JPH0652273B2 - Circular integration type optical CT - Google Patents

Circular integration type optical CT

Info

Publication number
JPH0652273B2
JPH0652273B2 JP1053462A JP5346289A JPH0652273B2 JP H0652273 B2 JPH0652273 B2 JP H0652273B2 JP 1053462 A JP1053462 A JP 1053462A JP 5346289 A JP5346289 A JP 5346289A JP H0652273 B2 JPH0652273 B2 JP H0652273B2
Authority
JP
Japan
Prior art keywords
circular
faraday
optical path
current
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1053462A
Other languages
Japanese (ja)
Other versions
JPH02232566A (en
Inventor
武司 沢
潔 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP1053462A priority Critical patent/JPH0652273B2/en
Publication of JPH02232566A publication Critical patent/JPH02232566A/en
Publication of JPH0652273B2 publication Critical patent/JPH0652273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、周回積分型光CTに関し、特に、その測定
精度を改良したものに関する。
TECHNICAL FIELD The present invention relates to a circular integration type optical CT, and more particularly, to an improved measurement accuracy thereof.

《従来の技術》 光CTは、ファラデー効果を示す物質で構成したセンサ
ーを電流が流れている導体の近傍に配置すると、電流の
周囲に発生する磁界により、センサー中を通過する光の
偏波面が回転する現象を利用して電流の大きさを測定す
る電力用の電流計測装置である。
<< Prior Art >> In optical CT, when a sensor made of a substance exhibiting the Faraday effect is arranged in the vicinity of a conductor in which an electric current flows, a magnetic field generated around the electric current causes the polarization plane of light passing through the sensor to be changed. It is a current measuring device for electric power that measures the magnitude of current by utilizing the phenomenon of rotation.

この種の電流計測装置では、被測定電流の外周に発生す
る磁界を介して電流に変換することを測定原理としてい
るので、例えば、一つのポイント型センサーで電流を測
定するとすれば、導体とセンサーとの相対的な位置関係
の精度が測定精度に影響を与えるだけでなく、測定対象
とする導体の近傍に位置する他相の電流による磁界が測
定誤差の大きな原因となる。
In this type of current measuring device, the principle of measurement is to convert the current to be measured via the magnetic field generated around the outer circumference of the current to be measured, so if one point type sensor measures current, for example, the conductor and sensor Not only does the accuracy of the relative positional relationship with and affect the measurement accuracy, but the magnetic field due to the current of the other phase located near the conductor to be measured is a major cause of measurement error.

そこで、このような誤差を補償し、測定精度を向上させ
る手段として、センサー内の光路が導体を一周するよう
に構成し、被測定電流の周囲の磁界の周回積分に近似的
に比例した偏波面の回転角(ファラデー回転角)が得ら
れる周回積分型の光CTが提供されている。
Therefore, as a means of compensating for such errors and improving the measurement accuracy, the optical path in the sensor is configured so as to go around the conductor, and the polarization plane approximately proportional to the circular integration of the magnetic field around the current to be measured. There is provided a circular integration type optical CT capable of obtaining the rotation angle (Faraday rotation angle).

第3図は、周回積分型光CTの代表的な構造例を示して
いる。
FIG. 3 shows a typical structure example of the circular integration type optical CT.

同図に示す周回積分型光CTは、4本のファラデーロッ
ドF1〜F4と、プリズムPとから構成されている。
The circular integration type light CT shown in the figure is composed of four Faraday rods F1 to F4 and a prism P.

4本のファラデーロッドF1〜F4は、例えば、鉛ガラ
スなどのファラデー効果を有する部材から構成され、プ
リズムPは光を90度偏向するように直角プリズムが2
個組み合わされている。
The four Faraday rods F1 to F4 are made of, for example, a member having a Faraday effect such as lead glass, and the prism P has a right-angled prism so as to deflect light by 90 degrees.
Individually combined.

4本のファラデーロッドF1〜F4は、平面的にみて正
方形となる各辺上に配置され、かつ、対向する一対のフ
ァラデーロッドF1,F3に対して、他方の一対のファ
ラデーロッドF2,F4がその厚みの分だけ上方に配置
されている。
The four Faraday rods F1 to F4 are arranged on each side that is a square when seen in a plan view, and the other pair of Faraday rods F2 and F4 are opposed to the pair of Faraday rods F1 and F3 that face each other. It is placed above by the thickness.

そして、正方形の3つの隅部には、それぞれプリズムP
が配置され、ファラデーロッドF1の一端の入射面1か
ら導入された入射光Sが、ファラデーロッドF1の他
端側でプリズムPにより上方に偏向されてファラデーロ
ッド2の一端に入射し、他端側で再び下方に偏向されて
フラデ−ロッドF3に入射し、最終的に出射光Sがフ
ラデ−ロッドF4の一端の出射面2から取り出され、正
方形のほぼ中心に挿通された導体3の外周に平面的に閉
鎖された周回光路Sが形成される。
The prisms P are respectively provided at the three corners of the square.
The incident light S i introduced from the incident surface 1 at one end of the Faraday rod F1 is deflected upward by the prism P at the other end of the Faraday rod F1 and enters one end of the Faraday rod F2. Side, it is deflected downward again and is incident on the Frade rod F3, and finally the emitted light S O is taken out from the emission surface 2 at one end of the Frade rod F4, and the outer circumference of the conductor 3 is inserted almost at the center of the square. A circular optical path S that is closed in a plane is formed.

以上のように構成された周回積分型光CTでは、入射光
と、周回光路Sを回った出射光Sとが相互に直交
する方向に位置しており、これらが周回光路Sの入,出
射部分で立体的に交差するように工夫されているが、こ
のような構造には以下に説明する技術的課題があった。
In the circular integration type light CT configured as described above, the incident light S i and the outgoing light S O that has rotated the circular optical path S are located in directions orthogonal to each other, and these are the incident light of the circular optical path S. The device is designed so as to intersect three-dimensionally at the emission part, but such a structure had the technical problems described below.

《発明が解決しようとする課題》 第4図は、第3図に示した従来の周回積分型光CTの
入,出射部分を被測定電流Iの方向から見た平面拡大図
である。
<< Problems to be Solved by the Invention >> FIG. 4 is an enlarged plan view of the input and output portions of the conventional circular integration type optical CT shown in FIG. 3 as seen from the direction of the current I to be measured.

第4図から明らかなように、従来の周回積分型光CTで
は、周回光路Sの平面上の交点Oが入射面1および出射
面2の内方に位置している。
As is clear from FIG. 4, in the conventional circular integration type light CT, the intersection point O on the plane of the circular optical path S is located inside the entrance surface 1 and the exit surface 2.

このため、周回積分の閉路から外れた部分A,Aが生
じ、これらの部分Aがファラデー効果を有しているの
で、特に、他相電流の磁界の影響がこの部分Aに及ん
で、測定誤差が大きくなるという問題があった。
For this reason, there are portions A and A that are out of the closed loop of the circular integration, and since these portions A have the Faraday effect, the influence of the magnetic field of the other-phase current particularly on this portion A causes measurement error. There was a problem that became large.

この発明はこのような従来の問題点に鑑みてなされたも
のであって、その目的とするところは、他相磁界の影響
を排除することにより測定精度を向上させることができ
る周回積分型光CTを提供することにある。
The present invention has been made in view of the above conventional problems, and an object thereof is a circuit integration type optical CT capable of improving the measurement accuracy by eliminating the influence of the magnetic field of another phase. To provide.

《課題を解決するための手段》 上記目的を達成するために、本発明は、被測定電流が流
れている導体の外周にファラデー効果を有する物質で
入,出射部において立体的に交差し、かつ、平面的に閉
鎖された周回光路を形成し、この周回光路の一端から入
射光を導入し、前記周回光路を通ってその他端から前記
入射光と直交する方向に取出された出射光のファラデー
回転角から前記電流の大きさを測定する光CTであっ
て、前記周回光路が平面上で交差する交点上にその入射
面と出射面とを位置させたことを特徴とする。
<< Means for Solving the Problem >> In order to achieve the above object, the present invention has a material having a Faraday effect on the outer circumference of a conductor through which a current to be measured flows, and three-dimensionally intersects at the exit portion, and , Forming a circularly closed optical path, introducing the incident light from one end of this circular optical path, and passing through the circular optical path, the Faraday rotation of the outgoing light extracted from the other end in the direction orthogonal to the incident light. In the optical CT for measuring the magnitude of the electric current from an angle, the incident surface and the outgoing surface are located at an intersection where the circular optical paths intersect on a plane.

《作用》 上記構成の周回積分型光CTによれば、被測定電流が流
れている導体の外周に形成される周回光路の入射面と出
射面とが、入,出射部で立体的に交差し、かつ、平面的
に閉鎖された周回光路の平面上の交点上に位置させられ
るので、周回積分の閉路から外れた部分がなくなり、他
相電流の磁界による影響が排除される。
<< Operation >> According to the circular integration type optical CT having the above configuration, the incident surface and the outgoing surface of the circular optical path formed on the outer circumference of the conductor in which the current to be measured flows are three-dimensionally intersected at the entrance and exit parts. Moreover, since it is located at the intersection of the plane-closed circular optical path on the plane, there is no part out of the circular integral closed circuit, and the influence of the magnetic field of the other-phase current is eliminated.

《実施例》 以下、この発明の好適な実施例について添付図面を参照
にして詳細に説明する。
<Example> Hereinafter, a preferred example of the present invention will be described in detail with reference to the accompanying drawings.

第1図および第2図は、この発明にかかる周回積分型光
CTの一実施例を示している。
1 and 2 show an embodiment of the circular integration type optical CT according to the present invention.

なお、同図に示す光CTでは、前述した従来の周回積分
型光CTと同一もしくは相当する部分に同一符号を用い
ている。
In the optical CT shown in the figure, the same reference numerals are used for the same or corresponding portions as those of the conventional circular integration type optical CT described above.

第1図および第2図は、この発明にかかる光CTの周回
光路Sの入,出射部の拡大図であって、光CTの全体構
造は、第3図に示すようになっていて、4本のファラデ
ーロッドF1〜F4と、3組のプリズムPを有してい
る。
FIGS. 1 and 2 are enlarged views of the entrance and exit portions of the circulating optical path S of the optical CT according to the present invention, and the overall structure of the optical CT is as shown in FIG. It has books Faraday rods F1 to F4 and three sets of prisms P.

上記ファラデーロッドF1〜F4は、平面的にみて正方
形となる各辺上に配置され、対向する辺上に位置する一
対のファラデーロッドF1,F3が、他方の対向する辺
上に位置する一対F2,F4に対してその厚み分だけ下
方に配置されており、正方形の3つの隅部には、それぞ
れプリズムPが配置され、ファラデーロッドF1の一端
の入射面1から導入された入射光Sが、ファラデーロ
ッドF1の他端側でプリズムPにより上方に偏向されて
ファラデーロッド2の一端に入射し、他端側で再び下方
に偏向されてフラデ−ロッドF3に入射し、最終的に出
射光Sがフラデ−ロッドF4の一端の出射面2から取
り出され、正方形のほぼ中心に挿通された導体3の外周
に、入,出射部で立体的に交差し、かつ、平面的に閉鎖
された周回光路Sが形成されている。
The Faraday rods F1 to F4 are arranged on the respective sides that are square in plan view, and the pair of Faraday rods F1 and F3 located on the opposite sides are the pair of F2 located on the other opposing sides. The prism P is arranged below F4 by the thickness thereof, and the prisms P are arranged at the three corners of the square, respectively, and the incident light S i introduced from the incident surface 1 at one end of the Faraday rod F1 is The other end of the Faraday rod F1 is deflected upward by the prism P to enter one end of the Faraday rod 2, and the other end is again deflected downward to enter the Frade rod F3, and finally emitted light S O Is taken out from the exit surface 2 at one end of the Frade rod F4, and the outer circumference of the conductor 3 is inserted into the approximate center of the square. There has been formed.

以上のような周回積分型光CTとしての基本的な構成
は、従来のこの種の装置と同じである。
The basic configuration of the above-described circulation integration type optical CT is the same as that of the conventional device of this type.

しかし、このような構造の光CTでは、周回光路Sから
外れた部分にファラデーロッドF1,F4の一部が存在
しており、この部分が他相磁界の影響を受けて光CTの
測定精度を低下させていた。
However, in the optical CT having such a structure, a part of the Faraday rods F1 and F4 exists in a portion deviated from the orbiting optical path S, and this portion is affected by the magnetic field of the other phase to improve the measurement accuracy of the optical CT. Had lowered.

そこで、この発明では、入,出射部で立体的に交差する
周回光路Sの平面上の交点C上に、周回光路Sの入射面
10と出射面12とをそれぞれ位置させた。
Therefore, in the present invention, the entrance surface 10 and the exit surface 12 of the orbiting optical path S are respectively positioned on the intersection C on the plane of the orbiting optical path S that three-dimensionally intersects at the entrance and exit portions.

つまり、周回光路Sの入,出射部を被測定電流Iが流れ
ている方向から見ると、立体的に交差している周回光路
Sの交点Oが平面上に現れるので、この交点O上に入射
面10となっているファラデーロッドF1の一端面を位
置させるとともに、出射面12となっているファラデー
ロッドF4の一端面を位置させている。
That is, when the entrance and exit portions of the orbiting optical path S are viewed from the direction in which the current I to be measured flows, the intersection O of the orbiting optical path S that is three-dimensionally intersecting appears on the plane and is incident on this intersection O. The one end surface of the Faraday rod F1 serving as the surface 10 is located, and the one end surface of the Faraday rod F4 serving as the emitting surface 12 is located.

以上のように構成された周回積分型光CTによれば、被
測定電流Iが流れている導体3の外周に形成される周回
光路Sの入射面10と出射面12とが、入,出射部で立
体的に交差し、かつ、平面的に閉鎖された周回光路Sの
交点O上に位置させられるので、周回積分の閉路から外
れた部分がなくなり、他相電流の磁界による影響が排除
され、これにより、光CTの測定精度を大幅に向上させ
る。
According to the circular integration type optical CT configured as described above, the incident surface 10 and the outgoing surface 12 of the circular optical path S formed on the outer periphery of the conductor 3 in which the current I to be measured flows are the entrance and exit portions. Since it is positioned on the intersection point O of the circular optical path S that is three-dimensionally intersected by and is planarly closed, there is no part outside the closed loop of the circular integration, and the influence of the magnetic field of the other phase current is eliminated, This greatly improves the measurement accuracy of the optical CT.

なお、上記実施例では、周回光路Sを形成するファラデ
ーロッドF1〜F4とプリズムPとが分離された状態の
ものを例示したが、これらの各部品が一体として形成さ
れたものであっても良い。
In the above-described embodiment, the Faraday rods F1 to F4 forming the orbiting optical path S and the prism P are separated, but these parts may be integrally formed. .

《発明の効果》 以上実施例で説明したように、この発明にかかる周回積
分型光CTにおいては、被測定電流の外周に形成される
周回光路の入,出射面の位置を変更するという簡単な構
成によって、光CTに対する多層磁界の影響が排除さ
れ、これにより測定精度が大きく向上するという格別の
効果が得られる。
<< Effects of the Invention >> As described in the above embodiments, in the circular integration type optical CT according to the present invention, it is easy to change the positions of the entrance and exit surfaces of the circular optical path formed on the outer circumference of the current to be measured. The configuration eliminates the influence of the multilayer magnetic field on the optical CT, which has the particular effect of significantly improving the measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる周回積分型光CTの一実施例を
示す要部拡大平面図、第2図は第1図の側面図、第3図
は従来の周回積分型光CTの全体斜視図、第4図は第3
図の要部拡大平面図である。 3……導体 10……入射面 12……出射面 F1〜F4……ファラデーロッド I……被測定電流 P……プリズム S……周回光路 S……入射光 S……出射光
FIG. 1 is an enlarged plan view of an essential part showing an embodiment of a circular integration type optical CT according to the present invention, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a general perspective view of a conventional circular integration type optical CT. Fig. 4 and Fig. 3
It is a principal part enlarged plan view of the figure. 3 ... Conductor 10 ... Incident surface 12 ... Ejection surface F1-F4 ... Faraday rod I ... Current to be measured P ... Prism S ... Circular optical path Si ... Incident light SO ... Outgoing light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被測定電流が流れている導体の外周にファ
ラデー効果を有する物質で入,出射部において立体的に
交差し、かつ、平面的に閉鎖された周回光路を形成し、
この周回光路の一端から入射光を導入し、前記周回光路
を通ってその他端から前記入射光と直交する方向に取出
された出射光のファラデー回転角から前記電流の大きさ
を測定する光CTであって、前記周回光路が平面上で交
差する交点上にその入射面と出射面とを位置させたこと
を特徴とする周回積分型光CT。
1. A circular optical path which is three-dimensionally crossed at the entrance and exit parts of a conductor having a Faraday effect on the outer periphery of a conductor through which a current to be measured flows and which is closed in a plane,
An optical CT that measures the magnitude of the current from the Faraday rotation angle of the outgoing light that is introduced from one end of this circular optical path and that is extracted from the other end through the circular optical path in the direction orthogonal to the incident light. A circular integration type optical CT, characterized in that the entrance surface and the exit surface are located at an intersection where the circular optical paths intersect on a plane.
JP1053462A 1989-03-06 1989-03-06 Circular integration type optical CT Expired - Lifetime JPH0652273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053462A JPH0652273B2 (en) 1989-03-06 1989-03-06 Circular integration type optical CT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053462A JPH0652273B2 (en) 1989-03-06 1989-03-06 Circular integration type optical CT

Publications (2)

Publication Number Publication Date
JPH02232566A JPH02232566A (en) 1990-09-14
JPH0652273B2 true JPH0652273B2 (en) 1994-07-06

Family

ID=12943526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053462A Expired - Lifetime JPH0652273B2 (en) 1989-03-06 1989-03-06 Circular integration type optical CT

Country Status (1)

Country Link
JP (1) JPH0652273B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69424496T2 (en) * 1993-10-21 2001-01-18 Fuji Electric Co., Ltd. Optical current transformer

Also Published As

Publication number Publication date
JPH02232566A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JPH05297089A (en) Magnetic sensor
US5237265A (en) Fiber optics arrangement for measuring the intensity of an electric current
JPH0652273B2 (en) Circular integration type optical CT
CN110308409A (en) Magnetic Sensor and magnetic sensor system
JP3200358B2 (en) Optical current transformer
WO2022067599A1 (en) Three-axis hall magnetometer
JPH0424665B2 (en)
JP2615732B2 (en) Magnetic field detector
JPS62163975A (en) Photocurrent transformer
JPH0652274B2 (en) Optical CT type current measuring device
US4975585A (en) Radiation dose monitor
JP2658542B2 (en) Optical current transformer
JPH0750161B2 (en) Magnetic sensor
US11892527B2 (en) Magnetic sensor
JPH0861916A (en) Optical position and posture detection device
SU517854A1 (en) Farad cell for measuring current characteristics
JPH0735783A (en) Optical current transformer
JP2715145B2 (en) Optical current transformer
JPS62197716A (en) Photodetector
JPS5937461A (en) Optical current transformer
JPS6330705A (en) Angular displacement sensor
JPH01227482A (en) Magneto-resistive element
JPH0252827B2 (en)
JPH06177454A (en) Ferromagnetic thin film magnetoresistance element and magnetic sensor using it
JPS61201128A (en) Torque detecting device