JPH0652485A - Dangerous traffic event detecting method - Google Patents

Dangerous traffic event detecting method

Info

Publication number
JPH0652485A
JPH0652485A JP22062592A JP22062592A JPH0652485A JP H0652485 A JPH0652485 A JP H0652485A JP 22062592 A JP22062592 A JP 22062592A JP 22062592 A JP22062592 A JP 22062592A JP H0652485 A JPH0652485 A JP H0652485A
Authority
JP
Japan
Prior art keywords
vehicle
coordinate
intersection
traffic event
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22062592A
Other languages
Japanese (ja)
Other versions
JP3100471B2 (en
Inventor
Osamu Shimizu
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP04220625A priority Critical patent/JP3100471B2/en
Publication of JPH0652485A publication Critical patent/JPH0652485A/en
Application granted granted Critical
Publication of JP3100471B2 publication Critical patent/JP3100471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To intensively record the movement of vehicles by detecting one dangerous traffic event corresponding to one mixed area consisting of consecutive mix measurement points in the case there is a mix measurement point and discriminating the dangerous degree of the dangerous event to be assumed in the traffic flow. CONSTITUTION:An image pickup means obtains a video signal corresponding to a picture in an area including a road. With the use of vehicle binary data group binarized as a vehicle correspondence point by picture processing, quaternary data group (Fn) consisting of the difference of two vehicle binary data groups obtained by the constant time difference is obtained. Based on the Fn, the speed and direction of the vehicle correspondence point are obtained to calculate a vehicle movement vector (Mj) showing the predicted position in the lapse of the prescribed time of each vehicle correspondence point. Then, a mix measurement point (Nij) mixing mix inhibiting vector (M'j) such as stop lines including each vehicle movement vector (Mj) is calculated. Thus, the dangerous traffic event (Lm) can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交通流の危険事象を検
出する方法及び装置に関し、詳しくは道路等を撮像し得
られた映像信号を処理して、路面の規定位置に対応する
輝度レベルの車両による変化から道路等に存在する車両
を感知する画像式車両感知装置を用いて、車両同士の接
触あるいは歩行者との接触の可能性など交通流の危険事
象を検出し更にはこの危険事象の定量化された危険度を
判定する方法及びこのための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting a dangerous event in a traffic flow, and more specifically, it processes a video signal obtained by imaging a road or the like to obtain a brightness level corresponding to a specified position on the road surface. By using the image type vehicle detection device that detects vehicles existing on the road etc. from changes caused by vehicles, dangerous events of traffic flow such as contact between vehicles or possibility of contact with pedestrians are detected and And a device therefor.

【0002】[0002]

【従来の技術】道路交通に伴う危険の防止は、言うまで
もなく重要な社会的課題である。我国を例にとれば道路
交通の交通事故死者は年間1万5千人にも達し、更に深
刻化する傾向にある。関連公的機関が合同で交通事故の
データを収集し、発生した交通事故についてその原因を
徹底して解明し、問題の解決に取り組む機運もある。こ
の目的のためには、不幸にして発生してしまった交通事
故のデータをより多く収集すること、又データ自体をよ
りきめ細かく得ることが必要である。然るに、従来にあ
ってはこのための適切な手法が特には確立しておらず、
従って現況ではデータ数不足またデータ内容不足の気味
があり、道路交通に伴う危険の防止のためのより良いデ
ータ収集手段が希求されていた。
2. Description of the Related Art Needless to say, prevention of danger associated with road traffic is an important social issue. Taking Japan as an example, the number of road traffic fatalities is as high as 15,000 per year, which is becoming more serious. There is an opportunity for related public organizations to jointly collect data on traffic accidents, thoroughly elucidate the causes of traffic accidents that have occurred, and work to resolve the problems. For this purpose, it is necessary to collect more data on traffic accidents that unfortunately occurred and to obtain more detailed data themselves. However, in the past, an appropriate method for this has not been established,
Therefore, in the present situation, there is a shortage of data or the content of data, and there has been a demand for a better data collection means for preventing the danger associated with road traffic.

【0003】[0003]

【発明が解決しようとする課題】本願発明は、上述のよ
うな状況に鑑みて為されたもので、近年発達が目覚まし
く既に交差点等に数多く設置されるようになった画像式
車両検知装置と共通する技術を多用して、新たに、交通
流において予想される危険事象を検出し更にはこの事象
の危険度を判定する危険交通事象検出方法を提案するこ
とを目的としている。この方法を使用することによっ
て、実際に発生した事故は勿論それ以外にも事故発生に
至る確率が高い状況下の車両の動向を集中的に記録する
ことができる。従って従来に比べ交通事故データのより
確実な収集、及びよりきめこまかなデータ収集が可能と
なる。更にはこれを利用することで危険度と事故発生の
相関を解析することができ、安全施策等に役立てること
ができる。また、本願ではより広範囲な領域を扱い危険
交通事象を検出するための複数の撮像手段を用いる方法
についても提案する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation and is common to the image type vehicle detection device which has been remarkably developed in recent years and has already been installed in many places such as intersections. The purpose of the present invention is to propose a method for detecting a dangerous traffic event, which newly detects a dangerous event expected in a traffic flow and further judges the degree of danger of this event, by making extensive use of the technology described above. By using this method, it is possible to intensively record not only the actual accident but also the trend of the vehicle under the situation where the probability of accident occurrence is high. Therefore, it becomes possible to collect the traffic accident data more surely and more finely than before. Furthermore, by using this, the correlation between the degree of danger and the occurrence of an accident can be analyzed, which can be useful for safety measures and the like. The present application also proposes a method using a plurality of imaging means for handling a wider area and detecting a dangerous traffic event.

【0004】[0004]

【課題を解決するための手段】上記課題解決のため、本
願第一発明の危険交通事象検出方法では、撮像手段によ
り道路を含む領域を撮像して対応する映像信号を得て、
画像中で道路上に設定された複数の計測点(Pij)夫々
に対応する映像信号中の時間的位置夫々での輝度レベル
(Cij)からなる1フィールド単位の輝度データ群(D
t )を順次得て、各計測点(Pij)での路面に対応する
輝度レベル(Cr ij)からなる輝度データ群を所定間隔
で抽出して基準路面データ(Dr )として保持し、輝度
データ群(Dt )を前記基準路面データ(Dr )と比較
し充分な差が認められるデータを車両対応点として2値
化した車両2値化データ群(Dn)を得てこれを順次保
持し、一定時間差で得られた2つの前記車両2値化デー
タ群(Dn )の差分からなる4値化データ群(Fn )を
求めて、前記4値化データ群(Fn )に基づき車両対応
点の速度と方向を求めて各車両対応点の所定時間経過後
の予測位置を示す車両移動ベクトル(Mj )を算定し、
各々の車両移動ベクトル(Mj )をも含む停止線等の交
錯禁止ベクトル(M′j )同士が交錯する交錯計測点
(Nij)を算出し、交錯計測点(Nij)があった場合に
は連続する交錯計測点(Nij)から成る交錯領域(L′
m )1つに対応して1つの危険交通事象(Lm )を検出
した旨の危険検出信号(Sm )を出力する。
In order to solve the above-mentioned problems, in the dangerous traffic event detecting method of the first invention of the present application, an area including a road is imaged by an imaging means to obtain a corresponding video signal,
Luminance data group (D) for each field, which consists of the luminance level (Cij) at each temporal position in the video signal corresponding to each of the plurality of measurement points (Pij) set on the road in the image
t) are sequentially obtained, and a luminance data group consisting of luminance levels (Cr ij) corresponding to the road surface at each measurement point (Pij) is extracted at a predetermined interval and stored as reference road surface data (Dr). (Dt) is compared with the reference road surface data (Dr), and data that has a sufficient difference is binarized as vehicle corresponding points to obtain a binarized vehicle data group (Dn), which are sequentially held and a fixed time difference is obtained. The four-valued data group (Fn) consisting of the difference between the two vehicle-two-valued data groups (Dn) obtained in step (4) is obtained, and the speed and direction of the vehicle corresponding point are calculated based on the four-valued data group (Fn). Then, a vehicle movement vector (Mj) indicating the predicted position of each vehicle corresponding point after a predetermined time has elapsed is calculated,
An intersection measurement point (Nij) at which intersection prohibition vectors (M'j) such as a stop line including each vehicle movement vector (Mj) intersect is calculated, and if there is an intersection measurement point (Nij), the intersection measurement points (Nij) are continuously calculated. The intersection area (L ') consisting of the intersection measurement points (Nij)
m) A danger detection signal (Sm) indicating that one dangerous traffic event (Lm) is detected corresponding to one m) is output.

【0005】また、本願第二発明の危険交通事象検出方
法では、上述の第一発明の各過程に加えて、前記危険交
通事象(Lm )を検出した場合には、対応する交錯領域
(L′m )の各交錯計測点(Nij)の分布状況に基づき
危険交通事象(Lm )の危険度を定量化した危険度デー
タ(Gm )を得てこれを出力する、との過程をも含む。
Further, in the dangerous traffic event detection method of the second invention of the present application, in addition to the steps of the first invention described above, when the dangerous traffic event (Lm) is detected, the corresponding intersection area (L ') is detected. It also includes a process of obtaining and outputting risk data (Gm) quantifying the risk level of the dangerous traffic event (Lm) based on the distribution status of each intersecting measurement point (Nij) of m).

【0006】本願第三発明の危険交通事象検出方法は、
複数の撮像手段により道路を含む領域を撮像して対応す
る映像信号を夫々得て、各映像信号毎に、画像中で道路
上の実際の位置座標(Xi,Yj )に夫々対応付けて設定
された複数の計測点(Pp ij)夫々に対応する映像信号
中の時間的位置夫々での輝度レベル(Cp ij)と位置座
標情報とからなる1フィールド単位の座標輝度データ群
(Dtp)を順次得て、各映像信号毎に、各計測点(Pp
ij)での路面に対応する輝度レベル(Crpij)からなる
輝度データ群を所定間隔で抽出して座標基準路面データ
(Drp)として保持し、各映像信号毎に、座標輝度デー
タ群(Dtp)を前記座標基準路面データ(Drp)と比較
し充分な差が認められるデータを車両対応点として2値
化した座標車両2値化データ群(Dnp)を得てこれを順
次保持し、各領域毎に、一定時間差で得られた2つの前
記座標車両2値化データ群(Dnp)の差分からなる座標
4値化データ群(Fnp)を求めて、各領域毎に前記座標
4値化データ群(Fnp)に基づき車両対応点の速度と方
向を求めて各車両対応点の所定時間経過後の道路上の実
際の位置座標(Xi,Yj )上での予測位置を示す座標車
両移動ベクトル(Mjp)を算定し、各領域毎に各々の車
両移動ベクトル(Mjp)をも含む停止線等の交錯禁止ベ
クトル(M′jp)同士が交錯する座標交錯計測点(Np
ij)算出し、座標交錯計測点(Np ij)があった場合に
は連続する座標交錯計測点(Np ij)から成る座標交錯
領域(L′mp)1つに対応して1つの危険交通事象(L
mp)を検出した旨の仮座標危険予測信号(S′mp)を対
応する道路上の実際の位置座標(Xi,Yj )に対応付け
て得て、全ての領域毎に得られた仮座標危険予測信号
(S′mp)の中で位置座標(Xi,Yj )の略一致するも
のがあればこれらを1つにまとめた後、全ての仮座標危
険予測信号(S′mp)を危険予測信号(Smp)として出
力する。
A method for detecting a dangerous traffic event according to the third invention of the present application is
An image including a road is picked up by a plurality of image pickup means to obtain corresponding video signals, and each video signal is set in association with an actual position coordinate (Xi, Yj) on the road in the image. Further, the coordinate brightness data group (Dtp) consisting of the brightness level (Cp ij) at each temporal position in the video signal corresponding to each of the plurality of measurement points (Pp ij) and the position coordinate information is sequentially obtained. For each video signal, each measurement point (Pp
ij), a luminance data group consisting of luminance levels (Crpij) corresponding to the road surface at (ij) is extracted at a predetermined interval and held as coordinate reference road surface data (Drp), and a coordinate luminance data group (Dtp) is stored for each video signal. The coordinate vehicle binarized data group (Dnp) obtained by binarizing the data for which a sufficient difference is recognized as compared with the coordinate reference road surface data (Drp) as vehicle corresponding points is obtained and sequentially held, and for each region , A coordinate quaternary data group (Fnp) which is a difference between the two coordinate vehicle binary data groups (Dnp) obtained at a fixed time difference, and the coordinate quaternary data group (Fnp) is obtained for each area. ), The velocity and direction of the vehicle corresponding point are obtained, and the coordinate vehicle movement vector (Mjp) indicating the predicted position on the road (Xi, Yj) of the vehicle corresponding point after a predetermined time elapses is calculated. Calculate and calculate each vehicle movement vector (Mjp) for each area. Including a stop line, etc. The intersection prohibition vector (M'jp) intersects with each other.
ij) and, if there is a coordinate intersection measurement point (Np ij), one dangerous traffic event corresponding to one coordinate intersection area (L'mp) consisting of consecutive coordinate intersection measurement points (Np ij) (L
The temporary coordinate danger prediction signal (S'mp) indicating that mp) has been detected is associated with the actual position coordinates (Xi, Yj) on the corresponding road, and the temporary coordinate danger obtained for each of all areas. If any of the predicted signals (S'mp) whose position coordinates (Xi, Yj) substantially match, they are combined into one, and then all the temporary coordinate danger predicted signals (S'mp) are converted to the danger predicted signal. Output as (Smp).

【0007】また、本願第四発明の危険交通事象検出方
法では、上述の第三発明の各過程に加えて、前記危険交
通事象(Lmp)を検出した場合には、対応する交錯領域
(L′mp)の各座標交錯計測点(Np ij)の分布状況に
基づき危険交通事象(Lmp)の危険度を定量化した危険
度データ(Gmp)を得てこれを出力する。
Further, in the dangerous traffic event detection method of the fourth invention of the present application, in addition to the steps of the third invention described above, when the dangerous traffic event (Lmp) is detected, the corresponding intersection area (L ') is detected. mp), the risk level data (Gmp) quantifying the risk level of the dangerous traffic event (Lmp) is obtained based on the distribution of the coordinate intersection measurement points (Np ij) and is output.

【0008】[0008]

【作用】前述課題の解決のため、本願第一発明の危険交
通事象検出方法では、先ず、撮像手段により道路領域の
画像の映像信号を得て、道路上の各計測点(Pij)に時
間的に夫々対応する映像信号の輝度レベル(Cij)即ち
1フィールド単位の輝度データ群(Dt )を得て、これ
を路面のみの場合に対応する適宜の基準路面レベルデー
タ(Dr )と比較することで車両2値化データ群(Dn
)を順に保持するとの従来と略同様の処理をする。
In order to solve the above-mentioned problems, in the dangerous traffic event detecting method according to the first aspect of the present invention, first, a video signal of an image of a road area is obtained by the image pickup means, and temporally measured at each measurement point (Pij) on the road. By obtaining the luminance level (Cij) of the corresponding video signal, that is, the luminance data group (Dt) in a unit of one field, and comparing this with the appropriate reference road surface level data (Dr) corresponding to only the road surface. Vehicle binary data group (Dn
) Are held in order, and processing similar to the conventional one is performed.

【0009】こうして得られる、一定時間差の2つの車
両2値化データ群(Dn )の差演算より4値化データ群
(Fn )を求め、この4値化データ群(Fn )の分布に
基づき検出車両対応点のその時点で予想される速度と方
向を求め、各車両対応点の所定時間経過後に予測される
位置(予測車両対応点、即ち車両移動ベクトル:Mj
で、交差禁止ベクトル(M′j )の一種に含まれる)を
算定し、これら車両の予想位置(交差禁止ベクトル)同
士の、或いはこれ以外の停止線や横断歩道等の移動しな
い交錯禁止ベクトル(M′j )との交錯計測点(Nij)
を算出する。そして、このような交錯点があった場合に
は危険が予想される危険交通事象と見做し、連続する交
錯計測点群即ち交錯領域(L′m )が1つ存在すること
に対応して危険交通事象(Lm )を1つ検出したものと
しこの旨の危険検出信号(Sm )を出力するとの各過程
を繰返す。
A 4-valued data group (Fn) is obtained by calculating the difference between the two vehicle-valued data groups (Dn) with a constant time difference thus obtained, and detection is performed based on the distribution of the 4-valued data group (Fn). The speed and direction of the vehicle corresponding point expected at that time are obtained, and the position of each vehicle corresponding point predicted after a predetermined time elapses (predicted vehicle corresponding point, that is, vehicle movement vector: Mj
Then, the cross prohibition vector (included in a kind of cross prohibition vector (M'j)) is calculated, and the cross prohibition vector (preventing crossing prohibition vector) between these predicted positions (cross prohibition vector) or other stop lines or pedestrian crossings ( Measurement point (Nij) intersecting with M'j)
To calculate. If there is such an intersection, it is considered as a dangerous traffic event that is expected to be dangerous, and there is one continuous intersection measurement point group, that is, one intersection area (L'm). It is assumed that one dangerous traffic event (Lm) is detected, and a dangerous detection signal (Sm) to that effect is output. Each process is repeated.

【0010】本願第二発明の危険交通事象検出方法で
は、上述と同様な処理に加え、危険交通事象(Lm )を
検出した場合には、対応する交錯領域(L′m )の各交
錯計測点(Nij)の分布状況、例えば交錯点群(Lm )
を構成する連続する交錯点の個数や個々の交錯点の交錯
禁止ベクトル(Kj )中の位置(周辺に近いとか周辺か
ら遠く中央部である等)、或いは4値化の値を加味した
分布状況に基づき危険交通事象(Lm )の危険度を定量
化する。そしてこの結果(値)を、或いはこの値を範囲
分けしたグレード等を危険度データ(Gm )として出力
する。
In the dangerous traffic event detection method of the second invention of the present application, in addition to the same processing as described above, when a dangerous traffic event (Lm) is detected, each intersection measurement point of the corresponding intersection area (L'm) is detected. Distribution of (Nij), for example, intersection point group (Lm)
The number of consecutive intersections that make up the position, the position in the intersection prohibition vector (Kj) of individual intersections (such as near the periphery or far from the periphery to the center), or the distribution status with the quaternary value added Quantify the risk of dangerous traffic event (Lm) based on Then, this result (value) or grades obtained by dividing this value into ranges is output as the risk data (Gm).

【0011】本願第三発明の危険交通事象検出方法で
は、複数の撮像手段を用いて複数の領域の画像に対応す
る映像信号を得る。各映像信号は上述第一発明と略同一
の処理がされるが、各計測点(Pp ij)は、道路上の実
際の位置座標(Xi,Yi )を示す座標値と対応付けて設
定される。そして各映像信号毎に、上述第一発明と略同
一の処理がされ危険交通事象(Lmp)が検出される。更
にその後、各映像信号毎に得られた仮座標危険予測信号
(S′mp)を対応する各座標交錯計測点(Np ij)が対
応する道路上の実際の位置座標(Xi,Yi )に基づき検
定し、略同一の座標が対応付けられた仮座標危険予測信
号(S′mp)が複数あれば、これらは略同一の地点で発
生した危険交通事象に対応すると見做して1つにまとめ
た後、全ての仮座標危険予測信号(S′mp)を最終的な
出力(座標危険予測信号(Smp))を出力する。
In the dangerous traffic event detecting method of the third invention of the present application, video signals corresponding to images of a plurality of regions are obtained by using a plurality of image pickup means. Each video signal is subjected to substantially the same processing as in the above-mentioned first invention, but each measurement point (Pp ij) is set in association with the coordinate value indicating the actual position coordinate (Xi, Yi) on the road. . Then, for each video signal, substantially the same processing as in the above-described first invention is performed, and a dangerous traffic event (Lmp) is detected. After that, the temporary coordinate danger prediction signal (S'mp) obtained for each video signal is based on the actual position coordinates (Xi, Yi) on the road to which each corresponding coordinate intersection measurement point (Np ij) corresponds. If there are multiple temporary coordinate danger prediction signals (S'mp) that have been verified and are associated with substantially the same coordinates, these are considered to correspond to dangerous traffic events that occurred at substantially the same point, and are combined into one. After that, all the temporary coordinate danger prediction signals (S'mp) are finally output (coordinate danger prediction signal (Smp)).

【0012】本願第四発明の危険交通事象検出方法は、
上述第三発明と同様に位置座標(Xi,Yi )を含む各処
理を行うと共に、上述した第二発明と同様の思想に基づ
き、検出し決定した危険交通事象(Lmp)に対して各座
標交錯計測点(Np ij)の分布状況に基づき危険交通事
象(Lmp)の危険度を定量化し、この結果(値)を或い
は範囲により分類した危険グレードを危険度データ(G
mp)として出力する。
The method for detecting a dangerous traffic event according to the fourth aspect of the present invention is
Each process including the position coordinates (Xi, Yi) is performed in the same manner as the third invention described above, and each coordinate intersection is performed on the dangerous traffic event (Lmp) detected and determined based on the same idea as the second invention described above. The risk level of dangerous traffic events (Lmp) is quantified based on the distribution status of the measurement points (Np ij), and the risk grade obtained by classifying the result (value) or the range is used as the risk level data (G).
output as mp).

【0013】なお、以上の各発明に於いては、何れも2
つの前記座標2値データ群の差分から4値化データ群を
求めて、4値化データ群に基づき車両移動ベクトルを算
定し、交錯禁止ベクトルとの交錯点の検出に対応して危
険交通事象検出とするという技術的思想が共通しており
本願の特徴部と成っている。
In each of the above inventions, 2
A four-valued data group is obtained from the difference between the two coordinate binary data groups, a vehicle movement vector is calculated based on the four-valued data group, and a dangerous traffic event is detected in response to detection of an intersection with the intersection prohibition vector. The technical idea of "is common" and is a characteristic part of the present application.

【0014】[0014]

【実施例】以下、実施例に基づき図面を用いて本願各発
明について説明する。先ず始めに、本願各発明方法の実
施に用いて好適な画像式処理装置について説明する。従
来より交通状況の把握のために画像処理が応用され、道
路を撮像手段にて撮像し得られた映像信号を処理して当
該道路を通過する車両を検知する方法及び装置が実用に
供されている。このような画像処理装置は例えば、本願
発明者等により特開平4−188005号(特願平2−
318992号):「画像式車輌感知器」として提案さ
れている。
The present invention will be described below with reference to the drawings based on the embodiments. First, an image processing apparatus suitable for carrying out the method of each invention of the present application will be described. Conventionally, image processing has been applied to grasp traffic conditions, and a method and apparatus for detecting a vehicle passing through the road by processing a video signal obtained by capturing an image of the road by an image capturing means have been put to practical use. There is. Such an image processing apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-188005 (Japanese Patent Application No. 2-188005) by the present inventors.
No. 318992): Proposed as "imaging vehicle detector".

【0015】本願発明の危険交通事象検出方法の実施に
は、このような従来にも用いられている画像式車両検出
装置と類似構成の装置を用いることができる。そして制
御部の制御により、先ず上に挙げた従来の発明等と類似
の画像処理を経て計測点群に対応した輝度データ群を所
定時間間隔で順次得る。但し、車両検知のみの場合と異
なり、本願に於ける計測点群としては監視道路面全体に
対応した言わば多数の面状の計測点群を設定する。図1
は、この様子を簡略化して示したものである。
To carry out the method of detecting a dangerous traffic event according to the present invention, an apparatus having a similar structure to the image type vehicle detecting apparatus which has been conventionally used can be used. Then, under the control of the control unit, first, through the image processing similar to the above-described conventional invention, the luminance data group corresponding to the measurement point group is sequentially obtained at predetermined time intervals. However, unlike the case where only vehicle detection is performed, as the measurement point group in the present application, a large number of planar measurement point groups corresponding to the entire surveillance road surface are set. Figure 1
Shows a simplified representation of this situation.

【0016】ちなみに、本願に於ける各計測ポイントの
実用に適する具体的設定例を挙げれば、20m×20m
の領域を50×50=2500ポイントの格子状の計測
点を設定し監視する。これは約40cm×40cmに相
当する検出分解能であり、十分に対象車両を検出し得
る。こうした面状の計測点群に対応して得られた輝度デ
ータ群を基に、後述する所定処理により危険交通事象が
抽出され、或いは更に危険度が算定される。
By the way, a specific setting example suitable for practical use of each measuring point in the present application is 20 m × 20 m.
In this area, grid-like measurement points of 50 × 50 = 2500 points are set and monitored. This is a detection resolution equivalent to about 40 cm × 40 cm, and can sufficiently detect the target vehicle. On the basis of the brightness data group obtained corresponding to the planar measurement point group, the dangerous traffic event is extracted or the risk degree is further calculated by the predetermined process described later.

【0017】更に、本願発明を実施するための装置を一
例を挙げて、簡単に説明する。図11は、この種の画像
式車両感知装置のブロック図を示しており、先に挙げた
特開平4−188005号に開示の装置に準ずるもので
ある。この画像式車両感知装置は概略、画像撮像手段1
0、輝度データ変換部20、演算処理部30及び制御部
40から構成されている。
Further, a device for carrying out the present invention will be briefly described with reference to an example. FIG. 11 shows a block diagram of an image type vehicle detection device of this type, which is similar to the device disclosed in Japanese Patent Laid-Open No. 4-188005. This image-type vehicle detection device is generally, image pickup means 1
0, a brightness data conversion unit 20, an arithmetic processing unit 30, and a control unit 40.

【0018】撮像手段10は、例えばCCDカメラであ
り、図12に示すごとく交差点の一角に設けられ上方よ
り図13に画像例を示すように交差点の検知領域の画像
を撮像して対応するNTSC方式の映像信号を輝度デー
タ変換部20へ送出する。この映像信号を用いて前記輝
度データ変換部20により、図1に示すように画像中で
横方向に想定された複数の直線(検知ライン:L1 、L
2 、…)上に複数の計測点Pij(P11、P12、…、
21、 P22、…)を設定し、この各計測点Pijの位置に
時間的に対応する輝度信号中の輝度レベルを夫々求めて
一組としたある時点での輝度データ群をフィールド毎に
順次求める。
The image pickup means 10 is, for example, a CCD camera, is provided at one corner of the intersection as shown in FIG. 12, and picks up an image of the detection area of the intersection as shown in FIG. The video signal of is sent to the luminance data converter 20. Using this video signal, the brightness data conversion unit 20 causes a plurality of straight lines (detection lines: L 1 and L 1) which are assumed in the horizontal direction in the image as shown in FIG.
2 , ...) on the plurality of measurement points Pij (P 11 , P 12 , ...,
P 21, P 22, ...) is set and the luminance data group at the certain time of the set luminance level respectively determined in temporally corresponding luminance signals to the position of each measurement point Pij for each field Request one by one.

【0019】即ち、前記輝度データ変換部20は映像信
号より水平同期信号及び垂直同期信号を得る同期信号抽
出回路21、これらの同期信号に基づいて捜査線上の現
在の捜査位置を数値化して対応する水平座標及び垂直座
標を得るための水平アドレスカウンタ22と垂直アドレ
スカウンタ23、これらの出力とマイクロプロセツサ4
1(後述)が順次指定する座標とを比較し一致した瞬間
に取込み信号を発生するデジタルコンパレータ24、こ
の取込み信号に応じて前記映像信号の対応する瞬間の輝
度を数値化し輝度データを得て出力するビデオA/D変
換回路25からなっている。なお、入力部には伝送され
てくる映像信号を適切なレベルに増幅するビデオアンプ
27、これに続きA/D変換に先立って映像信号を一定
振幅に正規化するためのクランプレベル固定回路28も
設けられている。
That is, the brightness data conversion unit 20 corresponds to the sync signal extraction circuit 21 for obtaining the horizontal sync signal and the vertical sync signal from the video signal, and digitizing the current search position on the search line based on these sync signals. A horizontal address counter 22 and a vertical address counter 23 for obtaining the horizontal coordinate and the vertical coordinate, and outputs of these and the microprocessor 4
A digital comparator 24 that compares the coordinates designated by 1 (described later) and generates a capture signal at the moment when they coincide with each other, and obtains and outputs the luminance data by digitizing the luminance at the corresponding moment of the video signal according to the capture signal. The video A / D conversion circuit 25 is configured to operate. A video amplifier 27 for amplifying the transmitted video signal to an appropriate level is also provided in the input section, and a clamp level fixing circuit 28 for normalizing the video signal to a constant amplitude prior to A / D conversion is also provided. It is provided.

【0020】演算処理部30は、前記ビデオA/D変換
回路25からの輝度データを受けて複数の輝度データの
平均化をしたり相関を演算したりするための回路で、高
速演算を要求されるためシグナルプロセッサ31を用い
ておりデータの記憶に必要な記憶部も備えている。
The arithmetic processing unit 30 is a circuit for receiving the luminance data from the video A / D conversion circuit 25 and averaging a plurality of luminance data and calculating the correlation, and is required to perform high-speed calculation. Therefore, the signal processor 31 is used and a storage unit necessary for storing data is also provided.

【0021】制御部40は上述各部を制御するととも
に、前記演算処理部30からのデータを受取りこれに更
に演算処理を施し、車両の存在を感知したりこの車両の
速度を算定したりして後続装置に出力する部分で、本願
各発明では危険交通事象の検出や危険度の定量化も行
う。この制御部40は、マイクロプロセツサ41、制御
プログラムを記憶したROM42、データ記憶用のRA
M43、出力用のI/O回路44からなる。45はマイ
クロプロセツサ41が他の部分とデータやアドレスさら
に制御命令や応答信号をやりとりするCPUバスであ
る。
The control unit 40 controls each of the above-mentioned units, receives data from the arithmetic processing unit 30 and further performs arithmetic processing on the data to detect the presence of a vehicle and calculate the speed of the vehicle. In each of the inventions of the present application, detection of a dangerous traffic event and quantification of the degree of danger are also performed in the part of outputting to the device. The control unit 40 includes a microprocessor 41, a ROM 42 storing a control program, and an RA for data storage.
It comprises an M43 and an output I / O circuit 44. Reference numeral 45 denotes a CPU bus through which the microprocessor 41 exchanges data and addresses, control commands and response signals with other parts.

【0022】なお、図示装置にはその他にも直流電源5
1、各部に供給されるクロック回路52、撮像手段10
からの映像信号のレベルが低く処理に不適切な場合に撮
像手段10の感度を上げるための信号を送出するD/A
変換回路53等が具備されている。また、モニタTV6
0とパソコン61は、実際に設置された現場にこの画像
装置が適合するように、前記各計測点を設定するときに
必要となる補助機材である。なお、既掲出願の明細書に
も詳述されているので説明は省略する。危険交通事象検
出、その危険度データや発生位置等の各種情報は、図示
しない記録装置あるいは集計装置等に送出されて、画像
記録を開始させたり、データ記録や分析がされる。
In addition to the illustrated apparatus, a DC power source 5 is also provided.
1. Clock circuit 52 supplied to each unit, image pickup means 10
D / A for sending out a signal for increasing the sensitivity of the image pickup means 10 when the level of the video signal from the camera is low and inappropriate for processing.
The conversion circuit 53 and the like are provided. Also, monitor TV6
0 and the personal computer 61 are auxiliary equipments required when setting the respective measurement points so that the image device fits in the actual installation site. The description is omitted because it is described in detail in the specification of the above-mentioned application. Various information such as the detection of a dangerous traffic event, its risk level data, and the position of occurrence is sent to a recording device, a totaling device, or the like (not shown) to start image recording, data recording, or analysis.

【0023】続いて本願各発明の危険交通事象検出過程
について説明する。なお、図10は本願各発明の一実施
例を示す簡略なフローチャートである。本願第一発明の
危険交通事象検出方法では、例えば上述した図11に示
した装置を用いて、先ず一般の画像処理と略同様に、制
御部40により制御された上記各部分により、映像信号
を用いて画像中に設定された複数の計測点Pij(P11
12、…、P21、 P22、…)に時間的に対応する輝度信
号中の輝度レベル(Cij)を夫々求めて一組とした輝度
データ群(Dt )をフィールド毎に順次求める。そし
て、車両が存在しない時(路面のみに対応する)の各計
測点の輝度データから成る輝度データ群(基準路面レベ
ルデータ、Dr )との比較に依り充分な差が認められる
データを車両対応点と成しある時刻での各計測点での車
両の存在が検出される。
Next, the dangerous traffic event detecting process of each invention of the present application will be described. Note that FIG. 10 is a simplified flowchart showing an embodiment of each invention of the present application. In the dangerous traffic event detection method of the first invention of the present application, for example, by using the apparatus shown in FIG. 11 described above, a video signal is first generated by each of the above-mentioned parts controlled by the control unit 40 in substantially the same manner as general image processing. A plurality of measurement points Pij (P 11 , P 11 ,
P 12, ..., P 21, P 22, ...) the brightness level (Cij) in temporally corresponding luminance signals respectively obtained by obtaining sequentially set the luminance data group a (Dt) for each field. Then, when the vehicle does not exist (corresponding to only the road surface), the data corresponding to the vehicle corresponding point is obtained by comparing with the brightness data group (reference road surface level data, Dr) including the brightness data of each measurement point. The presence of a vehicle at each measurement point at a certain time is detected.

【0024】即ち、撮像手段10(CCDカメラ)にて
図1に示すごとく所定の交差点等の検知領域の画像を撮
像して対応するNTSC方式の映像信号を輝度データ変
換部20へ送出する。なお、この検知領域に対応して図
1に示すように例えばL1 ,L2 ,…,L40と複数の計
測ラインが設定され、各計測ラインL1 〜L40上に所定
間隔で夫々複数個の計測ポイント(P11、P12、…、P
21、 P22、…)が設定( 想定) されている。
That is, as shown in FIG. 1, the image pickup means 10 (CCD camera) picks up an image of a detection area such as a predetermined intersection and sends a corresponding NTSC video signal to the luminance data converter 20. It should be noted that a plurality of measurement lines such as L 1 , L 2 , ..., L 40 are set corresponding to this detection area as shown in FIG. 1, and a plurality of measurement lines are set on the respective measurement lines L 1 to L 40 at predetermined intervals. Individual measurement points (P 11 , P 12 , ..., P
21 , P 22 , ...) are set (assumed).

【0025】前記輝度データ変換部20では同期信号抽
出回路21に依り映像信号より水平同期信号及び垂直同
期信号を得る。これらの同期信号に基づいて水平アドレ
スカウンタ22と垂直アドレスカウンタ23が動作し、
捜査線上の現在の捜査位置を次々と示していく。これら
の出力とマイクロプロセツサ41が指定する各座標とが
比較され一致した瞬間にデジタルコンパレータ24が取
込み信号を発生する。この取込み信号に応じてビデオA
/D変換回路25が前記映像信号の対応する瞬間の輝度
を数値化し輝度データとして対応する水平座標及び垂直
座標とともに出力する。なお、入力部では伝送されてく
る映像信号をビデオアンプ27で適切なレベルに増幅
し、これに続くクランプレベル固定回路28がA/D変
換に先立って映像信号を一定振幅に正規化する。
In the brightness data converter 20, the sync signal extraction circuit 21 obtains a horizontal sync signal and a vertical sync signal from the video signal. The horizontal address counter 22 and the vertical address counter 23 operate based on these synchronization signals,
The current position of the investigation on the investigation line is shown one after another. These outputs are compared with the coordinates designated by the microprocessor 41, and the digital comparator 24 generates a capture signal at the moment when they coincide with each other. Video A according to this capture signal
The / D conversion circuit 25 digitizes the luminance at the corresponding moment of the video signal and outputs it as luminance data together with the corresponding horizontal and vertical coordinates. In the input section, the transmitted video signal is amplified by the video amplifier 27 to an appropriate level, and the clamp level fixing circuit 28 following this amplifies the video signal to a constant amplitude prior to A / D conversion.

【0026】この様にして前記映像信号を用いて図1の
画像の略全域に設定された複数の計測点Pij(P11、P
12、…、P21、 P22、…)の各々の位置に対応して輝度
信号中の時間的な位置での輝度レベルCijが得られる。
これらの輝度レベルから1画面(1フレーム)が2値化
された車両2値化データ群Dn が得られる。すなわち、
適宜間隔で常に更新されている車両が存在しない時(路
面のみに対応する)の各計測点での輝度データから成る
輝度データ群(基準路面データ、Dr )との比較に依り
充分な差が認められるデータを車両対応点と成しある時
刻での各計測点での車両の存在が検出される。
In this way, a plurality of measurement points Pij (P 11 , P 11) set in substantially the entire area of the image of FIG.
12, ..., the luminance level Cij at P 21, P 22, ...) temporal position in the luminance signal corresponding to each of the positions of the resulting.
From these luminance levels, a vehicle binarized data group Dn in which one screen (one frame) is binarized is obtained. That is,
When there is no vehicle that is constantly updated at an appropriate interval (corresponding to the road surface only), a sufficient difference is recognized by comparison with the brightness data group (reference road surface data, Dr) consisting of the brightness data at each measurement point. The presence of the vehicle at each measurement point at a certain time is detected by using the obtained data as the vehicle corresponding point.

【0027】このためにシグナルプロセッサ31を備え
た演算処理部30が、前記ビデオA/D変換回路25か
らの輝度データを受けて高速に複数の輝度データの平均
化をしたり相関を演算したりした後、適宜時間間隔で抽
出した路面の輝度レベルからなる基準路面データDr と
比較して、計測ポイント毎の輝度データを2値化し、1
フィールドに対応した一組の2値化データ群Dn が決定
される。
For this purpose, the arithmetic processing unit 30 equipped with the signal processor 31 receives the luminance data from the video A / D conversion circuit 25 and rapidly averages a plurality of luminance data and calculates the correlation. After that, the brightness data for each measurement point is binarized by comparing with the reference road surface data Dr which is composed of the brightness level of the road surface extracted at appropriate time intervals.
A set of binarized data group Dn corresponding to the field is determined.

【0028】即ち、本願各発明の方法は先ず以下の一連
の各過程を含む(図10参照)。 1.CCDカメラ等の撮像手段により感知対象となる道
路を含む領域の画像に対応する映像信号を得る。 2.映像信号中、道路上に位置する計測点Pij(P11
12、…、P21、 P22、…)に対応する位置(映像信号
中の時間的位置)を予め複数設定し、これらの位置に対
応した即ち各計測点Pijに夫々対応する輝度レベル(C
ij)からなる輝度データ群(Dt )を順次得る。 3.車両が存在しない路面のみの場合に対応する輝度デ
ータ群を所定間隔で抽出して基準路面レベルデータ(D
r )として保持する。この基準路面レベルデータ(Dr
)は道路の照度等の状況に応じて時間経過とともに適
宜修正される。 4.輝度データ群(Dt )を前記基準路面レベル(Dr
)と比較して2値化し車両2値化データ群(Dn )を
順次得て保持する。即ち、充分な差が認められる場合
(高い場合及び低い場合の双方)には車両が存在する車
両対応点と見做し、値“1”が対応づけられる(又、も
し必要であれば適宜処理により車両を検出し感知信号を
送出する)。 なお、以上の各過程は、従来の画像式車両検出方法と類
似の技術であり、例えば先に挙げた特願平2−3189
92号にも道路輝度パターンと車両輝度パターンのパタ
ーン相関比較による車両検出原理と共に詳述されてい
る。
That is, the method of each invention of the present application first includes the following series of steps (see FIG. 10). 1. An image signal such as a CCD camera is used to obtain a video signal corresponding to an image of a region including a road to be sensed. 2. Measurement point Pij (P 11 , P 11 ,
P 12, ..., P 21, P 22, ...) to advance multiple sets the corresponding position (time position in the video signal), husband corresponding to these positions i.e. the respective measurement points Pij s corresponding luminance level ( C
The luminance data group (Dt) consisting of ij) is sequentially obtained. 3. The luminance data group corresponding to the case where there is no vehicle only on the road surface is extracted at a predetermined interval to obtain the reference road surface level data (D
hold as r). This reference road surface level data (Dr
) Will be appropriately corrected over time depending on the situation such as road illuminance. 4. The luminance data group (Dt) is used as the reference road surface level (Dr).
) And binarized vehicle data group (Dn) are sequentially obtained and held. That is, when a sufficient difference is recognized (both high and low), it is regarded as the vehicle corresponding point where the vehicle exists, and the value “1” is associated (or, if necessary, appropriately processed. To detect the vehicle and send out a sensing signal). It should be noted that each of the above processes is a technique similar to the conventional image type vehicle detection method, and for example, the above-mentioned Japanese Patent Application No. 2-3189.
No. 92 also describes in detail the vehicle detection principle based on the pattern correlation comparison between the road brightness pattern and the vehicle brightness pattern.

【0029】マイクロプロセツサ41を備えた制御部4
0は、上述各部を制御するとともに前記演算処理部30
からのデータを受取りこれに更に演算処理を施す。即
ち、本願発明ではこうして得られた車両2値化データD
n に基づいて、更に以下に詳述する所定処理を制御部4
0により行い、本願の目的とする危険交通事象(Lm )
の検出と更にはこの危険交通事象の危険度の決定を行
う。続いて、このための過程について説明する。
Control unit 4 equipped with microprocessor 41
0 controls each of the above-mentioned units, and the arithmetic processing unit 30
It receives the data from and performs further arithmetic processing on it. That is, in the present invention, the vehicle binary data D thus obtained
Based on n, the control unit 4 executes a predetermined process described in detail below.
Dangerous traffic event (Lm)
And the risk level of this dangerous traffic event is determined. Next, the process for this will be described.

【0030】制御部40のマイクロプロセツサ(ホスト
CPU)には毎フレームの前記車両2値化データ(Dn
)が伝送され、RAM43には各アドレスに対応する
車両2値化データが順次記憶される。前述図1の画面に
対応する、前回フレーム(T1 フレーム)分の車両2値
化データ(D1 ) を図2に、また今回フレーム(T2
レーム)分の車両2値化データ(D2 ) を図3に示す。
図では“0”は“車両無し”を、また“1”は“車両有
り”を意味している。
The microprocessor (host CPU) of the control unit 40 has the vehicle binarized data (Dn
) Is transmitted, and vehicle binary data corresponding to each address is sequentially stored in the RAM 43. The vehicle binarization data (D 1 ) for the previous frame (T 1 frame) corresponding to the screen of FIG. 1 is shown in FIG. 2, and the vehicle binarization data (D 2 ) for the current frame (T 2 frame) is shown. ) Is shown in FIG.
In the figure, “0” means “without vehicle”, and “1” means “with vehicle”.

【0031】続いて、4値化処理が行われる。即ち、先
ず図2の前回フレーム分の画像2値化データと図3の今
回フレーム分の画像2値化データに基づき、(前回フレ
ーム分−今回フレーム)なる差分4値化データ群が求め
られ同じくRAM43に記憶される。例えば、上記両2
値化データから、 (今回フレーム車両2値化データ)−(前回フレーム車
両2値化データ) なる処理により導かれた4値化データ群(Fn )を得
る。 図4では一例として、“0”−“0”=“F”、“0”
−“1”=“−1”、 “1”−“1”=“+2”、“1”−“0”=“+1” として4値化の結果を図示している。
Subsequently, a quaternarization process is performed. That is, first, based on the image binarized data of the previous frame of FIG. 2 and the image binarized data of the current frame of FIG. 3, a differential four-valued data group of (previous frame−current frame) is obtained and the same. It is stored in the RAM 43. For example, both 2 above
From the digitized data, a four-valued data group (Fn) derived by a process of (current frame vehicle binarized data)-(previous frame vehicle binarized data) is obtained. In FIG. 4, as an example, “0” − “0” = “F”, “0”
The results of quaternarization are illustrated by setting “−1” = “− 1”, “1” − “1” = “+ 2”, and “1” − “0” = “+ 1”.

【0032】従って、図4では、“F”(“0”−
“0”)は前回も今回も車両の存在しない計測ポイント
を、“−1”(“0”−“1 ”)は前回フレームでは
車両が存在したが今回フレームにては退出した計測ポイ
ントを、“+2”(“1”−“1”)は今回フレームも
前回フレームも共に車両が存在した計測ポイントを、ま
た、“+1”(“1”−“0”)は今回フレームにて新
たに車両が存在するようになった計測ポイントを夫々示
すことになる。
Therefore, in FIG. 4, "F"("0"-
“0”) is the measurement point where the vehicle did not exist both last time and this time. “-1” (“0”-“1”) was the measurement point where the vehicle existed in the previous frame but left in this frame. "+2"("1"-"1") is the measurement point where the vehicle was present in both the current frame and the previous frame, and "+1"("1"-"0") is the new vehicle in the current frame. Will indicate the measurement points at which the existence of the.

【0033】以上の車両4値化データを基に一群の車両
対応点(個々の車両に対応)の速度と方向を求めて、各
車両対応点の所定時間経過後の予測位置(対応計測点
群)を車両移動ベクトル(Mj )と定義して次のように
して求める。図4の(ハ)で“+1”の移動幅ΔL1
ΔL2 、…等を順次全て求め、各車両の速度V1 (=Δ
1 /ΔT)、V2 (=ΔL2 /ΔT)、…を順次演算
する(V1 等はkm/hに換算する)を求める。
The speeds and directions of a group of vehicle corresponding points (corresponding to individual vehicles) are obtained based on the above-mentioned vehicle quaternary data, and predicted positions (corresponding measurement point group) of the respective vehicle corresponding points after a predetermined time has elapsed. ) Is defined as a vehicle movement vector (Mj) and is obtained as follows. In (c) of FIG. 4, the movement width ΔL 1 of “+1”,
[Delta] L 2, obtains successively all ... etc., the speed of each vehicle V 1 (= delta
L 1 / ΔT), V 2 (= ΔL 2 / ΔT), ... Are sequentially calculated (V 1 etc. are converted into km / h).

【0034】次に、通常V(km/h)で走行している
車両は制動停止するまでに1/2V(m)の制動距離を
要することが知られていることから、1/2V
1 (m)、1/2V2 (m)、…の各値を順に算出す
る。
Next, it is known that a vehicle running at a normal V (km / h) requires a braking distance of 1/2 V (m) before the braking is stopped.
Each value of 1 (m), 1/2 V 2 (m), ... Is calculated in order.

【0035】また、車両4値化データの“+2”の計測
ポイントを中心として、a(m)×a(m)のウインド
を設け、前後に“−1”の領域と“+1”の領域を求
め、これにより移動ベクトル方向を求める。“−1”か
ら“+1”へと向かう方向が車両の移動するベクトルの
方向となる。
Further, a window of a (m) × a (m) is provided around the measurement point of "+2" of the vehicle quaternary data, and a "-1" area and a "+1" area are provided in front and behind. Then, the movement vector direction is obtained. The direction from “−1” to “+1” is the direction of the moving vector of the vehicle.

【0036】結局、1個の車両の移動ベクトルは、以下
の4つのパラメータで表される。 1)車両移動ベクトルの起点…“+1”の存在する計測
ポイント群。 2)車両移動ベクトルの大きさ…車両速度V(km/
h)に対し、 1/2V1 (m)+車両長(“+1”,“+2”の領域
長) 3)車両移動ベクトルの方向…“−1”から“+2”或
いは“+2”から“+1”への方向と同じ。 4)車両移動ベクトルの幅…“+1”の計測ポイント群
の幅W。
After all, the movement vector of one vehicle is represented by the following four parameters. 1) Starting point of vehicle movement vector ... A measurement point group in which “+1” exists. 2) Size of vehicle movement vector ... Vehicle speed V (km /
For h), 1/2 V 1 (m) + vehicle length (region length of “+1”, “+2”) 3) Direction of vehicle movement vector ... “−1” to “+2” or “+2” to “+1” Same as direction to. 4) Width of vehicle movement vector ... Width W of “+1” measurement point group.

【0037】以上の過程から、検出した各車両毎のベク
トル、即ち移動方向と大きさ(速度)を基に、リアルタ
イムに監視画面内を移動する車両夫々の移動ベクトル
(Mj)を求めることができる。この車両移動ベクトル
は、各車両が今後所定時間経過した任意の時刻に占める
画面上の計測ポイントの位置、いわば“想定占有範囲”
を表している。
From the above process, the movement vector (Mj) of each vehicle moving in the monitoring screen can be obtained in real time based on the detected vector for each vehicle, that is, the moving direction and the size (speed). . This vehicle movement vector is the position of the measurement point on the screen that each vehicle occupies at an arbitrary time after a predetermined time has passed, so to speak, the “expected occupation range”.
Is represented.

【0038】続いて、制御部40では各車両移動ベクト
ル(Mj )を基に、危険交通事象を検出する。即ち、車
両移動ベクトル(Mj )と交錯禁止ベクトル(M′j :
車両移動ベクトルMj 自身も含む)との交錯計測点の有
無を検証することにより車両同士の交錯(接触・衝突)
や、停止線や横断歩道に対応する計測点群を前記交錯禁
止領域(M′j )として設定して車両移動ベクトル(M
j )との交錯点の有無を検証することにより信号無視車
両あるいは車両と歩行者間の接触等の危険交通事象を検
出する。
Subsequently, the control unit 40 detects a dangerous traffic event based on each vehicle movement vector (Mj). That is, the vehicle movement vector (Mj) and the intersection prohibition vector (M'j:
Intersection with vehicles (including the vehicle movement vector Mj itself) By verifying the presence or absence of measurement points (interaction / collision)
Alternatively, a measurement point group corresponding to a stop line or a pedestrian crossing is set as the intersection prohibited area (M'j) to set the vehicle movement vector (M
By detecting whether there is an intersection with j), a dangerous traffic event such as a signal-ignoring vehicle or a contact between a vehicle and a pedestrian can be detected.

【0039】先ず、車両同士の交錯であれば、各車両移
動ベクトル(Mj )を交錯禁止ベクトル(M′j )と見
做し車両移動ベクトル(Mj )同士の交錯が有るか否か
を演算検証する。例えば、時刻t1 後の夫々の車両の想
定占有範囲(即ち車両移動ベクトルMj)に該当する計
測点群に対応するメモリ中のデータ格納番地に車両の占
有を示す例えば“1”の値を順に加算していく。この結
果、画面内の各車両移動ベクトルMj 同士が一致する
(実際の事象は接触あるいは衝突に対応する)計測点に
対応する格納番地のデータには、“1”以上の値が保持
される。従って、“1”以上の値を持つ計測点(以下、
交錯計測点Nijと記述する)が存在すれば衝突等の危険
交通事象(Lm )ありとし危険検出信号(Sm )を出力
することができる。また、その交錯計測点の位置が危険
交通事象の発生位置を表すことになる。なお、通常は1
つの危険交通事象に対応して複数の交錯計測点(Nij)
が得られるから、位置的に連続する(隣合う)交錯計測
点(Nij)の集合からなる交錯領域(L′m )は1つの
危険交通事象(Lm )を表すものと見做して1つの危険
交通事象に対応付ける。この交錯領域(L′m )の数で
危険交通事象の発生件数を知ることができる。
First, if there is an intersection between vehicles, each vehicle movement vector (Mj) is regarded as an intersection prohibition vector (M'j), and it is verified whether or not there is an intersection between the vehicle movement vectors (Mj). To do. For example, a value of, for example, "1" indicating vehicle occupancy at the data storage address in the memory corresponding to the measurement point group corresponding to the assumed occupancy range of each vehicle (that is, the vehicle movement vector Mj) after time t 1 is sequentially set. Add up. As a result, the value of "1" or more is held in the data of the storage address corresponding to the measurement point where the vehicle movement vectors Mj in the screen match each other (the actual event corresponds to the contact or the collision). Therefore, the measurement point with a value of "1" or more (hereinafter,
If there is an intersection measurement point Nij), it can be determined that a dangerous traffic event (Lm) such as a collision is present and a danger detection signal (Sm) can be output. Further, the position of the intersection measurement point represents the occurrence position of the dangerous traffic event. In addition, usually 1
Multiple intersection measurement points (Nij) corresponding to one dangerous traffic event
Therefore, the intersection area (L'm) consisting of a set of intersection measurement points (Nij) that are positionally continuous (adjacent) is regarded as one dangerous traffic event (Lm). Correspond to dangerous traffic events. The number of dangerous traffic events can be known from the number of intersection areas (L'm).

【0040】以上説明したように、本願第一発明の危険
交通事象検出方法は、既述した2値化データを得るため
の各過程に続き、以下の各過程(図10参照)、 5.一定時間差で得られた2つの前記車両2値データ群
(Dn )の差分からなる4値化データ群(Fn )を求め
る。 6.前記4値化データ群(Fn )に基づき車両対応点の
速度と方向を求めて各車両対応点の所定時間経過後の車
両対応点予測点各位置を示す車両移動ベクトル(Mj )
を算定する。 7.各々の車両移動ベクトル(Mj )をも含む停止線等
の、交錯禁止ベクトル(M′j )同士が交錯する交錯計
測点(Nij)を算出し、交錯計測点(Nij)があった場
合には連続する交錯点群(Nij)から成る交錯領域
(L′m )1つに対応して1つの危険交通事象(Lm )
を検出した旨の危険検出信号(Sm )を出力する。 との各過程を経て危険交通事象を検出するものである。
As described above, the method for detecting a dangerous traffic event according to the first aspect of the present invention follows each step for obtaining the binarized data described above, and the following steps (see FIG. 10): A four-valued data group (Fn) consisting of the difference between the two vehicle binary data groups (Dn) obtained with a constant time difference is obtained. 6. A vehicle movement vector (Mj) indicating each position of the vehicle corresponding point prediction point after the lapse of a predetermined time of each vehicle corresponding point by obtaining the speed and direction of the vehicle corresponding point based on the four-valued data group (Fn)
Is calculated. 7. An intersection measurement point (Nij) at which intersection prohibition vectors (M'j) intersect each other, such as a stop line including each vehicle movement vector (Mj), is calculated. One dangerous traffic event (Lm) corresponding to one intersection region (L'm) consisting of a series of intersection points (Nij)
Outputs a danger detection signal (Sm) indicating that the The dangerous traffic event is detected through the processes of and.

【0041】実施例の50×50=2500点の計測ポ
イントに対応する2値化は、図11に示す機器構成で、
フィールド単位(1/60秒)で、DSP(デジタルシ
グナルプロセッサ)により、高速にリアルタイムに実行
可能である。この過程の詳細も特願平2−31899に
説明されている。そして車両4値化も2500ポイント
×10マイクロ秒=2.5msecで完了し、車両移動
ベクトルの演算も含め、1フィールド(1/60秒)内
でリアルタイム処理が可能である。例えば図6に示すよ
うに毎フレームの奇数フィールドでDSPにより車両2
値化を行い、偶数フィールドで、ホストCPUにより車
両4値化処理を行えば、フレーム単位(1/30秒)
で、監視画面内の個々の処理移動ベクトルを求め危険交
通事象を検出することができる。
The binarization corresponding to the measurement points of 50 × 50 = 2500 points in the embodiment is the device configuration shown in FIG.
It can be executed at high speed in real time in a field unit (1/60 seconds) by a DSP (digital signal processor). The details of this process are also described in Japanese Patent Application No. 2-31899. The vehicle quaternization is also completed in 2500 points × 10 microseconds = 2.5 msec, and real-time processing is possible within one field (1/60 second) including the calculation of the vehicle movement vector. For example, as shown in FIG.
If the host CPU performs the quaternarization process on the vehicle in the even field, the frame unit (1/30 seconds)
Thus, a dangerous traffic event can be detected by obtaining each processing movement vector in the monitoring screen.

【0042】危険交通事象の検出に対応して所定時間画
像を記録するようにすれば、有効な情報を持つ一定時間
のみ記録して不要な映像記録を行わないから、記録媒体
が節約でき、記録媒体交換の頻度を下げて保守性が向上
する。また、不要部分が適切に排除されて記録されてい
ることから後日の解析時に要する手間も要しない。な
お、危険事象検知出力を映像信号記録装置と連動させ、
危険交通事象の検出に応じてプレトリガー機構により検
出時点の前後の一定時間の映像信号を記録することもで
きる。このためには、例えば映像信号出力(画像)と、
実際にこれを記録するための入力との間に所定時間相当
分の信号遅延手段を設けておき、前述の危険検出信号
(Sm )の発生に対応して実際の記録を開始し所定時間
記録する構成とすれば良い。
If an image is recorded for a predetermined time in response to the detection of a dangerous traffic event, recording is performed only for a certain time having valid information and unnecessary video recording is not performed, so that the recording medium can be saved and the recording can be performed. Maintainability is improved by reducing the frequency of medium replacement. In addition, since unnecessary parts are appropriately removed and recorded, there is no need for the labor required for later analysis. In addition, interlocking the dangerous event detection output with the video signal recording device,
In response to the detection of a dangerous traffic event, the pre-trigger mechanism can record a video signal for a certain time before and after the detection time. For this purpose, for example, video signal output (image),
A signal delay means for a predetermined time is provided between the input for actually recording this and the actual recording is started in response to the occurrence of the danger detection signal (Sm) and the recording is performed for the predetermined time. It may be configured.

【0043】以上、車両同士で生じる危険交通事象を検
出する場合について説明したがこの他にも、略同様の過
程で信号無視車両の存在を危険交通事象として検出する
ことができる。この信号無視車両の検出のためには、図
5(b)に示す様に、停止線SLの位置に相当する計測
点を予め掌握しておき、また当該停止線SLにに対面す
る信号機の現示状態を適宜手段を用いて制御部に入力可
能な構成としておき、対面信号が赤信号の期間のみに前
記停止線SLの領域を仮想的に交錯禁止ベクトル(M′
j )として設定し、他の交錯禁止ベクトル(M′j )で
ある前述した車両移動ベクトル(Mj )との交錯を演算
により検証することにより車両と停止線との交錯、すな
わち信号無視車両の存在を危険交通事象(Lm )として
検出する。
Although the case of detecting a dangerous traffic event occurring between vehicles has been described above, in addition to this, the presence of a signal-ignoring vehicle can be detected as a dangerous traffic event in substantially the same process. In order to detect this signal-ignoring vehicle, as shown in FIG. 5B, a measurement point corresponding to the position of the stop line SL is grasped in advance, and the current traffic signal facing the stop line SL is detected. The indicated state is configured to be able to be input to the control unit by using an appropriate means, and the area of the stop line SL is virtually crossover prohibition vector (M ′) only during the period when the facing signal is the red signal.
j)) and verifying the intersection with the above-mentioned vehicle movement vector (Mj) which is another intersection prohibition vector (M'j) by calculation, the intersection between the vehicle and the stop line, that is, the presence of a signal-ignoring vehicle Is detected as a dangerous traffic event (Lm).

【0044】このためには車両同士の場合と同様に、停
止線領域に対応する複数の計測点に対応付けたデータ格
納番地に赤信号現示中の期間のみ“1”を保持し、夫々
の車両の車両移動ベクトル(Mj )に対応した複数の計
測点に対応するデータ格納番地に車両の占有を示す例え
ば“1”の値を加算していく。従って、信号無視車両が
あれば停止線に対応する格納番地のデータには、“1”
以上の値が保持され、(予想)信号無視車両の存在が危
険交通事象として検出される。
For this purpose, as in the case of vehicles, "1" is held only in the period during which the red traffic light is being displayed at the data storage address corresponding to the plurality of measurement points corresponding to the stop line area, and each of them is held. For example, a value "1" indicating the occupancy of the vehicle is added to the data storage addresses corresponding to the plurality of measurement points corresponding to the vehicle movement vector (Mj) of the vehicle. Therefore, if there is a vehicle ignoring the signal, the data of the storage address corresponding to the stop line is
The above values are retained, and the presence of the (anticipatory) signal-ignoring vehicle is detected as a dangerous traffic event.

【0045】更には、同様の方法で横断歩道に歩行者が
存在する場合に、車両との交錯可能性を危険交通事象と
して検出することもできる。このためには、同じ図5
(b)に示す様に、横断歩道WLに対応する計測点夫々
を予め掌握しておき、押しボタンの操作を検知する等の
適宜手段で歩行者を検出した場合に一定期間のみ前記横
断歩道領域を仮想的に交錯禁止ベクトル(M′j )とし
て設定し、この交錯禁止ベクトル(M′j )と車両移動
ベクトル(Mj)に対応した交錯禁止ベクトル(M′j
)との交錯の有無を上述したと同様に演算により検証
することにより車両と横断歩道WLとの交錯を危険交通
事象として検出する。
Furthermore, when a pedestrian is present at a pedestrian crossing in the same manner, the possibility of intersection with a vehicle can be detected as a dangerous traffic event. To this end, the same FIG.
As shown in (b), the measurement points corresponding to the pedestrian crossing WL are grasped in advance, and when the pedestrian is detected by an appropriate means such as detecting the operation of a push button, the pedestrian crossing area is maintained for a certain period. Is virtually set as an intersection prohibition vector (M'j), and the intersection prohibition vector (M'j) corresponding to the intersection prohibition vector (M'j) and the vehicle movement vector (Mj) is set.
The intersection between the vehicle and the pedestrian crossing WL is detected as a dangerous traffic event by verifying the presence / absence of the intersection with the vehicle) by the same calculation as described above.

【0046】以上、危険交通事象の発生の事実自体を検
出する本願第一の発明について説明したが、更に進めて
検出した各危険交通事象(Lm )の危険度を定量化した
り危険度をグレード別に分類して出力することができ
る。以下、このための本願第二発明について説明する。
本願第二発明の危険交通事象検出方法は、これまでに説
明した第一発明と全く同様な既述した過程(1.〜
7.)を含み、先ず交錯計測点Nij(危険交通事象と等
価)を求めた後、更に続いてこの交錯点の分布に基づき
当該危険事象の危険度を定量的に決定し、危険度をも情
報として出力するものである。これにより、よりきめ細
かく危険交通事象を分類して検出でき、従って、よりき
め細かな分析や対策等が行える。
The first invention of the present application for detecting the fact itself of the occurrence of a dangerous traffic event has been described above. The risk level of each dangerous traffic event (Lm) detected further is quantified or the risk level is classified by grade. It can be classified and output. The second invention of the present application for this purpose will be described below.
The method for detecting a dangerous traffic event according to the second invention of the present application is the same as the above-described process (1.
7. ), The intersection measurement point Nij (equivalent to a dangerous traffic event) is first obtained, and then the risk of the dangerous event is quantitatively determined based on the distribution of the intersection, and the risk is also used as information. It is what is output. As a result, the dangerous traffic event can be classified and detected more finely, and thus more detailed analysis and countermeasures can be performed.

【0047】上述の定量化した危険度を得るためには、
交錯重畳する計測点が有る場合にこれらの交錯計測点
(Nij)夫々について分布に基づく重みつき積和算演算
を行うことで危険度を定量化し、またその値を閾値によ
って分類して、危険グレード1、危険グレード2、…と
危険度を分類する。この危険度の定量化のためには、例
えば図5に示すように、車両移動ベクトルの交錯計測点
のうち、車両本体に近い交錯計測点には重み係数を大き
く設定する。そして重畳する計測ポイント(交錯計測
点)の積和算データは、(ai・bi)の累積値とす
る。
To obtain the above quantified risk,
When there are measurement points that intersect with each other, the degree of risk is quantified by performing weighted product-sum operation based on the distribution for each of these intersecting measurement points (Nij), and the value is classified by a threshold value to determine the danger grade. The risk levels are classified as 1, risk grade 2, ... In order to quantify this risk, for example, as shown in FIG. 5, among the intersection measurement points of the vehicle movement vector, a large weighting coefficient is set at the intersection measurement point close to the vehicle body. The product-sum calculation data of the measurement points (intersection measurement points) to be superposed is the cumulative value of (ai · bi).

【0048】上述重み係数は、例えば車両移動ベクトル
(Mj )の車両本体部分には+10の重み係数を設定
し、V/2の対応部分には本体に近い列より順に、+
5,+4,+3,+2,+1と重み係数を設定する。そ
して各交錯計測点(Nij)についての重み係数の積を求
めた後、全ての結果を累積し当該危険交通事象(Lm )
の危険度データ(Gm )とする。各危険事象の危険度デ
ータ(Gm )は、図7に示す様に、予め設定された閾値
DL1 〜DL4 と比較され、各閾値間の区間に対応付け
られた危険グレードG1〜G4 の中でどの危険グレード
に所属するかにより夫々の危険度が決定され、前記危険
信号(Sm )として後続機器へと送出される。
As the above-mentioned weighting factor, for example, a weighting factor of +10 is set for the vehicle body portion of the vehicle movement vector (Mj), and for the corresponding portion of V / 2, in order from the column closer to the vehicle body, +.
5, +4, +3, +2, +1 are set as weighting factors. Then, after obtaining the product of the weighting factors for each intersection measurement point (Nij), all the results are accumulated and the dangerous traffic event (Lm) is concerned.
The risk data (Gm) of As shown in FIG. 7, the risk level data (Gm) of each dangerous event is compared with preset thresholds DL 1 to DL 4, and the risk grades G 1 to G 4 associated with the intervals between the thresholds are compared. Each of the danger levels is determined depending on which danger grade it belongs to, and is sent to the subsequent device as the danger signal (Sm).

【0049】その他にも、ある1グループの交錯領域に
属する交錯計測点の個数の過多でも対応する危険交通事
象の危険度を知ることができる。即ち、1グループの交
錯領域(L′m )に属する交錯計測点は、双方の車両の
占有位置が一致するほど個数が多くなり、これは方向的
にもまた速度と関連して時間的にも衝突が避けがたく実
際の被害も大きい場合に対応している。逆に、危険交通
事象(Lm )に対応する交錯計測点の個数が少ない場合
は、少しの方向転換操作やブレーキによる速度操作で、
衝突が回避できる可能性がより高いことを意味してい
る。従って、1グループの交錯領域(L′m )に属する
交錯計測点(Nij)の個数が多い程危険度は高いものと
対応付けても良い。
Besides, even if the number of intersection measurement points belonging to a certain group of intersection areas is excessive, it is possible to know the risk degree of the corresponding dangerous traffic event. That is, the number of intersecting measurement points belonging to one group of intersecting regions (L'm) increases as the occupied positions of both vehicles coincide, which is both directional and temporally related to speed. It corresponds to the case where the collision is unavoidable and the actual damage is large. On the contrary, when the number of intersection measurement points corresponding to the dangerous traffic event (Lm) is small, a little direction change operation or speed operation by the brake may be performed.
It means that the collision is more likely to be avoided. Therefore, the greater the number of intersection measurement points (Nij) belonging to one group of intersection areas (L'm), the higher the risk may be associated.

【0050】上述の説明では車両同士の場合を例にとり
危険交通事象の危険度を定量化あるいは分類することを
説明したが、先に説明した信号無視車両の検出(停止線
と車両の交錯による危険事象)或いは歩行者と車両の交
錯による危険事象の検出に対し、当該危険事象の危険度
を定量化・分類することができるのは勿論で、上述した
と全く同様に交錯点の分布状況に基づいて危険度を加味
した情報を出力しこれを収集することができる。
In the above description, the case of vehicles is taken as an example to quantify or classify the degree of danger of a dangerous traffic event. However, detection of a signal-ignoring vehicle described above (danger due to intersection of stop line and vehicle) Event) or the detection of a dangerous event due to the intersection of a pedestrian and a vehicle, it is of course possible to quantify and classify the risk level of the dangerous event, and based on the distribution situation of the intersection points exactly as described above. It is possible to output and collect information that takes into account the degree of risk.

【0051】以上説明したように、本願第二発明の危険
交通事象検出方法では、第一発明と同一の過程(既述し
た1.〜7.)により個々の交錯計測点(Nij)を先ず
求め更に続いて、 8.危険交通事象(L′m )を検出した場合には、対応
する交錯点群(Lm )の各交錯点(Nj )の分布状況に
基づき危険交通事象(L′m )の危険度を定量化した危
険度データ(Gm )を得てこれを出力する との過程を含み構成されるものである(図10参照)。
As described above, in the dangerous traffic event detecting method of the second invention of the present application, the individual intersection measurement points (Nij) are first obtained by the same process as the first invention (1 to 7 described above). Further, 8. When a dangerous traffic event (L'm) is detected, the risk level of the dangerous traffic event (L'm) is quantified based on the distribution status of each intersection point (Nj) of the corresponding intersection point group (Lm). It is configured to include the process of obtaining the risk data (Gm) and outputting it (see FIG. 10).

【0052】以上説明したように、画像処理を用いた上
述各発明の危険交通事象検出方法により、危険交通事象
を確実に検出し、必要に応じては更に各事象の危険グレ
ードを定量化することができる。これにより、次のよう
な従来では実施困難であった交通施策の改善が初めて可
能となる。 1)形状や実態交通流等が複雑で、交通に伴い生じてい
る危険事象の頻度や危険グレードが掌握しがたい交差点
に適用して、実交通流の危険事象の計数と危険グレード
の定量化を行い、結果を統計分析することによって危険
事象発生の原因等を考察し、信号機の制御プログラムの
改善や信号機の増設等の適切な対策を行うことが可能に
なる。 2)信号無視車両の検出に対応して、この信号無視車両
の車番を記録することができ、交通取締りに利用でき
る。この場合、既述した画像記録装置のプレトリガによ
る駆動で必要時間のみ記録すれば、信号無視の発生毎に
洩らさず記録することができるし同時に不要部分は記録
されないため後の利用時に好都合である。 3)新たな信号機を設置する場合に現状では主に住民か
らの要望に依存しているため、交通実態に合わない設置
が行われる場合もあり、危険であるにもかかわらず信号
機が設置されなかったり、反対に必要度がそれほどでも
ないのに設置される不都合も残念ながらある。しかし、
本願装置で危険事象を数量化し且つその危険グレードを
定量測定して、危険度がある一定値以上の交差点に信号
機を設置するようにすれば、客観的で従って実際の効果
も期待できる信号機設置が行え効率的な交通行政が実施
できる。
As described above, the dangerous traffic event detection method of each of the above-described inventions using image processing is used to reliably detect a dangerous traffic event and, if necessary, quantify the risk grade of each event. You can This makes it possible for the first time to improve the following traffic measures that were difficult to implement in the past. 1) The shape and actual traffic flow is complicated, and it is applied to intersections where the frequency and risk grade of dangerous events occurring due to traffic are difficult to grasp, and the number of dangerous events in actual traffic flow and the quantification of the dangerous grade are applied. Then, the cause of the dangerous event occurrence can be considered by statistically analyzing the results, and appropriate measures such as improvement of the control program of the traffic light and extension of the traffic light can be taken. 2) Corresponding to the detection of a signal-ignored vehicle, the vehicle number of the signal-ignored vehicle can be recorded and can be used for traffic control. In this case, if only the necessary time is recorded by driving the image recording device with a pre-trigger as described above, it is possible to record without omission each time a signal is ignored, and at the same time, unnecessary portions are not recorded, which is convenient for later use. is there. 3) When installing a new traffic light, the current situation is mainly dependent on the requests from the residents. Therefore, the traffic light may not be installed depending on the actual traffic conditions. Unfortunately, on the other hand, there is the inconvenience that it is installed even though the need is not so great. But,
By quantifying dangerous events and quantitatively measuring their dangerous grades with the device of the present application, and installing traffic lights at intersections with a certain degree of risk or more, it is possible to install traffic lights that are objective and therefore expected to have actual effects. Yes, efficient traffic administration can be implemented.

【0053】続いて本願第三・第四の発明について説明
する。以上説明した発明においては、いずれの場合も画
像を得るためのカメラを一台用いて、これにより得られ
る映像信号のみに基づき危険交通事象を検出し更には危
険度を求めたが、一台のカメラを用いるのみでは解像度
の限界から一定の監視範囲しか扱えず、監視範囲が不足
する場合もある。例えば、1台のカメラで広い交差点や
道路を監視し、危険交通事象を検出することは解像度の
点で難しい。
Next, the third and fourth inventions of the present application will be described. In any of the above-described inventions, one camera for obtaining an image is used, and a dangerous traffic event is detected based on only a video signal obtained by the camera, and the degree of danger is calculated. Only using a camera can handle only a certain monitoring range due to the limit of resolution, and the monitoring range may be insufficient. For example, it is difficult to detect a dangerous traffic event by monitoring a wide intersection or a road with a single camera in terms of resolution.

【0054】以下の発明はこの様な場合に対応するもの
で、複数のカメラを用いて複数の映像信号を得て、上述
したと同様の画像処理を応用して、より広範囲の監視領
域あるいは監視領域の延長領域まで対象範囲として危険
交通事象を検出することができる。なお、この場合、同
一危険事象を複数のカメラで重複して検出する場合もあ
るので、後述するようにこれを排除する必要がある。先
ず、本願第三発明である複数の映像信号(カメラ)を連
係して用いる危険交通事象検出方法について詳細に説明
する(図10参照)。
The following invention corresponds to such a case. A plurality of video signals are obtained by using a plurality of cameras, and the same image processing as that described above is applied to apply a wider range of surveillance area or surveillance. Dangerous traffic events can be detected as the target range up to the extended area of the area. In this case, the same dangerous event may be detected by a plurality of cameras in duplicate, so it is necessary to eliminate it as described later. First, a dangerous traffic event detecting method that uses a plurality of video signals (cameras) in cooperation with each other according to the third invention of the present application will be described in detail (see FIG. 10).

【0055】図8は、交差点を複数のカメラC1〜C5
で監視し検出する場合のカメラの配置の一例を示してい
る。監視対象となる交差点等の路面には、予めごばん目
状に地表面座標(Xi,Yj)が設定され、夫々のカメ
ラC1〜C5に対応して撮像される各領域RE1〜RE
5に含まれる適宜の前記地表面座標(Xi,Yj)位置
に一致させて夫々のカメラ毎に適宜座標の複数の座標計
測点(Ppij)が決定され前記地表面座標情報とともに
制御部に認識される。
In FIG. 8, the intersections are shown by a plurality of cameras C1 to C5.
2 shows an example of the arrangement of cameras when monitoring and detecting by. On the road surface such as an intersection to be monitored, the ground surface coordinates (Xi, Yj) are set in advance in a grid pattern, and the respective regions RE1 to RE are imaged corresponding to the respective cameras C1 to C5.
5, a plurality of coordinate measurement points (Ppij) of appropriate coordinates are determined for each camera in conformity with the appropriate ground surface coordinate (Xi, Yj) position, and are recognized by the control unit together with the ground surface coordinate information. It

【0056】即ち、図9の様に、例えばカメラC3によ
るモニタ画面(DIS3 )上にて地表面座標と対応付け
た座標計測点(Ppij)が図1にて示したと同様に多数
設定される。そして各座標計測点(Ppij)毎に輝度レ
ベル(Cpij)が得られ、続いて既述したと同等の処理
が座標値を伴ってなされる。即ち、各輝度レベル(Cp
ij)から座標輝度データ群(Dtp)が順次得られ、これ
が座標基準路面データ(Drp)と比較されて座標車両2
値化データ群(Dnp)が順次得られる。
That is, as shown in FIG. 9, a large number of coordinate measurement points (Ppij) associated with the ground surface coordinates are set on the monitor screen (DIS 3 ) of the camera C3, for example, as shown in FIG. . Then, the brightness level (Cpij) is obtained for each coordinate measurement point (Ppij), and subsequently, the same processing as that described above is performed with the coordinate value. That is, each brightness level (Cp
ij), the coordinate luminance data group (Dtp) is sequentially obtained, and this is compared with the coordinate reference road surface data (Drp) to obtain the coordinate vehicle 2
A group of digitized data (Dnp) is sequentially obtained.

【0057】これらを基に差演算により座標4値化デー
タ群(Fnp)を求め、これより車両対応点の道路上の位
置座標での予測位置を示す(座標)車両移動ベクトル
(Mjp)が算定される。そして、(座標)車両移動ベク
トル(Mjp)同士の交錯点或いは他の(座標)交錯禁止
ベクトル(M′jp)との交錯点、即ち座標交錯計測点
(Npij)に対応して危険交通事象(Lmp)が検出され
同時に発生箇所の地表面座標(Xi,Yj)が得られ
る。この様にして、地表面に設定された座標と対応付け
て危険交通事象が検出されることとなる。
A coordinate quaternarized data group (Fnp) is obtained by difference calculation based on these, and from this, a vehicle movement vector (Mjp) (coordinate) indicating the predicted position of the vehicle corresponding point at the position coordinate on the road is calculated. To be done. Then, a dangerous traffic event (corresponding to the intersection point of the (coordinates) vehicle movement vectors (Mjp) or the intersection point with another (coordinates) intersection prohibition vector (M'jp), that is, the coordinate intersection measurement point (Npij) Lmp) is detected and at the same time the ground surface coordinates (Xi, Yj) of the occurrence location are obtained. In this way, a dangerous traffic event is detected in association with the coordinates set on the ground surface.

【0058】他のカメラでも同様に検出した危険事象が
地表面座標(Xi,Yj)と対応づけて検出される。こ
の様にして、複数のカメラ夫々を用いて任意に設定され
た領域での危険交通事象(Lmp)を検出するから、これ
らを総合することで一層広範な領域の危険交通事象を検
出することが可能となる。
Similarly, the dangerous event detected by other cameras is detected in association with the ground surface coordinates (Xi, Yj). In this way, since the dangerous traffic event (Lmp) in the arbitrarily set area is detected using each of the plurality of cameras, it is possible to detect the dangerous traffic event in a wider area by integrating these. It will be possible.

【0059】なお、撮像領域が重複している場合には、
同一の事象を各チャンネル毎に別個の危険交通事象とし
て検出してしまうが、各カメラにより検出した危険交通
事象は、地表面座標(Xi,Yj)で表されるから、従
って、各カメラで夫々検出された危険交通事象に対応し
て暫定的に仮座標危険予測信号(S′mp)を出力させ、
これら仮座標危険予測信号(S′mp)夫々に対応する地
表面座標座標(Xi,Yj)を比較し、同一地点を示す
ものが複数ある場合には、これらをまとめて1件として
補正した後、残った全ての仮座標危険予測信号(S′m
p)を最終的な危険予測信号(Smp)として出力するこ
とで、同一危険交通事象を重複して検出することを防い
でいる。
When the image pickup areas overlap,
Although the same event is detected as a separate dangerous traffic event for each channel, the dangerous traffic event detected by each camera is represented by the ground surface coordinates (Xi, Yj). A temporary coordinate danger prediction signal (S'mp) is temporarily output corresponding to the detected dangerous traffic event,
After comparing the ground surface coordinate coordinates (Xi, Yj) corresponding to each of these provisional coordinate danger prediction signals (S'mp), and if there are a plurality of ones showing the same point, after correcting them collectively as one case , All remaining temporary coordinate danger prediction signals (S'm
By outputting p) as the final danger prediction signal (Smp), duplicate detection of the same dangerous traffic event is prevented.

【0060】なお、仮座標危険交通事象と対応づける地
表面座標は厳密に単一とはせずにある範囲を持って特定
したり、或いは地表面座標に代表値を用い比較の際に差
が所定範囲内の座標同士であれば同一と見做す等のあい
まいさを持たせる。また、実際の地表面座標と計測点の
対応付けに当たっては、全ての計測点について座標を対
応付けなくても良く、図9に示すように例えば地表面座
標が判っているP1 〜P4 の4地点に画面上で対応させ
4つの計測点と地表座標を夫々対応付けるのみで、残る
計測点については簡単な幾何学的補正を行い演算するこ
とで地表座標と対応づけて設定することができる。
The ground surface coordinates associated with the temporary coordinate dangerous traffic event are not strictly single but specified with a certain range, or a representative value is used for the ground surface coordinates and there is a difference in comparison. There is ambiguity such that the coordinates within a predetermined range are considered to be the same. Further, in associating the actual ground surface coordinates with the measurement points, the coordinates do not have to be associated with all the measurement points. For example, as shown in FIG. 9, the ground surface coordinates of P 1 to P 4 are known. Only the four measurement points are associated with each other on the screen and the four measurement points are associated with the surface coordinates, and the remaining measurement points can be set in association with the surface coordinates by performing simple geometrical correction and calculation.

【0061】この発明に於いても、先に挙げたと全く同
様に危険交通事象(Lmp)としては車両同士の交錯の
他、赤信号現示期間での停止線と車両との交錯による信
号無視や、横断歩道と車両との交錯による歩行者との接
触も検出するようにしても良い。勿論、更に夫々の危険
交通事象(Lmp)に対して危険度を定量化し危険度デー
タ(Gmp)を得てこれを出力することは既に説明したと
同一の技術思想により可能である(本願第四発明、図1
0参照)。
Also in the present invention, just as mentioned above, as the dangerous traffic event (Lmp), in addition to the intersection between vehicles, the signal is ignored due to the intersection between the stop line and the vehicle in the red signal indicating period. The contact with the pedestrian due to the intersection of the pedestrian crossing and the vehicle may be detected. Of course, it is possible to quantify the degree of danger for each dangerous traffic event (Lmp), obtain the degree of danger data (Gmp), and output this, according to the same technical idea as described above (the fourth aspect of the present application). Invention, FIG.
0).

【0062】以上説明した本願第三及び第四の発明に依
ると、より広い領域を対象として先の発明と同様な効
果、すなわち、危険交通事象を確実に検出し、必要なら
ば各事象の危険グレードを定量化することができる。従
って、先に示した従来では困難であった交通施策の改善
が同様に可能となる。
According to the third and fourth inventions of the present application described above, the same effect as that of the previous invention can be obtained by targeting a wider area, that is, a dangerous traffic event can be reliably detected and, if necessary, the danger of each event. The grade can be quantified. Therefore, it becomes possible to improve the above-mentioned transportation policy, which was difficult in the past.

【0063】なお、付言すると複数のカメラを用いる場
合に、夫々の撮像範囲を重複させずに用いることができ
る他、撮像範囲外をも仮想的に演算処理することで危険
交通事象の監視範囲を更に拡張することもできる。例え
ば、四叉路の交差点の流入部のみを撮像して実際には画
像を得ていない交差部での交錯点を求めたり、撮像範囲
にはない停止線との交錯を仮想的に検出することがで
き、この場合にも危険交通事象や危険度の推定資料等を
得ることができる。しかし、撮像範囲外の映像を記録す
ることはできずこの点では用途が限られる。
In addition, when a plurality of cameras are used, the respective imaging ranges can be used without overlapping, and the outside of the imaging ranges can be virtually calculated to increase the monitoring range of the dangerous traffic event. It can be expanded further. For example, only the inflow portion of the intersection of the four-way intersection is imaged to obtain the intersection at the intersection where no image is actually obtained, or the intersection with the stop line that is not in the imaging range is virtually detected. In this case as well, it is possible to obtain dangerous traffic events and materials for estimating the degree of danger. However, it is not possible to record an image outside the imaging range, and the application is limited in this respect.

【0064】[0064]

【発明の効果】以上詳述したとおり本願発明の危険交通
事象検出方法は、撮像手段により道路を含む領域の画像
に対応する映像信号を得て、画像処理により車両対応点
として2値化した車両2値化データ群(Dn )を利用
し、一定時間差で得られた2つの前記車両2値化データ
群(Dn )の差分からなる4値化データ群(Fn )を求
めて、前記4値化データ群(Fn )に基づき車両対応点
の速度と方向を求めて各車両対応点の所定時間経過後の
予測位置を示す車両移動ベクトル(Mj )を算定し、各
々の車両移動ベクトル(Mj )をも含む停止線等の交錯
禁止ベクトル(M′j )同士が交錯する交錯計測点(N
ij)を算出することにより、危険交通事象(Lm )を検
出することができる。これにより、次のような従来では
困難であった交通施策上の改善が初めて可能となる。危
険交通事象(Lm )の検知出力を画像記録装置のプレト
リガ機能と併用して画像記録装置により不要時を排除し
て必要時間(必要交通事象)のみ洩らさず記録すること
ができ、記録時間を等価的に延長でき、同時に不要部分
は記録されないため後の利用時に好都合となる。また、
信号無視車両の車番を記録すれば、交通取締りに利用で
きる。また、交差点に適用して、実交通流の危険事象を
計数し結果を統計分析することによって信号機の増設等
の客観的で適切な対策を行うことが可能になる。
As described above in detail, in the dangerous traffic event detecting method of the present invention, a vehicle in which a video signal corresponding to an image of a region including a road is obtained by the image pickup means and binarized as a vehicle corresponding point by image processing is used. Using the binarized data group (Dn), a four-valued data group (Fn) consisting of the difference between the two vehicle binarized data groups (Dn) obtained at a constant time difference is obtained, and the four-valued data is obtained. The velocity and direction of the vehicle corresponding points are obtained based on the data group (Fn) to calculate the vehicle movement vector (Mj) indicating the predicted position of each vehicle corresponding point after a predetermined time has passed, and each vehicle movement vector (Mj) is calculated. The intersection measurement point (N ') at which intersection prohibition vectors (M'j) such as stop lines intersect
By calculating ij), a dangerous traffic event (Lm) can be detected. This makes it possible for the first time to make the following improvements in traffic measures that were difficult in the past. The detection output of a dangerous traffic event (Lm) can be used together with the pre-trigger function of the image recording device to eliminate unnecessary times by the image recording device and record only the required time (necessary traffic event) without fail. Can be extended equivalently, and unnecessary portions are not recorded at the same time, which is convenient for later use. Also,
If you record the vehicle number of the signal-ignoring vehicle, you can use it for traffic control. In addition, by applying to intersections and counting dangerous events in the actual traffic flow and statistically analyzing the results, it is possible to take objective and appropriate measures such as the addition of traffic lights.

【0065】本願第二発明では、更に前記危険交通事象
(Lm )を検出した場合に、対応する交錯領域(L′m
)の各交錯計測点(Nij)の分布状況に基づく既述し
た所定処理を行うことで、その危険度を定量化した危険
度データ(Gm )を得ることができる。従ってこの危険
度データ(Gm )を利用することにより、上述した効果
に加え、実態交通流等が複雑で掌握しがたい交差点に適
用して、実交通流の危険事象の計数と危険グレードを統
計分析することによって危険事象発生の原因等を考察
し、信号機の制御プログラムの改善を行うことが可能と
なる。
In the second invention of the present application, when the dangerous traffic event (Lm) is further detected, the corresponding intersection area (L'm) is detected.
By performing the above-described predetermined processing based on the distribution of the intersection measurement points (Nij) in (1), the risk data (Gm) quantifying the risk can be obtained. Therefore, by using this risk data (Gm), in addition to the above-mentioned effects, it is applied to intersections where actual traffic flow is complicated and difficult to grasp, and statistics of dangerous events and risk grades of actual traffic flow are collected. Through analysis, it is possible to consider the causes of dangerous events and improve the control program for traffic signals.

【0066】更に本願第三及び第四発明では、特に複数
の撮像手段を用いて、道路上の実際の位置座標(Xi,Y
i )に夫々対応付け決定された複数の計測点について上
述発明と概略同様の処理を行い危険交通事象を検出す
る、或いは続いて危険度を得るから、より広範な領域を
対象に危険交通事象を得ることができ、従って上述した
と同等の交通施策上の効果をより広範な監視領域を対象
に得ることができる。
Further, in the third and fourth inventions of the present application, the actual position coordinates (Xi, Y) on the road are particularly used by using a plurality of image pickup means.
i)), the dangerous traffic event is detected by performing the same processing as that of the above-described invention with respect to the plurality of measurement points respectively determined to be associated with each other, or the risk degree is subsequently obtained. Therefore, it is possible to obtain the same effect on the traffic policy as described above in a wider monitoring area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願各発明の危険交通事象検出方法に於ける計
測点を画像面上に仮想的に示した説明図である。
FIG. 1 is an explanatory view virtually showing measurement points on an image surface in a dangerous traffic event detection method according to each invention of the present application.

【図2】本願各発明の危険交通事象検出方法に係る車両
2値化データ群の一例を画像面に対応付け仮想的に示し
た説明図である。
FIG. 2 is an explanatory view virtually showing an example of a vehicle binary data group according to the dangerous traffic event detection method of each invention of the present application in association with an image plane.

【図3】本願各発明の危険交通事象検出方法に係る、2
図と対応した異なる時刻の車両2値化データ群の一例を
画像面に対応付け仮想的に示した説明図である。
FIG. 3 relates to a method for detecting a dangerous traffic event according to each invention of the present application, 2
FIG. 9 is an explanatory view virtually showing an example of a vehicle binary data group at different times corresponding to the figure in association with an image surface.

【図4】本願各発明の危険交通事象検出方法に係る、4
値化データ群と車両ベクトルの一例を画像面に対応付け
仮想的に示した説明図である。
FIG. 4 relates to a method for detecting a dangerous traffic event according to each invention of the present application, 4
It is explanatory drawing which showed an example of a value-ized data group and a vehicle vector virtually corresponding to an image surface.

【図5】本願各発明の危険交通事象検出方法に係る、車
両移動ベクトルが交錯する場合の一例を画像面に対応付
け仮想的に示した説明図(a)及び、車両移動ベクトル
と交錯禁止領域(停止線、横断歩道)が交錯する場合の
一例を画像面に対応付け仮想的に示した説明図(b)で
ある。
FIG. 5 is an explanatory view (a) virtually showing an example of a case where vehicle movement vectors intersect with each other according to the dangerous traffic event detection method of the invention of the present application and an image plane, and a vehicle movement vector and intersection prohibited area. It is explanatory drawing (b) which showed an example when (a stop line, a pedestrian crossing) cross | intersects virtually on the image surface.

【図6】本願各発明の危険交通事象検出方法に係る、各
処理過程の時間関係の一例を説明する図である。
FIG. 6 is a diagram illustrating an example of a time relationship of each processing process according to the dangerous traffic event detection method of each invention of the present application.

【図7】本願第二及び第四発明の危険交通事象検出方法
に係る、危険交通事象の危険度データの算定過程の一例
を説明する図である。
FIG. 7 is a diagram illustrating an example of a process of calculating risk data of a dangerous traffic event according to the dangerous traffic event detection method of the second and fourth inventions of the present application.

【図8】本願第三及び第四発明の危険交通事象検出方法
に係る、複数のカメラの設置例を説明する図である。
FIG. 8 is a diagram illustrating an installation example of a plurality of cameras according to the dangerous traffic event detection method of the third and fourth inventions of the present application.

【図9】本願第三及び第四発明の危険交通事象検出方法
に係る、計測点と地表面座標の関係を説明する図であ
る。
FIG. 9 is a diagram for explaining the relationship between measurement points and ground surface coordinates according to the dangerous traffic event detection method of the third and fourth inventions of the present application.

【図10】本願各発明の危険交通事象検出方法の一実施
例を示すフローチャートである。
FIG. 10 is a flowchart showing an embodiment of the method for detecting a dangerous traffic event according to each invention of the present application.

【図11】本願各発明の危険交通事象検出方法の実施に
用いて好適な画像処理装置の一例を示す電気回路等のブ
ロック図である。
FIG. 11 is a block diagram of an electric circuit and the like showing an example of an image processing apparatus suitable for carrying out the dangerous traffic event detection method of the present invention.

【図12】本願に係る交差点での撮像手段等の配置を示
す図である。
FIG. 12 is a diagram showing an arrangement of image pickup means and the like at an intersection according to the present application.

【図13】本願に係る、交差点の画像を示す図である。FIG. 13 is a diagram showing an image of an intersection according to the present application.

【符号の説明】[Explanation of symbols]

10…撮像手段、 20…輝度データ変換部、30
…演算処理部、 40…制御部、(Pij),(Pp i
j)…計測点、(Cij),(Cp ij)…輝度レベル、
(Xi,Yj )…位置座標、(Dt)…輝度データ群、
(Dtp)…座標輝度データ群、(Dr )…基準路面
データ、 (Drp)…座標基準路面データ、(Dn )
…車両2値化データ、 (Dnp)…座標車両2値化デー
タ、(Fn )…4値化データ群、 (Fnp)…座標4
値化データ群、(Mj )…車両移動ベクトル、 (Mj
p)…座標車両移動ベクトル、(M′j ),(M′jp)
…交錯禁止ベクトル、(Nij)…交錯計測点、
(Np ij)…座標交錯計測点、(L′m )…交錯領域、
(L′mp)…座標交錯領域、(S′mp)…仮座
標危険予測信号、(Smp)…危険予測信号、(Gm )…
危険度データ(Lm ),(Lmp)…危険交通事象。
10 ... Imaging means, 20 ... Luminance data converter, 30
... arithmetic processing unit, 40 ... control unit, (Pij), (Ppi)
j) ... measurement point, (Cij), (Cp ij) ... luminance level,
(Xi, Yj) ... position coordinates, (Dt) ... luminance data group,
(Dtp) ... Coordinate luminance data group, (Dr) ... Reference road surface data, (Drp) ... Coordinate reference road surface data, (Dn)
... Vehicle binary data, (Dnp) ... coordinate vehicle binary data, (Fn) ... quaternary data group, (Fnp) ... coordinates 4
Quantized data group, (Mj) ... Vehicle movement vector, (Mj
p) ... Coordinate vehicle movement vector, (M'j), (M'jp)
… Intersection prohibition vector, (Nij)… Intersection measurement point,
(Np ij) ... coordinate intersection measurement point, (L'm) ... intersection region,
(L'mp) ... Coordinate intersection area, (S'mp) ... Temporary coordinate danger prediction signal, (Smp) ... Danger prediction signal, (Gm) ...
Risk data (Lm), (Lmp) ... Dangerous traffic event.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 撮像手段により道路を含む領域を撮像し
て対応する映像信号を得て、 画像中で道路上に設定された複数の計測点(Pij)夫々
に対応する映像信号中の時間的位置夫々での輝度レベル
(Cij)からなる1フィールド単位の輝度データ群(D
t )を順次得て、 各計測点(Pij)での路面に対応する輝度レベル(Cr
ij)からなる輝度データ群を所定間隔で抽出して基準路
面データ(Dr )として保持し、 輝度データ群(Dt )を前記基準路面データ(Dr )と
比較し充分な差が認められるデータを車両対応点として
2値化した車両2値化データ群(Dn )を得てこれを順
次保持し、 一定時間差で得られた2つの前記車両2値化データ群
(Dn )の差分からなる4値化データ群(Fn )を求め
て、 前記4値化データ群(Fn )に基づき車両対応点の速度
と方向を求めて各車両対応点の所定時間経過後の予測位
置を示す車両移動ベクトル(Mj )を算定し、 各々の車両移動ベクトル(Mj )をも含む停止線等の交
錯禁止ベクトル(M′j )同士が交錯する交錯計測点
(Nij)を算出し、交錯計測点(Nij)があった場合に
は連続する交錯計測点(Nij)から成る交錯領域(L′
m )1つに対応して1つの危険交通事象(Lm )を検出
した旨の危険検出信号(Sm )を出力するとの各過程か
らなることを特徴とする危険交通事象検出方法。
1. An image pickup unit images an area including a road to obtain a corresponding video signal, and temporal images in the video signal corresponding to each of a plurality of measurement points (Pij) set on the road in the image. Luminance data group (D per field) consisting of luminance levels (Cij) at each position
t) are sequentially obtained, and the luminance level (Cr) corresponding to the road surface at each measurement point (Pij) is obtained.
ij) is extracted at a predetermined interval and stored as reference road surface data (Dr), and the brightness data group (Dt) is compared with the reference road surface data (Dr). A binarized vehicle binarized data group (Dn) is obtained as a corresponding point, and the binarized data group is sequentially held, and the binarization is made of the difference between the two vehicle binarized data groups (Dn) obtained with a constant time difference. The data group (Fn) is obtained, the speed and direction of the vehicle corresponding point are obtained based on the four-valued data group (Fn), and the vehicle movement vector (Mj) indicating the predicted position of each vehicle corresponding point after a predetermined time has elapsed. The intersection measurement point (Nij) at which intersection prohibition vectors (M'j) such as stop lines including each vehicle movement vector (Mj) intersect is calculated, and the intersection measurement point (Nij) is found. In some cases, an intersection consisting of consecutive intersection measurement points (Nij) Frequency (L '
m) A dangerous traffic event detection method comprising the steps of outputting a danger detection signal (Sm) indicating that one dangerous traffic event (Lm) is detected corresponding to one m).
【請求項2】 前記危険交通事象(Lm )を検出した場
合には、対応する交錯領域(L′m )の各交錯計測点
(Nij)の分布状況に基づき危険交通事象(Lm )の危
険度を定量化した危険度データ(Gm )を得てこれを出
力する過程をも含むことを特徴とする請求項1に記載の
危険交通事象検出方法。
2. When the dangerous traffic event (Lm) is detected, the degree of danger of the dangerous traffic event (Lm) is determined based on the distribution of the intersection measurement points (Nij) in the corresponding intersection area (L'm). The method for detecting a dangerous traffic event according to claim 1, further comprising the step of obtaining and outputting the quantified risk data (Gm).
【請求項3】 複数の撮像手段により道路を含む領域を
撮像して対応する映像信号を夫々得て、 各映像信号毎に、画像中で道路上の実際の位置座標(X
i,Yj )に夫々対応付けて設定された複数の計測点(P
p ij)夫々に対応する映像信号中の時間的位置夫々での
輝度レベル(Cp ij)と位置座標情報とからなる1フィ
ールド単位の座標輝度データ群(Dtp)を順次得て、 各映像信号毎に、各計測点(Pp ij)での路面に対応す
る輝度レベル(Crpij)からなる輝度データ群を所定間
隔で抽出して座標基準路面データ(Drp)として保持
し、 各映像信号毎に、座標輝度データ群(Dtp)を前記座標
基準路面データ(Drp)と比較し充分な差が認められる
データを車両対応点として2値化した座標車両2値化デ
ータ群(Dnp)を得てこれを順次保持し、 各領域毎に、一定時間差で得られた2つの前記座標車両
2値化データ群(Dnp)の差分からなる座標4値化デー
タ群(Fnp)を求めて、 各領域毎に前記座標4値化データ群(Fnp)に基づき車
両対応点の速度と方向を求めて各車両対応点の所定時間
経過後の道路上の実際の位置座標(Xi,Yj )上での予
測位置を示す座標車両移動ベクトル(Mjp)を算定し、 各領域毎に各々の車両移動ベクトル(Mjp)をも含む停
止線等の交錯禁止ベクトル(M′jp)同士が交錯する座
標交錯計測点(Np ij)算出し、座標交錯計測点(Np
ij)があった場合には連続する座標交錯計測点(Np i
j)から成る座標交錯領域(L′mp)1つに対応して1
つの危険交通事象(Lmp)を検出した旨の仮座標危険予
測信号(S′mp)を対応する道路上の実際の位置座標
(Xi,Yj )に対応付けて得て、 全ての領域毎に得られた仮座標危険予測信号(S′mp)
の中で位置座標(Xi,Yj )の略一致するものがあれば
これらを1つにまとめた後、全ての仮座標危険予測信号
(S′mp)を危険予測信号(Smp)として出力するとの
各過程からなることを特徴とする危険交通事象検出方
法。
3. An image of a region including a road is picked up by a plurality of image pickup means to obtain corresponding video signals, and for each video signal, an actual position coordinate (X
i, Yj) and a plurality of measurement points (P
p ij) The coordinate brightness data group (Dtp) consisting of the brightness level (C p ij) at each temporal position in the video signal corresponding to each p ij) and the position coordinate information is sequentially obtained, and for each video signal In addition, a luminance data group consisting of luminance levels (Crpij) corresponding to the road surface at each measurement point (Pp ij) is extracted at a predetermined interval and stored as coordinate reference road surface data (Drp). The brightness data group (Dtp) is compared with the coordinate reference road surface data (Drp), and the data in which a sufficient difference is recognized is binarized as a vehicle corresponding point to obtain a coordinate vehicle binarized data group (Dnp), which is sequentially obtained. The coordinate quaternary data group (Fnp) which is held and obtained from the difference between the two coordinate vehicle binary data groups (Dnp) obtained with a constant time difference is obtained, and the coordinate is calculated for each area. Velocity of vehicle corresponding points based on four-valued data group (Fnp) The direction is calculated, and the coordinate vehicle movement vector (Mjp) indicating the predicted position on the road (Xi, Yj) on the road after a predetermined time elapses for each vehicle corresponding point is calculated. A coordinate intersection measurement point (Np ij) at which intersection prohibition vectors (M'jp) such as a stop line including a vehicle movement vector (Mjp) intersect is calculated, and a coordinate intersection measurement point (Np) is calculated.
ij), the continuous coordinate intersection measurement points (Np i
1 corresponding to one coordinate intersection region (L'mp) consisting of j)
A temporary coordinate danger prediction signal (S'mp) indicating that one dangerous traffic event (Lmp) has been detected is obtained by associating it with the actual position coordinate (Xi, Yj) on the corresponding road, and is obtained for every area. Temporary coordinate danger prediction signal (S'mp)
If any of the position coordinates (Xi, Yj) substantially coincide with each other, they are combined into one, and all temporary coordinate danger prediction signals (S'mp) are output as danger prediction signals (Smp). A method for detecting a dangerous traffic event characterized by comprising each process.
【請求項4】 前記危険交通事象(Lmp)を検出した場
合には、対応する交錯領域(L′mp)の各座標交錯計測
点(Np ij)の分布状況に基づき危険交通事象(Lmp)
の危険度を定量化した危険度データ(Gmp)を得てこれ
を出力する過程をも含むことを特徴とする請求項3に記
載の危険交通事象検出方法。
4. When the dangerous traffic event (Lmp) is detected, the dangerous traffic event (Lmp) is calculated based on the distribution status of the coordinate intersection measurement points (Np ij) of the corresponding intersection area (L'mp).
4. The method for detecting a dangerous traffic event according to claim 3, further comprising a step of obtaining and outputting risk data (Gmp) quantifying the risk level of GMP.
JP04220625A 1992-07-28 1992-07-28 Dangerous traffic event detection method Expired - Fee Related JP3100471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04220625A JP3100471B2 (en) 1992-07-28 1992-07-28 Dangerous traffic event detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04220625A JP3100471B2 (en) 1992-07-28 1992-07-28 Dangerous traffic event detection method

Publications (2)

Publication Number Publication Date
JPH0652485A true JPH0652485A (en) 1994-02-25
JP3100471B2 JP3100471B2 (en) 2000-10-16

Family

ID=16753910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04220625A Expired - Fee Related JP3100471B2 (en) 1992-07-28 1992-07-28 Dangerous traffic event detection method

Country Status (1)

Country Link
JP (1) JP3100471B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226490A (en) * 1996-02-22 1997-09-02 Nippon Soken Inc Detector for crossing object
JP2003173435A (en) * 2001-12-06 2003-06-20 Tietech Co Ltd Moving body detecting method and moving body detecting device
JP2003196786A (en) * 2001-12-26 2003-07-11 Tietech Co Ltd Method and device for detecting moving object
US6674474B2 (en) * 2000-10-23 2004-01-06 Hitachi Kokusai Electric Inc. Method of controlling transmission light amount and television camera apparatus using the method
JP2009301394A (en) * 2008-06-16 2009-12-24 Denso Corp Vehicle travel support system, roadside system and vehicle side system
JP2014052861A (en) * 2012-09-07 2014-03-20 Ihi Corp Analyzer and analysis method
JP2020109655A (en) * 2018-12-28 2020-07-16 ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッド Method, device, apparatus, and medium for early warning of transportation hazards
US11914041B2 (en) 2018-05-30 2024-02-27 Ihi Corporation Detection device and detection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226490A (en) * 1996-02-22 1997-09-02 Nippon Soken Inc Detector for crossing object
US6674474B2 (en) * 2000-10-23 2004-01-06 Hitachi Kokusai Electric Inc. Method of controlling transmission light amount and television camera apparatus using the method
JP2003173435A (en) * 2001-12-06 2003-06-20 Tietech Co Ltd Moving body detecting method and moving body detecting device
JP2003196786A (en) * 2001-12-26 2003-07-11 Tietech Co Ltd Method and device for detecting moving object
JP2009301394A (en) * 2008-06-16 2009-12-24 Denso Corp Vehicle travel support system, roadside system and vehicle side system
JP2014052861A (en) * 2012-09-07 2014-03-20 Ihi Corp Analyzer and analysis method
US11914041B2 (en) 2018-05-30 2024-02-27 Ihi Corporation Detection device and detection system
JP2020109655A (en) * 2018-12-28 2020-07-16 ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッド Method, device, apparatus, and medium for early warning of transportation hazards
US11308138B2 (en) 2018-12-28 2022-04-19 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Danger warning method for vehicle, danger warning device for vehicle, and medium

Also Published As

Publication number Publication date
JP3100471B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US5999877A (en) Traffic flow monitor apparatus
US9154741B2 (en) Apparatus and method for processing data of heterogeneous sensors in integrated manner to classify objects on road and detect locations of objects
US7460691B2 (en) Image processing techniques for a video based traffic monitoring system and methods therefor
JP4858761B2 (en) Collision risk determination system and warning system
GB2542686A (en) Video data analyzing method and apparatus and parking lot monitoring system
CN100454355C (en) Video method for collecting information of vehicle flowrate on road in real time
JP4600929B2 (en) Stop low-speed vehicle detection device
TWI335886B (en) Methods and systems for identifying events for a vehicle
JP2002139305A (en) Pantograph obstacle detecting method and device
CN114037924A (en) Vehicle brake-passing judgment method based on image recognition technology and related device
KR101828271B1 (en) Traffic management system and method thereof
JPH0652485A (en) Dangerous traffic event detecting method
JP3721594B2 (en) Road shape estimation device
JPH08180276A (en) Method and device for obstacle detection
JP4071527B2 (en) Diagnostic imaging equipment
CN114882709B (en) Vehicle congestion detection method, device and computer storage medium
CN116152753A (en) Vehicle information identification method and system, storage medium and electronic device
CN113516852B (en) Multi-parking-space multi-target vehicle parking identification method and system
JP4697761B2 (en) Queue detection method and queue detection apparatus
JPH0954891A (en) Method for discriminating vehicle type by image processing and device therefor
JP3728503B2 (en) Sensor selection method using data certainty factor and road traffic monitoring system using it
JP2924063B2 (en) Image processing type traffic flow measurement device
JPH09212791A (en) Method and device for monitoring road surface
JP2853367B2 (en) Vehicle dynamics measurement device
JP2913882B2 (en) Road object detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees