor, respectively. 6. The radiation detector according to claim 4, wherein the electrode pair of each radiation detection element is provided on a separate semiconductor. 7. A semiconductor is sandwiched between electrodes provided with a material which allows only neutron rays and γ rays to pass therethrough and produces α particles by reacting with neutron rays on the back side, and is formed in the semiconductor by applying a voltage between the electrodes. Detection configured to collect and detect electron-hole pairs generated by α-particles generated by the reaction between the neutron beam transmitted through the electrode and the above-mentioned material in the depletion layer and γ-ray transmitted through the electrode at the electrode It is equipped with an element and is configured to collect and detect electron-hole pairs generated by the radiation transmitted through the electrode in the depletion layer formed in the semiconductor by applying a voltage between the electrodes sandwiching the semiconductor. A radiation detection element, which is a radiation detection element that allows only γ-rays to pass through the electrode as radiation that produces electron-hole pairs in the depletion layer, a radiation detection element and γ-rays that allows only γ-rays and β-rays to pass through the electrode, β rays and At least the first of the radiation detecting elements that allow the α-rays to pass through the electrode is provided, and further, the subtraction processing by multiplying the detection output of each of the provided radiation detecting elements by a correction coefficient Dose rate,
A logic operation circuit for calculating outputs corresponding to at least the former two of the γ-ray dose rate, β-ray dose rate, and α-ray dose rate, and a display for displaying these outputs of the logic operation circuit, respectively. A radiation detector comprising: 8. The radiation detector according to claim 7, wherein the electrode pair of each radiation detection element is provided at a different portion of a common semiconductor. 3. The radiation detector according to claim 7, wherein the electrode pair of each radiation detection element is provided on a separate semiconductor.
JP61155663A 1986-07-02 1986-07-02 Radiation detector Expired - Lifetime JPH065291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155663A JPH065291B2 (en) 1986-07-02 1986-07-02 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155663A JPH065291B2 (en) 1986-07-02 1986-07-02 Radiation detector

Publications (2)

Publication Number Publication Date
JPS6312179A JPS6312179A (en) 1988-01-19
JPH065291B2 true JPH065291B2 (en) 1994-01-19

Family

ID=15610871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155663A Expired - Lifetime JPH065291B2 (en) 1986-07-02 1986-07-02 Radiation detector

Country Status (1)

Country Link
JP (1) JPH065291B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735937B2 (en) * 1990-09-21 1998-04-02 動力炉・核燃料開発事業団 Neutron detector for criticality accident monitoring
JPH04152288A (en) * 1990-10-17 1992-05-26 Japan Atom Power Co Ltd:The Multifunctional personal exposure dose meter
JPH11271453A (en) * 1998-03-25 1999-10-08 Toshiba Corp Method and apparatus for discrimination and measurement of radiation
JP5002831B2 (en) * 2006-02-07 2012-08-15 国立大学法人 新潟大学 Organic semiconductor radiation / photosensor and radiation / photodetector
US7589327B2 (en) * 2007-05-15 2009-09-15 Aeroflex Colorado Springs Inc. Energy sensitive direct conversion radiation detector
MX2012007991A (en) 2010-01-08 2012-12-10 Tri Alpha Energy Inc Conversion of high-energy photons into electricity.
JP2010181412A (en) * 2010-03-15 2010-08-19 Toshiba Corp Method and device for discriminating and measuring radiation
KR20150073239A (en) * 2013-12-20 2015-07-01 한국원자력연구원 A monolithic radiation sensor to detect multiple radiation and method of producing the same

Also Published As

Publication number Publication date
JPS6312179A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
JP3140052B2 (en) Neutron detector
JP6040248B2 (en) Pixel detector, Compton camera, proton therapy device, neutron imaging device, X-ray polarimeter and γ-ray polarimeter
EP0259426B1 (en) Radiation detector
US4485307A (en) Medical gamma ray imaging
JPH065291B2 (en) Radiation detector
Doke et al. Measurements of LET-distribution, dose equivalent and quality factor with the RRMD-III on the Space Shuttle Missions STS-84,-89 and-91
Barber et al. Comparison of NaI (Tl), CdTe, and HgI2 surgical probes: physical characterization
US4859853A (en) Solid state gamma ray dosimeter which measures radiation in terms of absorption in a material different from the detector material
JP4091148B2 (en) Radiation detector and radiation monitor using the same
Turkevich et al. Instrument for lunar surface chemical analysis
US20160003950A1 (en) Method for measuring dosage by means of a radiation detector, especially an x-radiation or gamma-radiation detector, used in the spectroscopic mode, and dosage measurement system using said method
Akerib et al. Preliminary limits on the WIMP-nucleon cross section from the cryogenic dark matter search (CDMS)
JP2871523B2 (en) Radiation detector
JP3777909B2 (en) β-ray direct reading detector
Hasegawa et al. High-count rate position-sensitive detectors for synchrotron radiation experiments
JPH068859B2 (en) Device for measuring β-radionuclide content in food
JP3358617B2 (en) Neutron dose rate meter
JP3064218B2 (en) Radiation measurement device
JP4643809B2 (en) Radiation measurement equipment
JPH04152288A (en) Multifunctional personal exposure dose meter
WO2021136562A1 (en) Device for measuring the mixed radiation field of photons and neutrons
JP2500886B2 (en) Neutron detector
JPH07131052A (en) Semiconductor radiation detecting element, gamma-ray neutron beam detector and dosimeter
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system
CZ36509U1 (en) Neutron detector detection module

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term