JPH065221B2 - Zirconia oxygen analyzer - Google Patents

Zirconia oxygen analyzer

Info

Publication number
JPH065221B2
JPH065221B2 JP60079715A JP7971585A JPH065221B2 JP H065221 B2 JPH065221 B2 JP H065221B2 JP 60079715 A JP60079715 A JP 60079715A JP 7971585 A JP7971585 A JP 7971585A JP H065221 B2 JPH065221 B2 JP H065221B2
Authority
JP
Japan
Prior art keywords
temperature
zirconia
sensor
diode
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60079715A
Other languages
Japanese (ja)
Other versions
JPS61237050A (en
Inventor
眞人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60079715A priority Critical patent/JPH065221B2/en
Publication of JPS61237050A publication Critical patent/JPS61237050A/en
Publication of JPH065221B2 publication Critical patent/JPH065221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、温度調節並びに信号伝送に必要な配線を大幅
に減らしたジルコニア式酸素濃度計に関する。
TECHNICAL FIELD The present invention relates to a zirconia-type oximeter in which wiring required for temperature control and signal transmission is significantly reduced.

<従来の技術> 従来、ジルコニア式酸素センサを用いた酸素濃度計で
は、センサからの出力信号を取り出す為の線路2本、前
記センサを加熱するヒータへの電源供給用の線路2本、
並びに前記ヒータの温度調節を行う為、前記センサ部分
の温度を検出する熱電対等の補償導線2本の計6本が必
要であった。
<Prior Art> Conventionally, in an oximeter using a zirconia oxygen sensor, two lines for extracting an output signal from the sensor, two lines for supplying power to a heater for heating the sensor,
Moreover, in order to adjust the temperature of the heater, a total of six compensating wires such as two thermocouples for detecting the temperature of the sensor portion are required.

更に、従来、複数のジルコニア式酸素センサをまとめて
一台のコンバータで取扱う場合があるが、このような場
合、前記コンバータとセンサとの間の配線数が余りにも
多くなり過ぎる為、第5図で示すように、ジルコニア式
酸素センサS1,S2・・・毎に温度調節器TC1,T
C2・・・を設け、温度調節用の配線4本を各別に減ら
し、コンバータCV1への配線数の削減を計っている。
Further, conventionally, a plurality of zirconia-type oxygen sensors may be collectively handled by one converter. In such a case, however, the number of wires between the converter and the sensor becomes too large. , The temperature controllers TC1, T are provided for each of the zirconia oxygen sensors S1, S2 ,.
C2 ... is provided and four wires for temperature control are individually reduced to reduce the number of wires to the converter CV1.

このように、従来装置では、配線数が多く、ターミナル
・ボックスも必然的に大きなものとなりコストが嵩み、
また誤配線の原因となっていた。更に複数のジルコニア
式酸素センサを一台のコンバータで取扱うような場合、
各センサ毎に温度調節器を設ける必要があった。
Thus, in the conventional device, the number of wires is large, the terminal box is inevitably large, and the cost is high.
In addition, it was a cause of incorrect wiring. Furthermore, when handling multiple zirconia oxygen sensors with one converter,
It was necessary to provide a temperature controller for each sensor.

<発明が解決しようとする問題点> 本発明の解決しようとする技術的課題は、前記ジルコニ
ア式酸素濃度計において、温度調節並びに信号伝送に必
要な配線を大幅に減らすことにある。
<Problems to be Solved by the Invention> A technical problem to be solved by the present invention is to drastically reduce wiring required for temperature control and signal transmission in the zirconia oximeter.

<問題点を解決するための手段> このような目的を達成するために、本発明は、電源から
ジルコニア式酸素センサに電圧を印加し、このジルコニ
ア式酸素センサの電極間を流れる電流を測定することで
酸素濃度を測定するジルコニア式酸素センサ濃度計にお
いて、 前記電源と前記ジルコニア式酸素センサとの間に直列接
続された第1のダイオードと、 前記ジルコニア式酸素センサに近接して設けられてい
て、前記ジルコニア式酸素センサを加熱すると共に、自
らに流れる電流に基づいて前記ジルコニア式酸素センサ
の温度を測定するヒータ兼温度センサと、 このヒータ兼温度センサと前記電源の間に直列接続さ
れ、前記第1のダイオードと逆極性に設けられた第2の
ダイオードと、 前記電源の正、負の極性を交互に切り換え、前記第1の
ダイオードと前記第2のダイオードに順バイアスの電圧
を交互に印加するスイッチ手段と、 前記第2のダイオードに順バイアスの電圧を印加した時
に、前記ヒータ兼温度センサに流れる電流値を測定し、
前記ヒータ兼温度センサの温度を得る電流検出素子と、 この電流検出素子が得た温度が設定温度になった時に前
記スイッチ手段を切り換えて前記第1のダイオードに順
バイアスの電圧を印加し、測定モードに切り換える駆動
回路と、 を設けたことを特徴としている。
<Means for Solving Problems> In order to achieve such an object, the present invention applies a voltage from a power supply to a zirconia oxygen sensor and measures a current flowing between electrodes of the zirconia oxygen sensor. In a zirconia-type oxygen sensor densitometer for measuring the oxygen concentration, a first diode connected in series between the power supply and the zirconia-type oxygen sensor, and provided in proximity to the zirconia-type oxygen sensor, , A heater-temperature sensor that heats the zirconia-type oxygen sensor and measures the temperature of the zirconia-type oxygen sensor based on a current flowing through itself, and is connected in series between the heater-temperature sensor and the power source, A second diode provided with a polarity opposite to that of the first diode; and a positive polarity and a negative polarity of the power source are alternately switched, A switch means for applying a forward bias voltage alternately diode and the second diode, upon application of a forward bias voltage to the second diode, to measure the current flowing through the heater and temperature sensor,
A current detection element for obtaining the temperature of the heater / temperature sensor, and a switch for switching the switching means when the temperature obtained by the current detection element reaches a set temperature to apply a forward bias voltage to the first diode for measurement. It is characterized in that a drive circuit for switching to the mode is provided.

<作用> 前記の技術手段は次のように作用する。即ち、前記ジル
コニア式酸素センサによる測定と前記ヒータ兼温度セン
サ抵抗体による温度調節を、前記センサとコンバータと
の間の同一の配線を利用して、或は少なくとも一部の配
線を共用して、時分割的に行うようにした為、従来装置
と比較して温度調節並びに信号伝送に必要な配線の数を
大幅に減らすことが出来る。
<Operation> The above-mentioned technical means operates as follows. That is, the measurement by the zirconia oxygen sensor and the temperature adjustment by the heater / temperature sensor resistor are performed using the same wiring between the sensor and the converter, or at least a part of the wiring is shared, Since the time division is performed, the number of wires required for temperature control and signal transmission can be significantly reduced as compared with the conventional device.

<実施例> 以下図面に従い本発明の実施例を説明する。第1図は本
発明の実施例装置を示す回路図である。図中、Sは、例
えば特公昭59−26895号に示される如き、ジルコ
ニア式酸素センサで、この部分を第2図の拡大図に従い
説明を行う。S01は安定化ジルコニアを用いた固体電
解質、S02は室を形成するアダプタで、ジルコニアS
01の一方の面に取り付けられている。このアダプタの
頂部には拡散孔S03が設けられている。S04は前記
室側の面に設けられた多孔質内部電極、S05はジルコ
ニアS01の外側の面に設けられた多孔質外部電極であ
る。
<Example> An example of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing an apparatus according to an embodiment of the present invention. In the figure, S is a zirconia-type oxygen sensor as shown in, for example, Japanese Patent Publication No. 59-26895, and this portion will be described with reference to an enlarged view of FIG. S01 is a solid electrolyte using stabilized zirconia, S02 is an adapter forming a chamber, and zirconia S
01 is attached to one surface. A diffusion hole S03 is provided at the top of this adapter. S04 is a porous inner electrode provided on the surface on the chamber side, and S05 is a porous outer electrode provided on the outer surface of the zirconia S01.

安定化ジルコニアは高温において良好な酸素イオン導電
体となる為、加熱した状態で前記電極間に直流電圧を印
加すると、これにより前記室外のガス環境中の酸素と内
部ガス環境中の酸素との分圧勾配が形成され、これら電
極間に拡散孔S03より前記内部室に拡散した酸素に比
例した電流が流れる。
Stabilized zirconia becomes a good oxygen ion conductor at high temperature, and therefore when a DC voltage is applied between the electrodes in a heated state, this causes a difference between oxygen in the outdoor gas environment and oxygen in the internal gas environment. A pressure gradient is formed, and a current proportional to the oxygen diffused into the internal chamber flows through the diffusion hole S03 between these electrodes.

第1図に戻り、D1はジルコニア式酸素センサSに直列
接続された第1のダイオード、R1はヒータ兼温度セン
サ抵抗体である。この抵抗体には、プラチナ線或はタン
グステン線等抵抗の温度係数の大きなものが用いられ
る。また温度と抵抗との関係があらかじめ求められたも
のが使用される。D2は第1のダイオードD1と反対の
極性でヒータ兼温度センサ抵抗体R1に直列接続された
第2のダイオードである。
Returning to FIG. 1, D1 is a first diode connected in series to the zirconia oxygen sensor S, and R1 is a heater / temperature sensor resistor. As the resistor, a platinum wire or a tungsten wire having a large temperature coefficient of resistance is used. Further, the one in which the relationship between the temperature and the resistance is obtained in advance is used. D2 is a second diode having a polarity opposite to that of the first diode D1 and connected in series to the heater / temperature sensor resistor R1.

これらによって形成された二つの直列回路は、配線L1
及びL2に並列接続されている。尚、一点鎖線で囲まれ
た部分Aは高温に加熱される部分であって、実際の構成
では第1、第2のダイオードD1,D2と離隔して設置
されなければならない。
The two series circuits formed by these are connected to the wiring L1.
And L2 are connected in parallel. The portion A surrounded by the alternate long and short dash line is a portion that is heated to a high temperature, and in an actual configuration, it must be installed separately from the first and second diodes D1 and D2.

一点鎖線て囲まれた部分Bはコンバータで、この中には
電源Vo、この電源の極性を反転し前記二つの直列回路
に接続する切換スイッチSW1,SW2,SW3、抵抗
R2とツェナーダイオードZD1とよりなる定電圧回
路、この直列回路に流れる電流i1を検出し、出力電圧
Eoを発生する検出抵抗Ro、ヒータ兼温度センサ抵抗
体R1に流れる電流i2を検出する電流検出素子M1が
含まれる。
A portion B surrounded by an alternate long and short dash line is a converter, in which a power source Vo, changeover switches SW1, SW2 and SW3 for inverting the polarity of the power source and connecting to the two series circuits, a resistor R2 and a zener diode ZD1 A constant voltage circuit, a detection resistor Ro that detects the current i1 flowing in the series circuit to generate the output voltage Eo, and a current detection element M1 that detects the current i2 flowing in the heater / temperature sensor resistor R1.

COMは電流検出素子M1からの信号Eiに基づき温度
制御信号を発生する演算装置、DR1はこの演算装置の
出力に基づき切換スイッチSW1〜SW3駆動用のパル
スを発生する駆動回路である。
COM is an arithmetic unit that generates a temperature control signal based on the signal Ei from the current detection element M1, and DR1 is a drive circuit that generates pulses for driving the changeover switches SW1 to SW3 based on the output of this arithmetic unit.

このように構成された本発明の実施例装置の動作につい
て第3図の波形図を参照しながら説明を行う。第3図に
おいて、図(a)は温度調節の状態を、図(b)は測定
の状態を表わす。切換スイッチSW1〜SW3が第1図
で示すような状態に切換えられているとき、測定状態に
あり、第1のダイオードD1が順方向にバイアスされ、
ジルコニア式酸素センサSの電極間には測定電流i1が
流れる。
The operation of the apparatus according to the embodiment of the present invention thus configured will be described with reference to the waveform chart of FIG. In FIG. 3, the figure (a) shows the state of temperature control, and the figure (b) shows the state of measurement. When the changeover switches SW1 to SW3 are changed to the states shown in FIG. 1, the changeover switches SW1 to SW3 are in the measurement state, and the first diode D1 is forward biased,
A measurement current i1 flows between the electrodes of the zirconia oxygen sensor S.

第3図(b)で示すように、測定期間に入った直後で
は、ジルコニア式酸素センサSにおける前記室内には多
くの酸素が存在する為、流れる電流は多いが、拡散孔S
03を通して行われる酸素の拡散速度は酸素が酸素イオ
ンとなってジルコニアS01部分を移動する速度に比べ
遅い為、前記室内に存在する酸素の量は時間の経過と共
に減少し、測定電流i1は図に示すように徐々に低下し
て行く。
As shown in FIG. 3 (b), immediately after the start of the measurement period, a large amount of oxygen exists in the chamber of the zirconia oxygen sensor S, so a large current flows, but the diffusion hole S
Since the diffusion rate of oxygen performed through 03 is slower than the rate at which oxygen becomes oxygen ions and moves through the zirconia S01 portion, the amount of oxygen existing in the chamber decreases with the passage of time, and the measured current i1 is shown in the figure. It gradually decreases as shown.

酸素量の測定は、電流i1を測定期間to′に亘り積分
して行う(尚、本実施例の場合、検出抵抗Roで検出さ
れた出力電圧Eoを積分して求める。)。
The oxygen amount is measured by integrating the current i1 over the measurement period to '(in the present embodiment, the output voltage Eo detected by the detection resistor Ro is integrated and obtained).

次に、温度調節は切換スイッチSW1〜SW3を第1図
とは反対の状態に切換えて行う。これにより、第2のダ
イオードD2が順方向にバイアスされ、ヒータ兼温度セ
ンサ抵抗体R1には電流i2が流れる。
Next, the temperature is adjusted by switching the changeover switches SW1 to SW3 to the state opposite to that shown in FIG. As a result, the second diode D2 is forward biased, and the current i2 flows through the heater / temperature sensor resistor R1.

ヒータ兼温度センサ抵抗体R1の抵抗値Rhは以下で求
められ、 Rh=Vo/i2 …(1) 抵抗体R1の温度と抵抗値との関係は予め求められてい
るから、抵抗値Rhより温度を知ることが出来る。
The resistance value Rh of the heater / temperature sensor resistor R1 is calculated as follows: Rh = Vo / i2 (1) Since the relationship between the temperature and the resistance value of the resistor R1 is previously calculated, the temperature is calculated from the resistance value Rh. You can know

演算装置COM(1)式の演算を行い、前記温度信号と
設定温度との差に基づく出力を駆動回路DR1へ与え
る。
The arithmetic unit COM (1) is calculated, and an output based on the difference between the temperature signal and the set temperature is given to the drive circuit DR1.

駆動回路DR1は、例えば、正、零、負の三つの状態か
らなる駆動パルスを発生する。この状態パルスによって
切換スイッチSW1〜SW3が切換えられ、、期間to
での温度調節と期間to′での測定とが交互に時分割的
に行われる。温度調節期間toは、更に電源Voがヒー
タ兼温度センサSに接続され、加熱を行う期間t1と、
残りの期間とから構成される。期間t1は前記温度信号
と設定温度との誤差信号に基づき決定され、これに基づ
きヒータ兼温度センサ抵抗体R1の抵抗値が一定になる
ように温度制御される。
The drive circuit DR1 generates a drive pulse composed of, for example, three states of positive, zero, and negative. The changeover switches SW1 to SW3 are changed over by this state pulse, and the period to
The temperature control and the measurement in the period to 'are alternately performed in a time division manner. In the temperature adjustment period to, the power source Vo is further connected to the heater / temperature sensor S to perform heating, and
It consists of the remaining period. The period t1 is determined based on the error signal between the temperature signal and the set temperature, and the temperature is controlled so that the resistance value of the heater / temperature sensor resistor R1 becomes constant based on this.

第4図は本発明の他の実施例装置を示す回路図である。
図中、第1図における要素と同じ要素には同一符号を付
し、これらについての説明は省略する。
FIG. 4 is a circuit diagram showing an apparatus according to another embodiment of the present invention.
In the figure, the same elements as the elements in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

本実施例装置では、ジルコニア式酸素センサSとして、
ジルコニアの両側に多孔質電極を設け、両側より基準ガ
スと測定ガスとを直接接触させ、これら環境ガス中の酸
素の分圧差に応じた起電力を発生するネルンスト式のセ
ンサが用いられている。このセンサは電池として作用す
るもので、本実施例装置の場合、配線L3を新たに設
け、配線L2,L3との間で測定電圧の検出を行うにし
ている。
In the device of the present embodiment, as the zirconia oxygen sensor S,
A Nernst type sensor is used in which porous electrodes are provided on both sides of zirconia, and a reference gas and a measurement gas are directly contacted from both sides to generate an electromotive force according to a partial pressure difference of oxygen in these environmental gases. This sensor acts as a battery, and in the case of the device of this embodiment, the wiring L3 is newly provided and the measurement voltage is detected between the wiring L2 and L3.

尚、ジルコニア式酸素センサSによる測定とヒータ兼温
度センサ抵抗体R1による温度調節とを、時分割的に行
う点は第1図に示す実施例装置と同じである。
The measurement by the zirconia oxygen sensor S and the temperature adjustment by the heater / temperature sensor resistor R1 are performed in a time-division manner, which is the same as the embodiment apparatus shown in FIG.

<発明の効果> 本発明によれば、前記ジルコニア式酸素センサによる測
定と前記ヒータ兼温度センサ抵抗体による温度調節と
を、前記センサとコンバータとの間の同一の配線を利用
して、或は少なくとも一部の配線を共用して、時分割的
に行うようにした為、従来装置と比較して温度調節並び
に信号伝送に必要な配線の数を大幅に減らすことが出来
る。
<Advantages of the Invention> According to the present invention, the measurement by the zirconia oxygen sensor and the temperature adjustment by the heater / temperature sensor resistor are performed by using the same wiring between the sensor and the converter, or Since at least part of the wiring is shared and the wiring is performed in a time-division manner, the number of wirings required for temperature control and signal transmission can be significantly reduced as compared with the conventional device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例装置を示す回路図、第2図は第1
図に示す本発明実施例装置の部分拡大図、第3図は第1
図に示す本発明実施例装置の動作を説明する為の波形
図、第4図は本発明の他の実施例装置を示す回路図、第
5図は従来装置の構成図である。 S…ジルコニア式酸素センサ、D1…第1のダイオー
ド、R1…ヒータ兼温度センサ抵抗体、D2…第2のダ
イオード、B…コンバータ、Vo…電源、SW1〜SW
3…切換スイッチ、COM…演算装置、DR1…駆動回
路、L1〜L3…配線
FIG. 1 is a circuit diagram showing an apparatus according to an embodiment of the present invention, and FIG.
FIG. 3 is a partially enlarged view of the apparatus of the embodiment of the present invention shown in FIG.
FIG. 4 is a waveform diagram for explaining the operation of the device of the present invention shown in the figure, FIG. 4 is a circuit diagram showing another device of the present invention, and FIG. 5 is a configuration diagram of a conventional device. S ... Zirconia oxygen sensor, D1 ... First diode, R1 ... Heater / temperature sensor resistor, D2 ... Second diode, B ... Converter, Vo ... Power supply, SW1-SW
3 ... Changeover switch, COM ... Arithmetic device, DR1 ... Driving circuit, L1 to L3 ... Wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電源からジルコニア式酸素センサに電圧を
印加し、このジルコニア式酸素センサの電極間を流れる
電流を測定することで酸素濃度を測定するジルコニア式
酸素センサ濃度計において、 前記電源と前記ジルコニア式酸素センサとの間に直列接
続された第1のダイオードと、 前記ジルコニア式酸素センサに近接して設けられてい
て、前記ジルコニア式酸素センサを加熱すると共に、自
らに流れる電流に基づいて前記ジルコニア式酸素センサ
の温度を測定するヒータ兼温度センサと、 このヒータ兼温度センサと前記電源の間に直列接続さ
れ、前記第1のダイオードと逆極性に設けられた第2の
ダイオードと、 前記電源の正、負の極性を交互に切り換え、前記第1の
ダイオードと前記第2のダイオードに順バイアスの電圧
を交互に印加するスイッチ手段と、 前記第2のダイオードに順バイアスの電圧を印加した時
に、前記ヒータ兼温度センサに流れる電流値を測定し、
前記ヒータ兼温度センサの温度を得る電流検出素子と、 この電流検出素子が得た温度が設定温度になった時に前
記スイッチ手段を切り換えて前記第1のダイオードに順
バイアスの電圧を印加し、測定モードに切り換える駆動
回路と、 を設けたことを特徴としたジルコニア式酸素センサ濃度
計。
1. A zirconia oxygen sensor densitometer for measuring oxygen concentration by applying a voltage from a power source to a zirconia oxygen sensor and measuring a current flowing between electrodes of the zirconia oxygen sensor, comprising: A first diode connected in series between the zirconia oxygen sensor and the zirconia oxygen sensor, which is provided in proximity to the zirconia oxygen sensor, heats the zirconia oxygen sensor, and based on the current flowing through itself, A heater / temperature sensor for measuring the temperature of a zirconia-type oxygen sensor, a second diode connected in series between the heater / temperature sensor and the power source, and having a polarity opposite to that of the first diode, and the power source. Is alternately switched between positive and negative polarities, and a forward bias voltage is alternately applied to the first diode and the second diode. And a value of a current flowing through the heater / temperature sensor when a forward bias voltage is applied to the second diode,
A current detecting element for obtaining the temperature of the heater / temperature sensor, and a switch for switching the switch means when the temperature obtained by the current detecting element reaches a set temperature to apply a forward bias voltage to the first diode for measurement. A zirconia-type oxygen sensor densitometer characterized by having a drive circuit for switching to a mode.
JP60079715A 1985-04-15 1985-04-15 Zirconia oxygen analyzer Expired - Lifetime JPH065221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079715A JPH065221B2 (en) 1985-04-15 1985-04-15 Zirconia oxygen analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079715A JPH065221B2 (en) 1985-04-15 1985-04-15 Zirconia oxygen analyzer

Publications (2)

Publication Number Publication Date
JPS61237050A JPS61237050A (en) 1986-10-22
JPH065221B2 true JPH065221B2 (en) 1994-01-19

Family

ID=13697899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079715A Expired - Lifetime JPH065221B2 (en) 1985-04-15 1985-04-15 Zirconia oxygen analyzer

Country Status (1)

Country Link
JP (1) JPH065221B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505459B2 (en) * 1987-01-27 1996-06-12 日本碍子株式会社 Adjustment method of oxygen concentration measuring device
JP4532001B2 (en) * 2001-02-27 2010-08-25 日本特殊陶業株式会社 Gas sensor
DE102006014681A1 (en) * 2006-03-28 2007-10-04 Robert Bosch Gmbh Gas sensor for internal combustion engine, has pump supply line and heating pipeline that are electrically connected with each other and commonly ground, where Nernst voltage is measured between measuring line and reference pump supply line
DE102013216223A1 (en) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Universally applicable control and evaluation unit, in particular for operating a lambda probe

Also Published As

Publication number Publication date
JPS61237050A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US4543176A (en) Oxygen concentration detector under temperature control
EP1324028B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration.
EP0068321B1 (en) Oxygen sensing device having solid electrolyte cell and means for supplying controlled current thereto
EP1890139B1 (en) NOx sensor system with control circuit unit
US5611909A (en) Method for detecting source of error in an amperometric measuring cell
EP0822326B1 (en) Temperature control for a wide range oxygen sensor
JPH0418625B2 (en)
US6467954B2 (en) Resistance component detecting apparatus for an oxygen concentration sensor and oxygen-concentration detecting apparatus
US7445698B2 (en) Gas concentration detecting apparatus
EP1707960A1 (en) Gas sensor control unit
EP0924514B1 (en) Gas sensor and method for controlling the same
JP4485718B2 (en) Abnormality detection system for air-fuel ratio system
JPH065221B2 (en) Zirconia oxygen analyzer
JP4206566B2 (en) Element resistance detector for gas concentration sensor
JPS62267657A (en) Temperature control device for air-fuel ratio sensor
US5106481A (en) Linear air/fuel sensor
JPH03272452A (en) Diagnosis of abnormality of air/fuel ratio sensor
JP4520652B2 (en) Abnormality detection method for air-fuel ratio sensor
US20020189942A1 (en) Gas concentration measuring device
JPH0152692B2 (en)
EP0039460A2 (en) Electronic clinical thermometer
JPH0296619A (en) Mass flow controller
JP2001059833A (en) Concentration detecting apparatus for exhaust gas
JP2007198946A (en) Input circuit and measurement apparatus
JPH0677034B2 (en) Isolated voltage detector