JPH0652474A - Plant monitor device - Google Patents

Plant monitor device

Info

Publication number
JPH0652474A
JPH0652474A JP4202581A JP20258192A JPH0652474A JP H0652474 A JPH0652474 A JP H0652474A JP 4202581 A JP4202581 A JP 4202581A JP 20258192 A JP20258192 A JP 20258192A JP H0652474 A JPH0652474 A JP H0652474A
Authority
JP
Japan
Prior art keywords
signal
normal
time
pattern
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4202581A
Other languages
Japanese (ja)
Inventor
Shinichiro Hori
慎一郎 堀
Shigetaka Hosaka
重孝 穂坂
Yujiro Shimizu
祐次郎 清水
Seiji Yaguchi
誓児 矢口
Hiroyuki Nakayama
博之 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4202581A priority Critical patent/JPH0652474A/en
Publication of JPH0652474A publication Critical patent/JPH0652474A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks

Abstract

PURPOSE:To monitor the starting of an object plant to be monitored and the state of stationary operation without any experiential preprocessing by a skilled person and to detect deviation in relation among parameters which is seen in the beginning of abnormality from that in normal operation without any experiential judgment by a skilled person. CONSTITUTION:A time-series signal showing the operation state of the plant 11 is measured by a signal measuring means 12 and converted by a signal input means 13 into a digital signal, which is inputted to a signal processing means 14. The signal processing means 14 inputs and processes the time-series data in constant sampling cycles. A normal pattern learning means 31 learns at each timing point by a self-organization type neural network and generates a time-series variation pattern of ignition neurons in a two-dimensional plane. A normalcy/abnormality deciding means 32 compares the time-series variation pattern of ignition neurons obtained from the data at the time of monitoring with the pattern of normal operation obtained by the normal pattern learning means 31 and displays the result at a display means 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラントの動作状態を
監視するプラント監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant monitoring device for monitoring the operating condition of a plant.

【0002】[0002]

【従来の技術】従来、プラント監視装置は、図4に示す
ように構成されている。同図において11は監視対象の
プラントで、その動作状態を示す1つまたは複数の時系
列信号が信号計測手段12により計測され、アナログ信
号として取り出される。この信号計測手段12により計
測された信号は、信号入力手段13によりデジタル信号
に変換され、監視装置本体内の信号処理手段14に入力
される。この信号処理手段14は、ある一定のサンプリ
ング周期で時系列データを取り込み、データの変化傾向
に伴うブロック化、統計処理、データの圧縮処理等を行
なう。この信号処理手段14により処理された信号は、
信号記録手段15により記録されると共に、監視手段1
6に送られて処理される。
2. Description of the Related Art Conventionally, a plant monitoring device is constructed as shown in FIG. In the figure, 11 is a plant to be monitored, and one or a plurality of time-series signals indicating its operating state are measured by the signal measuring means 12 and taken out as an analog signal. The signal measured by the signal measuring unit 12 is converted into a digital signal by the signal input unit 13 and input to the signal processing unit 14 in the monitoring apparatus body. The signal processing means 14 takes in time-series data at a certain sampling period, and performs blocking, statistical processing, data compression processing, etc. associated with the tendency of data change. The signal processed by the signal processing means 14 is
The signal is recorded by the signal recording means 15 and is also monitored by the monitoring means 1.
6 to be processed.

【0003】この監視手段16は、信号解析手段17及
び正常・異常判別手段18からなり、信号処理手段14
により処理された信号の解析、正常・異常の判別を行な
う。信号解析手段17は、信号処理手段14からの処理
後のデータに対し、統計処理、正規分布の判定を行な
う。正常・異常判別手段18は、信号解析手段17の解
析結果と、予め正常データを基に経験的に定めた正常の
基準値を比較し、正常・異常の判別を行なう。この正常
・異常判別手段18の判別結果は、表示手段19に送ら
れて表示されると共に、印刷手段20に送られて印刷さ
れる。また、21は、ユーザが上記した計測、処理、判
別、表示、印刷の機能を指定する際のインタフェースと
なる操作手段である。
The monitoring means 16 comprises a signal analyzing means 17 and a normal / abnormal determining means 18, and a signal processing means 14
The signal processed by is analyzed and normality / abnormality is discriminated. The signal analysis unit 17 performs statistical processing and normal distribution determination on the data processed by the signal processing unit 14. The normality / abnormality determining means 18 compares the analysis result of the signal analyzing means 17 with a normal reference value which is empirically determined based on the normal data in advance, and determines normality / abnormality. The discrimination result of the normal / abnormal discriminating means 18 is sent to the display means 19 to be displayed and is also sent to the printing means 20 to be printed. Reference numeral 21 is an operation unit that serves as an interface when the user specifies the above-described measurement, processing, determination, display, and printing functions.

【0004】上記の構成において、信号計測手段12に
より計測したプラント11のある運転モードにおける時
系列データを信号入力手段13を介して信号処理手段1
4に入力する。信号処理手段14は、信号計測手段12
からの時系列データを正常なものについて集め、正常規
範データ群とし、これらの各時系列てたについて、同じ
状態が続く時間帯を一つのブロックとしてまとめ、この
間のデータ群の平均値をそのブロックの代表値とし、圧
縮された時系列データを作る。そして、信号解析手段1
7により各ブロック毎に正常規範データの正規分布を調
べ、その性質の有無に応じた2種類の統計的手法によ
り、正常基準値を算出する。正常・異常判別手段18
は、この正常基準値と検証したい時系列データの各ブロ
ック毎の代表値を比較し、全ブロックを通して1つでも
異常があれば、運転異常と判断する。このような手法に
より、プラント11の監視が行なわれる。
In the above configuration, the time-series data in a certain operation mode of the plant 11 measured by the signal measuring means 12 is processed by the signal processing means 1 via the signal input means 13.
Enter in 4. The signal processing means 14 is the signal measuring means 12
The time series data from is collected as a normal reference data group, and for each of these time series data, the time zone in which the same state continues is summarized as one block, and the average value of the data group during this time is the block. Compressed time-series data is created with the representative value of. And the signal analysis means 1
7, the normal distribution of the normal reference data is checked for each block, and the normal reference value is calculated by two types of statistical methods depending on the presence or absence of the property. Normal / abnormal determination means 18
Compares the normal reference value with the representative value of each block of the time-series data to be verified, and if there is even one abnormality in all blocks, it is determined that the operation is abnormal. The plant 11 is monitored by such a method.

【0005】[0005]

【発明が解決しようとする課題】上記従来のプラント監
視装置は、時系列データをその変化傾向に従って経験的
にブロック化し、あるプラント運転モードにおける同じ
タイミング毎のデータ間で比較を行なっているので、こ
のブロック化に熟練者の知識と手間が必要である。
The above-mentioned conventional plant monitoring device empirically blocks the time-series data according to its changing tendency and compares the data at the same timing in a certain plant operation mode. Knowledge and labor of experts are required for this block formation.

【0006】また、時系列データのブロック毎、パラメ
ータ毎の異常検出は行なえるが、複数パラメータの全体
的な変化傾向のパターンの比較はできないので、異常の
早期検出に熟練者の経験が必要である。
Further, although it is possible to detect anomalies for each block of time series data and for each parameter, it is not possible to compare the patterns of the overall tendency of changes of a plurality of parameters, so that experience of an expert is required for early detection of anomalies. is there.

【0007】本発明は上記実情を考慮してなされたもの
で、監視対象プラントの起動から定常運転までの起動運
転、または定常運転の状態の監視を、熟練者による経験
的な前処理なしで行なうことができると共に、複数のパ
ラメータの組の変化傾向の学習により、異常初期時に見
られる各パラメータ間の関係の正常時とのずれを、熟練
者による経験的な判断なしで検出することができるプラ
ント監視装置を提供することを目的とする。
The present invention has been made in consideration of the above situation, and the start-up operation from the start of the monitored plant to the steady operation, or the state of the steady operation is monitored without empirical pretreatment by a skilled person. In addition, it is possible to detect the deviation of the relationship between each parameter seen at the initial stage of abnormality from the normal state by learning the change tendency of a plurality of parameter sets without the need for empirical judgment by a skilled plant. An object is to provide a monitoring device.

【0008】[0008]

【課題を解決するための手段】本発明に係るプラント監
視装置は、監視対象であるプラントからの信号を計測す
る信号計測手段と、この計測手段により計測された信号
を装置本体に入力する信号入力手段と、この手段により
入力された信号を圧縮する信号処理手段と、この手段に
より処理された信号を記録する信号記録手段と、上記信
号処理手段により処理された正常時の時系列信号パター
ンを1次元の入力層と2次元の出力層からなるネットワ
ークで教師データなしで学習する正常パターン学習手段
と、この正常パターン学習手段で学習したパターンを基
にして上記信号処理手段の出力信号からプラントの正常
・異常を判別する正常・異常判別手段と、ユーザとイン
タフェースする操作手段と、上記正常・異常判別手段の
判別結果を表示する表示手段とを備えたことを特徴とす
る。
A plant monitoring apparatus according to the present invention comprises a signal measuring means for measuring a signal from a plant to be monitored, and a signal input for inputting the signal measured by the measuring means to the apparatus body. Means, a signal processing means for compressing the signal input by this means, a signal recording means for recording the signal processed by this means, and a normal time series signal pattern processed by the signal processing means as 1 A normal pattern learning means for learning without teacher data in a network composed of a two-dimensional input layer and a two-dimensional output layer, and a normal plant from the output signal of the signal processing means based on the pattern learned by the normal pattern learning means.・ Displays the normal / abnormal judgment means for judging abnormality, the operation means for interfacing with the user, and the judgment result of the normal / abnormal judgment means. Characterized in that a display unit.

【0009】[0009]

【作用】信号処理手段は、正常運転時の一定間隔でサン
プリングした複数の時系列データを監視手段に設けた正
常パターン学習手段に入力する。正常パターン学習手段
は、各タイミング毎に自己組織型のニューラルネットワ
ークで学習し、2次元平面状に発火ニューロンの時系列
変化パターンを作成する。
The signal processing means inputs a plurality of time series data sampled at regular intervals during normal operation to the normal pattern learning means provided in the monitoring means. The normal pattern learning means learns with a self-organizing neural network at each timing, and creates a time-series change pattern of firing neurons in a two-dimensional plane.

【0010】正常・異常判別手段は、監視時のデータを
順次入力することで得られる発火ニューロンの時系列変
化パターンと、上記正常パターン学習手段で得た正常時
のパターンを比較することによって、正常か否かを判別
する。この正常・異常判別手段の判別結果は、表示手段
に送られて表示される。
The normal / abnormal discriminating means compares the time-series change pattern of the firing neuron obtained by sequentially inputting the data at the time of monitoring with the normal pattern obtained by the normal pattern learning means to make normal Or not. The determination result of the normal / abnormal determination means is sent to the display means and displayed.

【0011】[0011]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の一実施例に係るプラント監
視装置構成を示すブロック図である。図1における監視
対象のプラント11、信号計測手段12、信号入力手段
13、信号処理手段14、信号記録手段15、表示手段
19、印刷手段20及び操作手段21については、図4
に示した従来装置と同じであるので、詳細な説明は省略
する。
FIG. 1 is a block diagram showing the construction of a plant monitoring apparatus according to an embodiment of the present invention. The plant 11, the signal measuring means 12, the signal input means 13, the signal processing means 14, the signal recording means 15, the display means 19, the printing means 20 and the operating means 21 in FIG.
Since it is the same as the conventional device shown in FIG.

【0013】上記信号処理手段14により処理されたデ
ータは、監視手段30に送られる。この監視手段30
は、信号処理手段14による処理後の正常な時系列デー
タのパターンを学習する正常パターン学習手段31及び
その学習結果を用いて正常、異常の判別を行なう正常・
異常判別手段32により構成される。
The data processed by the signal processing means 14 is sent to the monitoring means 30. This monitoring means 30
Is a normal pattern learning unit 31 that learns a pattern of normal time-series data after processing by the signal processing unit 14 and a normal / abnormal judgment that uses the learning result.
It is configured by the abnormality determination means 32.

【0014】正常パターン学習手段31は、監視対象の
プラント11が正常の時に、信号処理手段14から送ら
れてくる一定間隔のサンプリングデータ(学習用デー
タ)33の時系列変化パターンを学習する。正常・異常
判別手段32は、監視時に一定間隔で計測・処理されて
信号処理手段14から入力される判別用データ34が正
常か否かを判別する。
The normal pattern learning means 31 learns a time-series change pattern of sampling data (learning data) 33 sent from the signal processing means 14 when the plant 11 to be monitored is normal. The normality / abnormality determination means 32 determines whether or not the determination data 34, which is measured and processed at regular intervals during monitoring and is input from the signal processing means 14, is normal.

【0015】図2(a),(b)は、上記正常パターン
学習手段31の説明図で、1次元の入力層41と2次元
の出力層42からなる2層のニューラルネットワーク構
造を有する。入力は、0〜1の範囲で規格化された5分
毎の複数パラメータのデータの組であり、60分間の運
転時間に対して合計13組ある。これらを自己組織化特
徴マッピング(Self Organizaion Feature Mapping)手
法により、教師なしで繰り返し学習することで、各入力
データを出力層42のいずれかのニューロンに割り当
て、発火ニューロンの時系列変化パターンを求める。即
ち、正常パターン学習手段31は、信号処理手段14か
ら送られてくる学習用データ33、つまり、正常運転時
の一定間隔でサンプリングされた複数の時系列データに
ついて、各タイミング毎に自己組織型のニューラルネッ
トワークで学習し、2次元平面状に発火ニューロンの時
系列変化パターンを作成する。
FIGS. 2A and 2B are explanatory views of the normal pattern learning means 31 and have a two-layer neural network structure composed of a one-dimensional input layer 41 and a two-dimensional output layer 42. The input is a set of data of a plurality of parameters for every 5 minutes standardized in the range of 0 to 1, and there are a total of 13 sets for an operating time of 60 minutes. These input data are assigned to one of the neurons in the output layer 42 by repeatedly learning them by a self organizing feature mapping method without supervision, and a time series change pattern of the firing neuron is obtained. That is, the normal pattern learning means 31 is self-organizing at each timing with respect to the learning data 33 sent from the signal processing means 14, that is, a plurality of time series data sampled at regular intervals during normal operation. By learning with a neural network, a time-series change pattern of firing neurons is created in a two-dimensional plane.

【0016】上記13組のデータについて更に詳細に説
明する。信号処理手段14から図2(a)に示すように
A,B,Cの3種類について、各々例えば0分〜60分
の5分毎、計13個の時系列データが出力される。この
各時刻の3種類のデータ(A,B,C)を1組にして、
合計13個のデータができる。正常パターン学習手段3
1は、この13個のデータを図2(b)に示すように入
力層41から順に入力し、各データについて、出力層4
2における7×7個の出力ニューロンの中から対応する
ニューロンを1個決定する。
The above 13 sets of data will be described in more detail. As shown in FIG. 2A, the signal processing unit 14 outputs a total of 13 time-series data for each of the three types A, B, and C, for example, every 5 minutes from 0 to 60 minutes. The three types of data (A, B, C) at each time are set as one set,
A total of 13 data can be created. Normal pattern learning means 3
1 inputs these 13 pieces of data in order from the input layer 41 as shown in FIG. 2B, and for each data, the output layer 4
From the 7 × 7 output neurons in 2, one corresponding neuron is determined.

【0017】この対応する出力ニューロンの選択方法
は、以下のようにして行なわれる。3個の入力データを
3次元ベクトルとみなす。また、出力層42における4
9個の各出力ニューロンから、入力層41の3個の入力
ニューロンに至る3本のリンクの重み値のデータも、同
様に3次元のベクトルとみなす。これらは乱数として初
期値を与えられ、13個の各入力ベクトルに対して、4
9個の重みベクトルとの距離を計算し、その距離の最小
となるものを対応する出力ニューロンとして決定する。
この距離が最小であるとして決定・選択されることを発
火するといい、選択されたニューロンを発火ニューロン
と呼ぶ。
The method of selecting the corresponding output neuron is performed as follows. Consider the three input data as a three-dimensional vector. Also, 4 in the output layer 42
Similarly, the data of the weight values of the three links from each of the nine output neurons to the three input neurons of the input layer 41 is also regarded as a three-dimensional vector. These are given initial values as random numbers, and for each of the 13 input vectors, 4
The distances from the nine weight vectors are calculated, and the one having the smallest distance is determined as the corresponding output neuron.
It is called firing that this distance is determined and selected as the minimum, and the selected neuron is called a firing neuron.

【0018】従って、13個の入力ベクトルの中で、距
離の近いものがあれば、対応出力ニューロンが一致する
場合もある。このようにして13個以下の対応出力ニュ
ーロンが決定され、入力順に発火していく様子をパター
ンとして表わしたのが、図3に示す出力ニューロンの発
火パターンである。
Accordingly, among the 13 input vectors, if there are close ones, the corresponding output neurons may match. In this way, the firing pattern of the output neuron shown in FIG. 3 represents a state in which 13 or less corresponding output neurons are determined and fired in the order of input.

【0019】図3において、P1 は正常運転データの学
習結果である発火ニューロンの時系列変化パターン、P
2 はこの学習済みのニューラルネットワークに異常運転
時のデータを認識させて得られた発火ニューロンの変化
パターンである。これは、異常時の変化パターンP2
が、正常時の変化パターンP2 から外れてきていること
を示している。
In FIG. 3, P1 is a time-series change pattern of firing neurons, which is a learning result of normal operation data, and P1
2 is the change pattern of the firing neuron obtained by making the learned neural network recognize the data during abnormal operation. This is the change pattern P2
Indicates that the change pattern P2 is out of the normal change pattern.

【0020】正常・異常判別手段32は、上記正常パタ
ーン学習手段31で得られた正常時のパターンと、監視
時の判別用データ34を順次入力することで得られる発
火ニューロンの時系列変化パターンとを比較することに
よって、正常か否かを判別する。そして、上記正常・異
常判別手段32により判別された結果は、表示手段19
により表示され、また、必要に応じて印刷手段20によ
り印刷される。
The normal / abnormal discriminating means 32 has a normal pattern obtained by the normal pattern learning means 31 and a time-series change pattern of firing neurons obtained by sequentially inputting discrimination data 34 for monitoring. Is compared to determine whether or not it is normal. The result discriminated by the normal / abnormal discriminating means 32 is displayed on the display means 19
Is displayed by the printer, and is printed by the printing unit 20 as necessary.

【0021】[0021]

【発明の効果】以上詳記したように本発明によれば、監
視対象プラントの起動から定常運転までの起動運転、又
は定常運転の状態の監視を、熟練者による経験的な前処
理なしで行なうことができる。更に、複数のパラメータ
の組の変化傾向の学習により、異常初期時に見られる各
パラメータ間の関係の正常時とのずれを、やはり熟練者
による経験的な判断なしで検出することができる。
As described above in detail, according to the present invention, the start-up operation from the start-up of the monitored plant to the steady operation, or the state of the steady operation is monitored without empirical pretreatment by a skilled person. be able to. Further, by learning the change tendency of a plurality of parameter sets, it is possible to detect the deviation of the relationship between the parameters, which is observed at the initial stage of abnormality, from the normal state, without empirical judgment by a skilled person.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るプラント監視装置の構
成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a plant monitoring apparatus according to an embodiment of the present invention.

【図2】同実施例における正常パターン学習手段の説明
図。
FIG. 2 is an explanatory diagram of normal pattern learning means in the same embodiment.

【図3】同実施例における正常・異常判別手段の一例を
示す図。
FIG. 3 is a diagram showing an example of a normal / abnormal determination means in the embodiment.

【図4】従来のプラント監視装置の構成を示す図。FIG. 4 is a diagram showing a configuration of a conventional plant monitoring device.

【符号の説明】[Explanation of symbols]

11…プラント、 12…信号計測手段、
13…信号入力手段、14…信号処理手段、 15
…信号記録手段、 16…監視手段、17…信号
解析手段、 18…正常・異常判別手段、 19…表
示手段、20…印刷手段、 21…操作手段、
30…監視手段、31…正常パターン学習手
段、 32…正常・異常判別手段、33…学習用データ
34…判別用データ、 41…入力層、4
2…出力層。
11 ... Plant, 12 ... Signal measuring means,
13 ... Signal input means, 14 ... Signal processing means, 15
... signal recording means, 16 ... monitoring means, 17 ... signal analyzing means, 18 ... normality / abnormality determining means, 19 ... display means, 20 ... printing means, 21 ... operating means,
30 ... Monitoring means, 31 ... Normal pattern learning means, 32 ... Normal / abnormality discrimination means, 33 ... Learning data 34 ... Discrimination data, 41 ... Input layer, 4
2 ... Output layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢口 誓児 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 中山 博之 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Seiji Yaguchi 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Hiroyuki Nakayama, Niihama, Arai-cho, Takasago-shi, Hyogo 2-1-1, Mitsubishi Heavy Industries, Ltd. Takasago Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 監視対象であるプラントからの信号を計
測する信号計測手段と、この計測手段により計測された
信号を装置本体に入力する信号入力手段と、この手段に
より入力された信号を圧縮する信号処理手段と、この手
段により処理された信号を記録する信号記録手段と、上
記信号処理手段により処理された正常時の時系列信号パ
ターンを1次元の入力層と2次元の出力層からなるネッ
トワークで教師データなしで学習する正常パターン学習
手段と、この正常パターン学習手段で学習したパターン
を基にして上記信号処理手段の出力信号からプラントの
正常・異常を判別する正常・異常判別手段と、ユーザと
インタフェースする操作手段と、上記正常・異常判別手
段の判別結果を表示する表示手段とを具備したことを特
徴とするプラント監視装置。
1. A signal measuring unit for measuring a signal from a plant to be monitored, a signal input unit for inputting a signal measured by the measuring unit to a main body of the apparatus, and a signal input by this unit is compressed. A signal processing means, a signal recording means for recording the signal processed by this means, and a network consisting of a one-dimensional input layer and a two-dimensional output layer for the time-series signal pattern in a normal time processed by the signal processing means. A normal pattern learning means for learning without teacher data, a normal / abnormal judgment means for judging a normal / abnormal of a plant from an output signal of the signal processing means based on a pattern learned by the normal pattern learning means, and a user And a display unit for displaying the discrimination result of the normality / abnormality discrimination unit. Vision device.
JP4202581A 1992-07-29 1992-07-29 Plant monitor device Withdrawn JPH0652474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202581A JPH0652474A (en) 1992-07-29 1992-07-29 Plant monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202581A JPH0652474A (en) 1992-07-29 1992-07-29 Plant monitor device

Publications (1)

Publication Number Publication Date
JPH0652474A true JPH0652474A (en) 1994-02-25

Family

ID=16459862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202581A Withdrawn JPH0652474A (en) 1992-07-29 1992-07-29 Plant monitor device

Country Status (1)

Country Link
JP (1) JPH0652474A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249997A (en) * 2000-07-15 2007-09-27 Intevep Sa Method and system for monitoring industrial process
JP2008083865A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Emergency monitoring device
JP2008097361A (en) * 2006-10-12 2008-04-24 Matsushita Electric Works Ltd Anomaly monitoring device
JP2018097662A (en) * 2016-12-14 2018-06-21 オムロン株式会社 Control device, control program and control method
WO2018110259A1 (en) * 2016-12-14 2018-06-21 オムロン株式会社 Control device, control program, and control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249997A (en) * 2000-07-15 2007-09-27 Intevep Sa Method and system for monitoring industrial process
JP2008083865A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Emergency monitoring device
JP2008097361A (en) * 2006-10-12 2008-04-24 Matsushita Electric Works Ltd Anomaly monitoring device
JP2018097662A (en) * 2016-12-14 2018-06-21 オムロン株式会社 Control device, control program and control method
WO2018110259A1 (en) * 2016-12-14 2018-06-21 オムロン株式会社 Control device, control program, and control method
CN109983412A (en) * 2016-12-14 2019-07-05 欧姆龙株式会社 Control device, control program and control method
US11009847B2 (en) 2016-12-14 2021-05-18 Omron Corporation Controller, control program, and control method
US11036199B2 (en) 2016-12-14 2021-06-15 Omron Corporation Control device, control program, and control method for anomaly detection
CN109983412B (en) * 2016-12-14 2022-09-16 欧姆龙株式会社 Control device, computer-readable recording medium, and control method

Similar Documents

Publication Publication Date Title
Zorriassatine et al. A review of neural networks for statistical process control
Samanta et al. Artificial neural networks and genetic algorithm for bearing fault detection
US8332337B2 (en) Condition-based monitoring system for machinery and associated methods
US5854993A (en) Component machine testing using neural network processed vibration data analysis
Guh Simultaneous process mean and variance monitoring using artificial neural networks
CN111552243B (en) Intelligent spinning and packaging production line fault detection system
JPH11338848A (en) Data abnormality detector
CN109711682A (en) A kind of ship overall status appraisal procedure of data-driven
CN109086876A (en) Method for detecting operation state, device, computer equipment and the storage medium of equipment
CN114863661A (en) Monitoring and early warning method and system for special steel production workshop
JPH0652474A (en) Plant monitor device
JPH0793018A (en) Method and system for diagnosing operating state
CN110057820B (en) Method, system and storage medium for on-line detection of chlorine-hydrogen ratio of hydrogen chloride synthesis furnace
Chen et al. Development of fuzzy logic-based statistical process control chart pattern recognition system
JPH06259678A (en) Plant monitoring equipment
JP3745783B2 (en) Pattern classification device and state monitoring system using this device
US5845050A (en) Method and apparatus for processing information and a method and apparatus for executing a work instruction
US5237512A (en) Signal recognition and classification for identifying a fire
CN114115197A (en) Gas turbine state maintenance decision making system, method and storage medium
US11604458B2 (en) Anomaly determination device and anomaly determination method
RU2156496C1 (en) Method for on-line dynamic analysis of fuzzy state of object or process described by multiple parameters
JPH07261826A (en) State detecting device for process unit
KR100197715B1 (en) Method for cleaning status distinction using fuzzy principle
JP2008083865A (en) Emergency monitoring device
Xu et al. An ANS based helicopter transmission diagnostic system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005