JPH0652316B2 - Control rod life prediction device - Google Patents

Control rod life prediction device

Info

Publication number
JPH0652316B2
JPH0652316B2 JP61120251A JP12025186A JPH0652316B2 JP H0652316 B2 JPH0652316 B2 JP H0652316B2 JP 61120251 A JP61120251 A JP 61120251A JP 12025186 A JP12025186 A JP 12025186A JP H0652316 B2 JPH0652316 B2 JP H0652316B2
Authority
JP
Japan
Prior art keywords
control rod
life
pattern
exchange
neutron irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61120251A
Other languages
Japanese (ja)
Other versions
JPS62277599A (en
Inventor
智幸 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61120251A priority Critical patent/JPH0652316B2/en
Publication of JPS62277599A publication Critical patent/JPS62277599A/en
Publication of JPH0652316B2 publication Critical patent/JPH0652316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はBWR(沸騰水)型原子炉発電所において、制御
棒パターン交換を考慮した制御棒寿命予測装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a control rod life prediction device in a BWR (boiling water) reactor power plant in consideration of control rod pattern replacement.

(従来の技術) BWR型原子炉発電所では、原子炉内の中性子束量を制御
するために制御棒を使用している。制御棒は原子炉の出
力を調整すると共に、スクラム時は全挿入され原子炉を
瞬時に停止させるという原子炉運転上重要な役割をもっ
ている。
(Prior Art) BWR reactor power plants use control rods to control the neutron flux in the reactor. The control rod adjusts the output of the nuclear reactor, and is fully inserted during the scram, and has an important role in the operation of the nuclear reactor to stop the nuclear reactor instantaneously.

現在使用されている制御棒は、第3図(a)に示すよう
に、一般にB4C粉末型と呼ばれる制御棒1で、ポイズン
チューブ2にB4C3を内包した構造になっている。このポ
イズンチューブ2にはタイプ304ステンレス鋼もしくは
タイプ304スレンレス鋼が使用されている。このタイプ3
04ステンレス鋼のポイズンチューブにおいて、使用中に
B4Cのスウェーリング(膨張)による応力と共に高い中
性子照射量を受けると、第3図(b)に示すように粒界割
れ4が生じることが報告されている。
As shown in FIG. 3 (a), the control rod currently used is a control rod 1 generally called a B 4 C powder type, which has a structure in which a poison tube 2 contains B 4 C 3. The poison tube 2 is made of type 304 stainless steel or type 304 stainless steel. This type 3
04 Stainless steel poison tube
It has been reported that intergranular cracks 4 occur as shown in FIG. 3 (b) when subjected to a high neutron irradiation dose along with stress due to B 4 C swelling (expansion).

このポインズチューブ割れ4は、配管等で発生した粒界
応力腐食割れ(IGSCC)と異なり、溶接熱影響の無い箇所
に発生し、これは照射加速応力腐食割れ(IASCC)と考え
られ、この原因として中性子照射量が重要な因子である
ことが判っている。
Unlike the intergranular stress corrosion cracking (IGSCC) generated in pipes, etc., this Poins tube crack 4 occurs at a place where there is no effect of welding heat, and this is considered to be irradiation accelerated stress corrosion cracking (IASCC). As a result, it is known that the neutron irradiation dose is an important factor.

このため従来は、ポイズンチューブの割れからB4Cが流
出することを考慮した基準により制御棒の寿命を管理し
ており、制御棒の中性子照射量が基準値に達した時点で
寿命がつきたと判断し、制御棒の取替作業を行なってい
た。
For this reason, conventionally, the life of the control rod is managed by a standard that considers the flow of B 4 C from the crack of the poison tube, and it is said that the life has expired when the neutron irradiation dose of the control rod reaches the standard value. Judgment was made, and the control rod was being replaced.

第4図は上記制御棒の寿命を判断する従来例を示したも
ので、10は原子炉、11は炉心、12は制御棒である。この
制御棒12は炉心11内の各燃料棒4本づつを十字に仕切る
ように多数配置されるが、図では説明を簡単にするため
そのうちの一本のみを示している。
FIG. 4 shows a conventional example for determining the life of the control rod, in which 10 is a reactor, 11 is a core, and 12 is a control rod. A large number of control rods 12 are arranged so as to divide each of the four fuel rods in the core 11 into a cross, but only one of them is shown in the figure for the sake of simplicity.

原子炉10内には各種検出器が多数配置され、それらの検
出器を介して得られる圧力,流量,中性子束分布(LPRM
検出値)等のプラントアナログ信号aはプロセス入力装
置13でデジタル信号bに変換される。また、制御棒12の
位置検出信号cは制御位置入力装置14でデジタル信号d
に変換されたのち、制御棒照射量計算部15に入力され
る。
A large number of various detectors are arranged in the reactor 10, and the pressure, flow rate and neutron flux distribution (LPRM) obtained through these detectors are measured.
A plant analog signal a such as a detected value) is converted into a digital signal b by the process input device 13. Further, the position detection signal c of the control rod 12 is a digital signal d by the control position input device 14.
After being converted into, it is input to the control rod irradiation amount calculation unit 15.

制御棒照射量計算部15は、これら入力するプラントセン
サ信号bと制御棒位置信号dを基に炉心11全体の出力を
求め、その出力分布と制御棒位置から制御棒12が中性子
の照射をいくら受けたかを求め、制御棒の中性子照射量
データeとして記憶部16に出力する。また、制御棒照射
量計算部15はこの計算を周期的に実行し、原子炉10の出
力変動等による中性子照射量の変化を捉え中性子照射量
データeを求める。
The control rod dose calculation unit 15 obtains the output of the entire core 11 based on these input plant sensor signal b and control rod position signal d, and determines how many neutrons the control rod 12 emits from the output distribution and the control rod position. Whether it has been received or not is output to the storage unit 16 as neutron irradiation dose data e of the control rod. Further, the control rod irradiation dose calculation unit 15 periodically executes this calculation to obtain the neutron irradiation dose data e by catching the change in the neutron irradiation dose due to the output fluctuation of the reactor 10 and the like.

記憶部16は、制御棒の中性子照射量データeと制御棒照
射量計算部15での計算結果を積算して記憶すると共に、
プラントセンサ信号b,制御棒位置信号dも記憶する。
出力部17は記憶部16に記憶された中性子照射量データe
をタイプライタ18に出力する。
The storage unit 16 integrates and stores the neutron dose data e of the control rod and the calculation result of the control rod dose calculation unit 15, and
The plant sensor signal b and the control rod position signal d are also stored.
The output unit 17 is the neutron dose data e stored in the storage unit 16.
Is output to the typewriter 18.

従来は、このようにしてタイプライタ18から出力される
データを基に制御棒の中性子照射量が時間の経過と共に
過去から現在までどのように変化したかを知り、これを
基に制御棒の寿命となる制御棒照射量に到達する時期を
予測していた。
In the past, based on the data output from the typewriter 18 in this way, we learned how the neutron irradiation dose of the control rod changed over time from the past to the present, and based on this, the life of the control rod The predicted timing for reaching the control rod irradiation dose is

(発明が解決しようとする問題点) ところで、炉心11への制御棒12の引抜,挿入操作は、炉
心11内の燃料棒が平均して燃えるように予め決められた
配置の組合わせパターンで数本づつ引抜き、代りの制御
棒を挿入する操作が行なわれる。また、このような制御
棒のパターン変換が行なわれると、第5図に実線と破線
にて示すように制御棒まわりの出力分布および照射位置
が変化する。
(Problems to be Solved by the Invention) By the way, the operation of pulling out and inserting the control rods 12 into and from the core 11 is performed in a combination pattern of a predetermined arrangement so that the fuel rods in the core 11 burn on average. The operation of pulling out the books one by one and inserting a substitute control rod is performed. Further, when such pattern conversion of the control rod is performed, the output distribution and the irradiation position around the control rod are changed as shown by the solid line and the broken line in FIG.

しかしながら、前述従来方法では、あくまでも過去のデ
ータに基づく予測であって、将来行なわれる制御棒パタ
ーン交換までを考慮した制御棒の寿命予測でないため、
信頼性に欠ける。このため、制御棒の取替えは安全を期
して早めに行なわなければならず、制御棒の有効活用が
できない上、廃棄物の量も増加する。また、時には予測
に大きな狂いが生じて制御棒12にポイズンチューブ割れ
4が生じるなどの問題点があった。
However, in the above-mentioned conventional method, since the prediction is based only on past data, and is not the life prediction of the control rod in consideration of the control rod pattern exchange performed in the future,
Unreliable. For this reason, the control rods must be replaced early for safety, the control rods cannot be effectively used, and the amount of waste increases. In addition, there was a problem that the prediction rod was sometimes misaligned and the poison tube crack 4 was generated in the control rod 12.

そこで、本発明は制御棒の寿命をより正確に予測できる
より信頼性の高い制御棒寿命予測装置を提供することを
目的とする。
Therefore, it is an object of the present invention to provide a more reliable control rod life prediction device that can more accurately predict the life of a control rod.

[発明の構成] (問題点を解決するための手段) 本発明の制御棒寿命予測装置は、周期的に制御棒の中性
子照射量を計算する手段と、中性子照射量と計算時刻を
時系列的に保存する手段と、オペレータの入力した制御
棒交換パターンと制御棒パターン交換時期から制御棒パ
ターン交換後の出力分布を求め、制御棒パターン交換後
の制御棒の中性子照射量を計算する手段と、前記保存し
た中性子照射量、計算時刻と前記計算した制御棒パター
ン交換後の制御棒の中性子照射量より制御棒の寿命を予
測する手段とから構成されるものである。
[Structure of the Invention] (Means for Solving Problems) The control rod life prediction apparatus of the present invention comprises means for periodically calculating the neutron irradiation dose of the control rod, and neutron irradiation dose and calculation time in a time series manner. A means for storing in, a control rod exchange pattern input by the operator and the output distribution after control rod pattern exchange from the control rod pattern exchange time, means for calculating the neutron irradiation dose of the control rod after the control rod pattern exchange, And a means for predicting the life of the control rod based on the stored neutron irradiation amount, the calculation time, and the calculated neutron irradiation amount of the control rod after the control rod pattern is exchanged.

(作用) 将来行なわれる制御棒パターン交換時期と、そのときの
制御棒交換パターンは予め判っているので、これらの制
御棒パターン交換データと、今まで収集した中性子照射
量に関するデータとを基に交換後の出力分布を求め、そ
の出力分布から求めた中性子照射量から制御棒寿命を予
測する。これにより、制御棒パターン交換を考慮したよ
り信頼性の高い制御棒寿命予測装置が得られる。
(Operation) Since the control rod pattern exchange timing to be performed in the future and the control rod exchange pattern at that time are known in advance, exchange is performed based on these control rod pattern exchange data and the neutron irradiation dose data collected so far. The power distribution after that is obtained, and the control rod life is predicted from the neutron irradiation dose obtained from the output distribution. This makes it possible to obtain a more reliable control rod life predicting device in consideration of control rod pattern replacement.

(実施例) 以下、本発明を図面に示す実施例を参照して説明する。(Examples) The present invention will be described below with reference to the examples shown in the drawings.

第1図は本発明の一実施例による制御棒寿命予測装置の
構成図を示したものである。図中、第5図と同一符号は
同一または相当部分を示し、19は制御棒照射量計算部15
で計算した中性子照射量データeを周期的に入力し、そ
のときの時刻Tと共に記憶部16へ出力する機能を持つ周
期保存部である。記憶部16は第6図と同一機能に加えて
周期保存部19からの制御棒照射量と時刻Tを時系列的に
記憶する機能を有する。
FIG. 1 is a block diagram of a control rod life predicting apparatus according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
This is a period storage unit having a function of periodically inputting the neutron irradiation dose data e calculated in step 1 and outputting it to the storage unit 16 together with the time T at that time. The storage unit 16 has a function of storing the control rod irradiation amount and the time T from the cycle storage unit 19 in time series in addition to the same function as in FIG.

20は制御棒寿命計算部であり、コンソール22より入力さ
れた制御棒交換パターンデータおよび制御棒パターン交
換時期データgを記憶部16へ出力し、出力分布予測計算
部21を起動する。
Reference numeral 20 denotes a control rod life calculation unit, which outputs the control rod replacement pattern data and the control rod pattern replacement timing data g input from the console 22 to the storage unit 16 and activates the output distribution prediction calculation unit 21.

出力分布予測計算部21は記憶部16から前記制御棒交換パ
ターン,制御棒パターン交換時期データgおよび制御棒
照射量計算部15の計算結果を入力し、制御棒パターン交
換後の出力分布hを計算し、記憶部16へ出力後、制御棒
寿命計算部20を起動する。制御棒寿命計算部20は記憶部
16より出力分布予測計算部21の計算結果hと制御棒照射
量中期保存部19の保存した時系列データから制御棒寿命
iを求めタイプライタ18に出力する。
The output distribution prediction calculation unit 21 inputs the control rod replacement pattern, the control rod pattern replacement timing data g and the calculation result of the control rod irradiation amount calculation unit 15 from the storage unit 16, and calculates the output distribution h after the control rod pattern replacement. Then, after outputting to the storage unit 16, the control rod life calculation unit 20 is activated. Control rod life calculation unit 20 is a storage unit
The control rod life i is obtained from the calculation result h of the output distribution prediction / calculation unit 21 and the time series data stored in the control rod irradiation medium-term storage unit 19 from 16 and is output to the typewriter 18.

制御棒寿命計算部20は、第2図で示すように制御棒照射
量が出力一定であれば直線的に上昇することから、制御
棒パターン交換時期Tcまでの照射量上昇率を、時系列的
に保存した制御棒照射量と時刻から次式により求める。
As shown in FIG. 2, the control rod life calculation unit 20 linearly increases when the control rod irradiation amount is constant, so that the irradiation amount increasing rate up to the control rod pattern replacement time Tc is calculated in a time series manner. It is calculated from the control rod irradiation dose and time stored in the following formula.

ここで、 △e(JC,K):制御棒(JC,K)の制御棒パターン交換時期
までの制御棒照射量上昇率 E(JC,K):iポイントにおける制御棒(JC,K)の制御棒照
射量 Ti:iポイント目の保存時刻 n:周期保存データ個数 次に、出力分布予測計算部21で計算した制御棒パターン
交換後の出力分布hから制御棒パターン交換後の照射量
上昇率を制御棒照射量計算部15と同様に次式により求め
る。
Where Δe B (JC, K): Control rod dose increase rate until the control rod pattern replacement time of control rod (JC, K) E (JC, K): Control rod (JC, K) at i point Control rod irradiation amount Ti: storage time at the i-th point n: number of periodically stored data Next, from the output distribution h after the control rod pattern exchange calculated by the output distribution prediction calculation unit 21, the irradiation amount after the control rod pattern exchange increases. The rate is calculated by the following equation as in the control rod dose calculation unit 15.

ここで、 △e(JC,K):制御棒(JC,K)の制御棒パターン交換時期
までの制御棒照射量上昇率 EKCR:制御棒空間においての中性子束の制御棒を囲む4
本の燃料セグメントの平均中性子に対する比(定数) PDSuM(JC,K):制御棒(JC,K)まわりのセグメント出力の
和 PSEGAV:全燃料セグメントの平均出力 C2:単位変換定数 CTP:炉心熱出力 以上求めた制御棒パターン交換前の制御棒照射量上昇量
△e(JC,K)と制御棒パターン交換後の制御棒を取替え
るべき照射量Elに達するまでの時間(残り寿命)Tl
を求める。第2図の折線を式で表わすと次式になる。
Where Δe B (JC, K): control rod dose increase rate until the control rod pattern replacement time of control rod (JC, K) EKCR: neutron flux control rod surrounding control rod space 4
Ratio of fuel segment to average neutron (constant) PD SuM (JC, K): Sum of segment output around control rod (JC, K) PSEGAV: Average output of all fuel segments C2: Unit conversion constant CTP: Core heat The amount of increase in the control rod irradiation amount before the control rod pattern replacement Δe B (JC, K) obtained above the output and the irradiation amount El to replace the control rod after the control rod pattern replacement must reach El (remaining life) Tl
Ask for. The broken line in FIG. 2 is expressed by the following equation.

Ep+△e(JC,K)*(Tc-Tp) +△e(JC,K)*{Tl-(Tc-Tp)}=El ……(3) ここで、 El:制御棒を取替える必要がある制御棒照射量 Ep:現在の制御棒照射量 △e(JC,K):制御棒パターン交換前の制御棒照射量上
昇量 △e(JC,K):制御棒パターン交換後の制御棒照射量上
昇量 Tp:現在時刻 Tc:制御棒パターン交換時刻 Tl:制御棒の残り寿命 上式より制御棒残り寿命Tlは次式となる。
Ep + △ e B (JC, K) * (Tc-Tp) + △ e A (JC, K) * {Tl- (Tc-Tp)} = El …… (3) Where, El: Replace the control rod Required control rod irradiation amount Ep: Current control rod irradiation amount △ e B (JC, K): Control rod irradiation amount increase before control rod pattern replacement △ e A (JC, K): After control rod pattern replacement Control rod irradiation amount increase Tp: Current time Tc: Control rod pattern replacement time Tl: Remaining life of control rod From the above equation, the remaining life of control rod Tl is given by the following equation.

この制御棒残り寿命Tlと、その時点の月,日,年,
時,分(寿命)をタイプライタ23に出力することによ
り、運転員は原子炉の運転計画と合わせ制御棒の取替え
時期が容易に判る。
The remaining life Tl of the control rod and the month, day, year, and
By outputting the hour and minute (life) to the typewriter 23, the operator can easily know the operation plan of the nuclear reactor and the control rod replacement timing.

尚、本発明では制御棒寿命計算時に一定の原子炉出力運
転を行なう場合を例にとって説明したが、原子炉の出力
は運転計画において事前に変動予定がわかっており、こ
の変動予定を寿命計算時に考慮に入れてより精度の高い
予測を行なうことも可能である。また、制御パターン交
換は1回のみの例を示したが、コンソールから複数回の
制御棒パターン交換データを入力することにより、複数
回制御棒パターン交換した場合の制御棒寿命予測も可能
であることも明らかである。
Although the present invention has been described by taking as an example the case where a constant reactor output operation is performed at the time of calculating the control rod life, the output of the reactor is known to change in advance in the operation plan. It is also possible to make more accurate predictions by taking this into consideration. Also, although the example of the control pattern exchange is shown only once, it is possible to predict the control rod life when the control rod pattern is exchanged multiple times by inputting the control rod pattern exchange data from the console multiple times. Is also clear.

[発明の効果] 以上のように本発明によれば、制御棒の寿命を原子炉運
転中周期的に収集した制御棒照射量の実績データを使用
していることおよび制御棒パターン交換をも考慮してい
ることから予測精度が高くなり制御棒取替え計画も確実
なものとなり制御棒の有効活用がはかられると共に廃棄
物の量も減少する。また、予測の狂いによる制御棒の粒
界割れをさけることもできる等の効果が得られる。
[Advantages of the Invention] As described above, according to the present invention, the fact that the actual data of the control rod irradiation amount collected periodically during the reactor operation is used for the life of the control rod and the control rod pattern exchange are also taken into consideration. As a result, the prediction accuracy becomes higher, the control rod replacement plan becomes more reliable, the control rods are effectively utilized, and the amount of waste is reduced. In addition, it is possible to obtain the effect that it is possible to prevent the grain boundary cracking of the control rod due to the incorrect prediction.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による制御棒寿命予測装置の
構成図、第2図は第1図の装置により予測される制御棒
照射量と時間との関係図、第3図(a)は制御棒の説明
図、第3図(b)はその制御棒の粒界割れ現象説明図、第
4図は従来の制御棒寿命予測装置の構成図、第5図は制
御棒パターン交換による制御棒まわりの出力分布および
照射位置変化説明図である。 10…原子炉、11…炉心、12…制御棒、13…プロセス入力
装置、14…制御位置入力装置、15…制御棒照射量計算
部、16…記憶部、17…出力部、18…タイプライタ、19…
周期保存部、20…制御棒寿命計算部、21…出力分布予測
計算部、22…コンソール。
FIG. 1 is a block diagram of a control rod life prediction device according to an embodiment of the present invention, FIG. 2 is a relationship diagram between control rod irradiation dose and time predicted by the device of FIG. 1, and FIG. 3 (a). Is an explanatory view of the control rod, FIG. 3 (b) is an explanatory view of the grain boundary cracking phenomenon of the control rod, FIG. 4 is a configuration diagram of a conventional control rod life prediction device, and FIG. 5 is control by control rod pattern exchange. It is an output distribution around a stick and an explanatory view of irradiation position change. 10 ... Reactor, 11 ... Core, 12 ... Control rod, 13 ... Process input device, 14 ... Control position input device, 15 ... Control rod dose calculation unit, 16 ... Storage unit, 17 ... Output unit, 18 ... Typewriter , 19 ...
Cycle storage unit, 20 ... Control rod life calculation unit, 21 ... Output distribution prediction calculation unit, 22 ... Console.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉炉心に引抜,挿入操作される制御棒
の寿命を予測する装置において、原子炉各部に配置され
る各種検出器から得られるデータを基に周期的に制御棒
の中性子照射量を計算する手段と、この計算により得ら
れる中性子照射量と計算時刻を時系列的に保存する手段
と、オペレータの入力した制御棒パターンと制御棒交換
時期から制御棒交換後の出力分布を求めて制御棒パター
ン交換後の制御棒の中性子照射量を計算する手段と、前
記保存した中性子照射量および計算時刻と前記計算した
制御棒パターン交換後の制御棒の中性子照射量より制御
棒の寿命を予測する手段とを備えていることを特徴とす
る制御棒寿命予測装置。
1. An apparatus for predicting the life of a control rod to be pulled out and inserted into a reactor core, wherein neutron irradiation of the control rod is periodically performed based on data obtained from various detectors arranged in each part of the reactor. A means to calculate the amount, a means to save the neutron irradiation dose and the calculation time obtained by this calculation in time series, and obtain the output distribution after the control rod exchange from the control rod pattern and the control rod exchange time input by the operator. Means to calculate the neutron irradiation dose of the control rod after the control rod pattern exchange, the life of the control rod from the neutron irradiation dose of the control rod after the control rod pattern exchange and the calculated neutron irradiation dose and the calculation time stored A control rod life prediction device comprising: a prediction means.
JP61120251A 1986-05-27 1986-05-27 Control rod life prediction device Expired - Lifetime JPH0652316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61120251A JPH0652316B2 (en) 1986-05-27 1986-05-27 Control rod life prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61120251A JPH0652316B2 (en) 1986-05-27 1986-05-27 Control rod life prediction device

Publications (2)

Publication Number Publication Date
JPS62277599A JPS62277599A (en) 1987-12-02
JPH0652316B2 true JPH0652316B2 (en) 1994-07-06

Family

ID=14781571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120251A Expired - Lifetime JPH0652316B2 (en) 1986-05-27 1986-05-27 Control rod life prediction device

Country Status (1)

Country Link
JP (1) JPH0652316B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190177B2 (en) 2009-11-06 2015-11-17 Terrapower, Llc Systems and methods for controlling reactivity in a nuclear fission reactor
RU2553468C2 (en) * 2009-11-06 2015-06-20 ТерраПауэр, ЭлЭлСи Systems and methods of controlling reactivity in nuclear fission reactor
US9793013B2 (en) 2009-11-06 2017-10-17 Terrapower, Llc Systems and methods for controlling reactivity in a nuclear fission reactor
US9852818B2 (en) 2009-11-06 2017-12-26 Terrapower, Llc Systems and methods for controlling reactivity in a nuclear fission reactor
JP5753674B2 (en) * 2010-09-24 2015-07-22 日立Geニュークリア・エナジー株式会社 Control rod life evaluation method and control rod life evaluation device

Also Published As

Publication number Publication date
JPS62277599A (en) 1987-12-02

Similar Documents

Publication Publication Date Title
JP4999222B2 (en) Method for monitoring at least one operating parameter of a reactor core
US6493412B1 (en) Method of calibrating exit thermocouples in a nuclear reactor
JPH0652316B2 (en) Control rod life prediction device
GB2050678A (en) Method and apparatus for measuring the reactivity of a spent fuel assembly
US4941112A (en) Method and device to measure the lithium concentration in the primary cooling circuit of a nuclear reactor
JP2000162374A (en) Method for neutron irradiation dose and device of core performance calculation
JP2000137093A (en) Fixed in-pile nuclear instrumentation system of reactor, nuclear instrumentation process, power distribution calculating device and method, and power distribution monitoring system and method
JPH0548438B2 (en)
JP2012112862A (en) Method and apparatus for measuring burn-up distribution of fuel assembly
Simms et al. Loss-of-flow transient reactor test facility tests l6 and l7 with irradiated liquid-metal fast breeder reactor type fuel
Oeda et al. Calibration of burnup monitor installed in Rokkasho Reprocessing Plant
JP3229455B2 (en) Method and apparatus for evaluating core characteristics of boiling water reactor
Mitin et al. SPND detectors response at the control rod drop in WWER-1000. Measurement and modelling results
JP2001083280A (en) Incore instrumentation signal processor and incore instrumentation system of reactor
JP3785847B2 (en) Reactor power measuring device
Ewing Burnup verification measurements on spent fuel assemblies at Arkansas Nuclear One
JP3863690B2 (en) Fixed in-reactor instrumentation system
JPH02110399A (en) Automatic atomic reactor starting apparatus
JP4429707B2 (en) Automatic thermal limit value monitoring device
Harmms et al. The spent fuel safety experiment
Watson The poisoning of NRX pile
McKinnon et al. Monticello BWR spent fuel assembly decay heat predictions and measurements
Burgoyne et al. THE EFFECT OP OXIDATION AND CRUD DEPOSITS ON THE EMISSIYITY OF ZIRCALOY-2 CLADDING
Connolly Interim Report on Nuclear Analysis of SGR Fueling
Cole et al. Design and Operation of the ORR

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term