JPH0651945B2 - Carbon fiber sizing method - Google Patents

Carbon fiber sizing method

Info

Publication number
JPH0651945B2
JPH0651945B2 JP60166666A JP16666685A JPH0651945B2 JP H0651945 B2 JPH0651945 B2 JP H0651945B2 JP 60166666 A JP60166666 A JP 60166666A JP 16666685 A JP16666685 A JP 16666685A JP H0651945 B2 JPH0651945 B2 JP H0651945B2
Authority
JP
Japan
Prior art keywords
carbon fiber
sizing
carbon fibers
yarn
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60166666A
Other languages
Japanese (ja)
Other versions
JPS6228459A (en
Inventor
定美 本部
啓造 細井
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP60166666A priority Critical patent/JPH0651945B2/en
Publication of JPS6228459A publication Critical patent/JPS6228459A/en
Publication of JPH0651945B2 publication Critical patent/JPH0651945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維のサイジング方法に関する。その詳細
は、該炭素繊維の集束性を向上させると共に複合材料の
諸物性、特にその層間剪断強度を向上させ、かつ諸物性
の均一性を向上させることができるサイジング方法であ
る。
TECHNICAL FIELD The present invention relates to a method for sizing carbon fiber. More specifically, it is a sizing method capable of improving the sizing properties of the carbon fibers, improving the physical properties of the composite material, particularly the interlaminar shear strength thereof, and improving the uniformity of the physical properties.

〔従来の技術〕[Conventional technology]

炭素繊維はその優れた特性(比強度,比弾性率)から各
種複合材料として航空,宇宙用材料,工業用材料,スポ
ーツ,レジャー用品等に使用されている。しかるに、こ
の炭素繊維は剛直で脆い性質、および耐擦過性や耐屈曲
性に乏しい性質を有していることから製造工程,加工工
程において毛羽の発生や糸切れを生じやすい。そのため
このような特性を緩和せしめ、さらにマトリックス樹脂
に対する接着性を向上させるようなサイジング剤が一般
に使用されている。従来、炭素繊維は浸漬法、滴下法、
あるいはローラー等を用いた接触法により大気中常圧下
でサイジング処理が施されている。これら従来のサイジ
ング方法は、例えば特開昭59−36763号に示され
るように、毛羽の発生や糸切れ等の防止に主眼がおかれ
ている。また従来のサイジング方法は大気中常圧下で行
なわれているため、環境変化、例えば温度,湿度変化に
よってサイジング剤の付着状態が変化し、マトリックス
樹脂と炭素繊維間の不均一な接着が生じていると考えら
れる。このことは表‐4に示す製品化された炭素繊維の
界面剪断強度の変動の大きさから判断され、このことか
ら炭素繊維複合材料は品質の面で未だ満足するに及んで
いない。
Due to its excellent properties (specific strength, specific elastic modulus), carbon fiber is used as various composite materials in aviation, space materials, industrial materials, sports, leisure goods and the like. However, since this carbon fiber is rigid and brittle, and has poor scratch resistance and bending resistance, fluff and yarn breakage are likely to occur in the manufacturing and processing steps. Therefore, a sizing agent that alleviates such characteristics and further improves the adhesion to the matrix resin is generally used. Conventionally, carbon fibers are immersed, dropped,
Alternatively, the sizing treatment is performed under atmospheric pressure under atmospheric pressure by a contact method using a roller or the like. These conventional sizing methods are focused on the prevention of fluff generation, yarn breakage, etc., as disclosed in, for example, JP-A-59-36763. Moreover, since the conventional sizing method is performed under atmospheric pressure under atmospheric pressure, it is said that the adhesion state of the sizing agent changes due to environmental changes such as temperature and humidity changes, resulting in uneven adhesion between the matrix resin and the carbon fibers. Conceivable. This is judged from the magnitude of the fluctuation of the interfacial shear strength of the commercialized carbon fiber shown in Table 4, and from this fact, the carbon fiber composite material is still unsatisfactory in terms of quality.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は、炭素繊維複合材料の諸物性を向上させ、
かつ品質の向上を計ることを主眼として、炭素繊維とマ
トリックス樹脂との接着性,界面剪断強度に着目し、炭
素繊維のサイジング方法を検討した。
The present inventors have improved various physical properties of the carbon fiber composite material,
In addition, with a focus on improving the quality, the sizing method of the carbon fiber was examined by focusing on the adhesiveness between the carbon fiber and the matrix resin and the interfacial shear strength.

本発明によっって該炭素繊維の集束性は向上し、界面剪
断強度を向上させ、かつ該強度の変動を小さくせしめ高
接着性,高品質性の炭素繊維が得られた。さらに鋭意検
討した結果、一般にマトリックス樹脂との接着性に乏し
い表面特性を有する炭素繊維、例えば、表面極性の小さ
い炭素繊維や表面に細孔を有する表面積の大きい炭素繊
維に対しても著しい効果を示すサイジング方法であるこ
とを見出し、本発明に到った。
According to the present invention, the sizing property of the carbon fiber is improved, the interfacial shear strength is improved, and the fluctuation of the strength is reduced, so that the carbon fiber having high adhesion and high quality can be obtained. As a result of further diligent examination, generally, a remarkable effect is exhibited even on carbon fibers having surface characteristics with poor adhesion to a matrix resin, for example, carbon fibers having a low surface polarity and carbon fibers having a large surface area having pores on the surface. The inventors have found that this is a sizing method and have reached the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明で使用される炭素繊維とは、公知の方法で耐炎化
処理したポリアクリロニトリル系繊維を不活性ガス雰囲
気中でおよそ1000〜1800℃で焼成した炭化糸、
該炭化糸をさらに不活性雰囲気中で1800〜3000
℃に加熱することによって得られる黒鉛化糸、石油又は
石炭糸ピッチを原料として製造された炭化糸,黒鉛化糸
などをいう。さらにマトリックス樹脂との接着性を向上
させる目的で表面処理を施した炭化糸や黒鉛化糸も含ま
れる。ここに、表面処理糸とは、例えば、酸化剤の水溶
液中で炭素繊維を加熱することによって表面処理を施し
た液相酸化表面処理糸、電解液中にて電極ローラーを介
して炭素繊維に直接通電し、電解酸化した電解酸化表面
処理糸,空気等の酸化性ガス雰囲気中で加熱,酸化した
気相酸化表面処理糸等を言う。
The carbon fiber used in the present invention is a carbonized yarn obtained by firing polyacrylonitrile-based fiber flame-proofed by a known method at about 1000 to 1800 ° C. in an inert gas atmosphere,
The carbonized yarn is further heated in an inert atmosphere at 1800-3000.
The term refers to graphitized yarn obtained by heating to ℃, carbonized yarn produced from petroleum or coal yarn pitch as a raw material, graphitized yarn, and the like. Further included are carbonized yarns and graphitized yarns which have been surface-treated for the purpose of improving the adhesiveness with the matrix resin. Here, the surface-treated yarn is, for example, a liquid-phase oxidized surface-treated yarn that has been subjected to a surface treatment by heating the carbon fiber in an aqueous solution of an oxidant, or directly to the carbon fiber through an electrode roller in an electrolytic solution. The term refers to an electrolytically oxidized surface-treated yarn that has been electrically energized and electrolytically oxidized, or a vapor-phase oxidized surface-treated yarn that has been heated and oxidized in an oxidizing gas atmosphere such as air.

本発明の要旨とするところは、これらの炭素繊維を減圧
下に少なくとも2秒間滞在させた後、実質的に大気に触
れることなくサイジング処理を施すことを特徴とする炭
素繊維のサイジング方法にある。
The gist of the present invention resides in a method for sizing carbon fibers, which is characterized in that these carbon fibers are allowed to stay under reduced pressure for at least 2 seconds and then subjected to a sizing treatment without being substantially exposed to the atmosphere.

以下、本発明をさらに詳しく説明する。Hereinafter, the present invention will be described in more detail.

本発明の方法は、即ち、炭素繊維を常温又は昇温に於い
て常圧から減圧下に導き、減圧下に、少なくとも2秒間
滞在させた後、実質的に大気に触れることなくサイジン
グ処理を施すものである。この場合、減圧度は700to
rr以下、特に500torr以下であるのが好ましい。また、
短時間内により一層の作用効果を得るためには、できる
だけ高真空でかつ加熱下で炭素繊維を脱ガス処理した
後、実質的に大気に触れることなくサイジング処理を施
すのがよい。本発明の方法においては、例えば、炭素繊
維をボックス内に入れ、密閉にし、真空ポンプを用いて
常圧から減圧下に導き、該雰囲気中に少なくとも2秒間
滞在させ、該ボックスのサイジング剤導入弁を開き、減
圧状態のボックス内にサイジング剤を急激に送り込み、
実質的に大気に触れさせることなく、該炭素繊維表面に
サイジング処理を施す。
According to the method of the present invention, that is, the carbon fiber is introduced from normal pressure to reduced pressure at room temperature or at elevated temperature, and the carbon fiber is allowed to stay under reduced pressure for at least 2 seconds, and then subjected to sizing treatment without being substantially exposed to the atmosphere. It is a thing. In this case, the decompression degree is 700 to
It is preferably rr or less, and particularly preferably 500 torr or less. Also,
In order to obtain a further effect within a short time, it is preferable to degas the carbon fiber under as high a vacuum as possible and under heating, and then perform the sizing treatment without substantially contacting the atmosphere. In the method of the present invention, for example, carbon fiber is placed in a box, sealed, led from normal pressure to reduced pressure using a vacuum pump, allowed to stay in the atmosphere for at least 2 seconds, and a sizing agent introduction valve for the box is introduced. Open and suddenly send the sizing agent into the depressurized box,
The carbon fiber surface is subjected to a sizing treatment without being substantially exposed to the atmosphere.

圧力が常圧であったり、あるいは減圧下における滞在時
間が2秒より短い場合には、界面剪断強度が不十分とな
る。また、この減圧処理後、サイジング剤の適用前に、
大気に触れると、大気中のガス及び水分が再び炭素繊維
に吸着され、サイジング剤の接着が阻害される。
When the pressure is normal pressure or the residence time under reduced pressure is shorter than 2 seconds, the interfacial shear strength becomes insufficient. Also, after this decompression treatment and before applying the sizing agent,
When it comes into contact with the atmosphere, the gas and moisture in the atmosphere are again adsorbed by the carbon fibers and the adhesion of the sizing agent is hindered.

本発明の方法に有用なサイジング剤としては、例えば、
ビスフェノールAグリシジルエーテル型エポキシ樹脂
(油化シェルエポキシ社製エピコート828又はエピコ
ート1001)、多官能性グリシジルアミン型エポキシ
樹脂(三菱互斯化学社製TETRAD-X)をメチルエチルケト
ンに溶解させて調製した処理剤があるが、もちろんこれ
らのみに限定されるものではない。サイジング処理剤
は、一般にその有効成分が炭素繊維に0.2〜6%付着す
るような濃度に調整するのがよい。
Examples of sizing agents useful in the method of the present invention include:
A treatment agent prepared by dissolving a bisphenol A glycidyl ether type epoxy resin (Epicote 828 or Epicoat 1001 manufactured by Yuka Shell Epoxy Co., Ltd.) and a polyfunctional glycidyl amine type epoxy resin (TETRAD-X manufactured by Mitsubishi Tetsu Chemical Co., Ltd.) in methyl ethyl ketone. However, it is not limited to these. Generally, the sizing treatment agent should be adjusted to a concentration such that the active ingredient adheres to the carbon fiber in an amount of 0.2 to 6%.

本発明において、炭素繊維の集束性、ならびに接着性の
評価は下記に示す方法で行なった。
In the present invention, the carbon fiber sizing property and the adhesive property were evaluated by the methods described below.

(1) 集束性:炭素繊維をおよそ1m長に切断し、その
一端を固定して吊り下げ、単糸間の開繊性および全体の
開繊性を評価した後、再び吊り下げ、8時間後の集束性
をそれぞれ視覚によって評価した。下記に評価ランク
A,B,C,Dの内容を示す。
(1) Consistency: Carbon fiber was cut into a length of about 1 m, and one end was fixed and hung, and after the openness between single yarns and the overall openability were evaluated, it was hung again and after 8 hours. The focusing ability of each of the samples was visually evaluated. The contents of the evaluation ranks A, B, C and D are shown below.

(A):単糸および全体の開繊が容易に行なえる。また集
束性が均一である。
(A): Single yarn and whole fiber can be opened easily. Further, the focusing property is uniform.

(B):単糸および全体の開繊は容易に行なえるが1〜2
箇所集束むらがある。
(B): Single yarn and whole fiber can be opened easily, but 1-2
There is uneven focusing.

(C):単糸および全体の開繊性にむらがあり集束性もむ
らがある。
(C): There is unevenness in the openability of the single yarn and the whole, and there is unevenness in the focusing property.

(D):初め吊り下げた段階ですでに部分的に分繊が生じ
ている。
(D): Partially splitting has already occurred when initially suspended.

(2) 接着性:炭素繊維の単糸をマトリックス樹脂(エ
ポキシ樹脂エピコート828に硬化剤メタフェニレンジ
アミンを6.9対1の重量割合にて混合せしめた樹脂)に
埋め込み、75℃で2時間加熱し、引き続き125℃で
2時間硬化させた後、常温近くまで徐冷する。取り出さ
れた試料はデシケーター中にて一定時間放置した後、気
泡あるいは欠陥部のないことを確認した上で、引張り機
に固定する。引張り機にて4%以上の伸長を加えた試料
を、偏光プラス鋭敏色検板を用いて倍率100倍下で観測
し、単糸の破断点から破断点までの距離、すなわち破断
長を測微計装置を用いて計測する。本測定では30mmの
試料長を有する10本の試料を測定し、その平均値およ
び該平均値の変動率を求めた。破断長の短かいほど炭素
繊維とマトリックス樹脂との接着性が高く、また長さ方
向の強度が一定であるならば該平平均値の変動率が小さ
いほど、接着の均一性が高いといえる。一方、諸物性の
異なる炭素繊維の接着性は次式より算出される界面剪断
強度(τ)から比較できる。該強度の0.5kg/mm2以上の
差は有意差とみなした。
(2) Adhesiveness: A single fiber of carbon fiber was embedded in a matrix resin (a resin obtained by mixing epoxy resin Epicoat 828 with a curing agent metaphenylenediamine at a weight ratio of 6.9 to 1), and heated at 75 ° C. for 2 hours. Then, after curing at 125 ° C. for 2 hours, it is gradually cooled to near room temperature. The sample taken out is left to stand in a desiccator for a certain period of time, and after confirming that there are no air bubbles or defects, it is fixed to a tension machine. Observe a sample added with 4% or more elongation by a tension machine using a polarization plus sensitive color inspection plate under 100 times magnification, and measure the distance from the break point of the single yarn to the break point, that is, the break length. Measure with a measuring device. In this measurement, 10 samples having a sample length of 30 mm were measured, and the average value and the variation rate of the average value were obtained. It can be said that the shorter the breaking length is, the higher the adhesiveness between the carbon fiber and the matrix resin is, and if the strength in the lengthwise direction is constant, the smaller the variation rate of the average value is, the higher the adhesion uniformity is. On the other hand, the adhesiveness of carbon fibers having different physical properties can be compared from the interfacial shear strength (τ) calculated by the following equation. A difference of 0.5 kg / mm 2 or more in the strength was considered as a significant difference.

τ=σf/2×d/lc d:繊径 lc:破断長 σf:lcにおける引張り強度 なお、4,10,25mmの異なる単糸長の試料につい
て、引張り強度を測定し、外挿法により臨界破断長
(lc)における強度を求めてσf値とした。
τ = σf / 2 × d / l c d: Fiber diameter l c : Breaking length σ f: Tensile strength at l c Tensile strengths of samples with different single yarn lengths of 4, 10 and 25 mm were measured and extrapolated. The strength at the critical rupture length (l c ) was obtained by the method and used as the σ f value.

〔実施例〕〔Example〕

以下に実施例を示すが、本発明を限定するものではな
い。
Examples are shown below, but the invention is not limited thereto.

本発明に供した炭素繊維はポリアクリロニトリル系合成
繊維を最高1300℃で炭素化したものを、さらに表面
酸化処理したものであり、その表面特性は表‐1に示す
通りである。なお、表‐1の表面積とは、Krガス吸着法
から求めた値、またO/CとはXPSより求めた酸素と炭素の
原子比である。
The carbon fiber used in the present invention is obtained by carbonizing polyacrylonitrile-based synthetic fiber at a maximum temperature of 1300 ° C. and further surface-oxidizing it, and its surface characteristics are as shown in Table-1. The surface area in Table-1 is the value obtained by the Kr gas adsorption method, and O / C is the atomic ratio of oxygen and carbon determined by XPS.

〔実施例1〕 表‐1に示す気相酸化表面処理糸(試料1,試料2)を
ガラスアンプルに封入し、12℃にて常圧から減圧下に
導き、500torr,1torrの真空度に達した後、2秒間
及び10−1の真空度に達した後、2,5,60秒間滞
在せしめ、エポキシ樹脂(エピコート828)をメチル
エチルケトンに溶解させて調整したサイジング剤中でガ
ラスアンプルを破壊し、サイジングした。
[Example 1] The vapor-phase oxidized surface-treated yarns (Sample 1 and Sample 2) shown in Table 1 were enclosed in a glass ampoule and led from normal pressure to reduced pressure at 12 ° C to reach a vacuum degree of 500 torr and 1 torr. After reaching 2 seconds and a vacuum degree of 10 −1 , the glass ampoule was broken in a sizing agent prepared by dissolving the epoxy resin (Epicoat 828) in methyl ethyl ketone for 2, 5, 60 seconds. Sized.

この方法で得られた炭素繊維の集束性評価ランキング,
サイジング剤付着量,臨界破断長,臨界破断長の変動
率,界面剪断強度を表‐2に示す。なお、常温常圧下で
実施例1と同様のサイジング剤に浸漬せしめ1.5±0.5%
の付着量の範囲でサイジングした炭素繊維の物性を比較
例1として示した。
Ranking evaluation of carbon fiber bundles obtained by this method,
Table 2 shows the amount of sizing agent attached, the critical rupture length, the fluctuation rate of the critical rupture length, and the interfacial shear strength. In addition, it was immersed in the same sizing agent as in Example 1 at room temperature and atmospheric pressure and was 1.5 ± 0.5%.
The physical properties of the carbon fiber sized in the range of the attached amount of are shown as Comparative Example 1.

〔実施例2〕 表‐1に示す未表面処理糸と気相酸化表面処理糸(試料
1,試料2)および、電解酸化表面処理糸(試料3,試
料4)をガラスアンプルに封入し、120℃に加熱せし
め18時間排気処理を施し、常温(15℃)に降温させ
た後、10-1torrの真空度で2秒間滞在せしめ、実施例1
で使用したサイジング剤、および多官能性グリシジルア
ミン型エポキシ樹脂(TETRAD-X)をメチルエチルケトン
に溶解させて調整したサイジング剤中でそれぞれ該ガラ
スアンプルを破壊せしめサイジングした。
[Example 2] Untreated surface yarns and vapor-phase oxidized surface treated yarns (Sample 1, Sample 2) and electrolytically oxidized surface treated yarns (Sample 3, Sample 4) shown in Table-1 were enclosed in a glass ampoule, and 120 The sample was heated at ℃ for 18 hours and exhausted for 18 hours, then cooled to room temperature (15 ℃), and then allowed to stand for 2 seconds at a vacuum of 10 -1 torr.
The glass ampoule was sized by breaking the glass ampoule in the sizing agent prepared in Example 1 and a sizing agent prepared by dissolving a polyfunctional glycidyl amine type epoxy resin (TETRAD-X) in methyl ethyl ketone.

この方法に於いてサイジングした炭素繊維の集束性評価
ランキング,サイジング剤付着量,臨界破断長,臨界破
断長の変動率,界面剪断強度を表−3に示す。なお常温
常圧下で実施例2と同様のサイジング剤に浸漬せしめ1.
5±0.2%の付着量の範囲でサイジングした炭素繊維の物
性を比較例2として示した。
Table 3 shows the ranking of the sizing properties of the carbon fibers sized by this method, the amount of sizing agent attached, the critical breaking length, the variation rate of the critical breaking length, and the interfacial shear strength. Immerse in the same sizing agent as in Example 2 at room temperature and atmospheric pressure 1.
The physical properties of the carbon fiber sized in the range of the adhesion amount of 5 ± 0.2% are shown as Comparative Example 2.

〔比較例3〕 製品化されている炭素繊維について、本発明に供した評
価法に準じて臨界破断長,臨界破断長の変動率、および
界面剪断強度を求め、表‐4に示した。
[Comparative Example 3] With respect to commercialized carbon fibers, the critical breaking length, the variation rate of the critical breaking length, and the interfacial shear strength were determined according to the evaluation method used in the present invention, and shown in Table-4.

〔発明の効果〕 本発明のサイジング方法は炭素繊維の集束性を向上させ
ると共に、その層間剪断強度および炭素繊維とマトリッ
クス樹脂間の接着に対して均一性を向上させることがで
きる。
EFFECTS OF THE INVENTION The sizing method of the present invention can improve the sizing property of the carbon fibers and also improve the interlaminar shear strength and the uniformity of the adhesion between the carbon fibers and the matrix resin.

本発明のサイジング方法は、表面極性の小さい炭素繊維
および細孔を有する表面積の大きな炭素繊維に対しても
著しい効果を示す。
The sizing method of the present invention shows a remarkable effect even on carbon fibers having a small surface polarity and carbon fibers having a large surface area having pores.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維を減圧下に少なくとも2秒間滞在
させたのち、実質的に大気に触れることなくサイジング
処理を施すことを特徴とする炭素繊維のサイジング方
法。
1. A method for sizing carbon fibers, which comprises allowing carbon fibers to stay under reduced pressure for at least 2 seconds and then subjecting them to sizing treatment without substantially exposing them to the atmosphere.
JP60166666A 1985-07-30 1985-07-30 Carbon fiber sizing method Expired - Lifetime JPH0651945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166666A JPH0651945B2 (en) 1985-07-30 1985-07-30 Carbon fiber sizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166666A JPH0651945B2 (en) 1985-07-30 1985-07-30 Carbon fiber sizing method

Publications (2)

Publication Number Publication Date
JPS6228459A JPS6228459A (en) 1987-02-06
JPH0651945B2 true JPH0651945B2 (en) 1994-07-06

Family

ID=15835476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166666A Expired - Lifetime JPH0651945B2 (en) 1985-07-30 1985-07-30 Carbon fiber sizing method

Country Status (1)

Country Link
JP (1) JPH0651945B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191343A (en) * 1989-12-20 1991-08-21 Fuji Photo Film Co Ltd Method for developing silver halide photosensitive material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936763A (en) * 1982-08-26 1984-02-29 東レ株式会社 Sizing of carbon fiber
US4486474A (en) * 1983-09-13 1984-12-04 The Goodyear Tire & Rubber Company Method of sizing strands

Also Published As

Publication number Publication date
JPS6228459A (en) 1987-02-06

Similar Documents

Publication Publication Date Title
Ray et al. Effect of alkali treated jute fibres on composite properties
EP3168334B1 (en) Carbon fiber bundle and method for manufacturing same
Zhang et al. Surface analysis of γ-ray irradiation modified PBO fiber
EP0310100B1 (en) Reinforcing fibres and a method of producing the same
EP2441866A1 (en) Carbon fiber bundle that develops excellent mechanical performance
US4284615A (en) Process for the production of carbon fibers
JP7414000B2 (en) Fiber-reinforced resin prepreg, molded body, fiber-reinforced thermoplastic resin prepreg
Jamshaid et al. Interfacial performance and durability of textile reinforced concrete
JP2005179826A (en) Sizing coated carbon fiber and method for producing the same
US3720536A (en) Treatment of carbon fibers
JP5907321B1 (en) Carbon fiber bundle and method for producing the same
JPH0651945B2 (en) Carbon fiber sizing method
Walton et al. Properties of cement composites reinforced with Kevlar fibres
JP2009242964A (en) Carbon fiber and method for producing the same
JPS6311468B2 (en)
Skutnik et al. Coating adhesion effects on fiber strength and fatigue properties
US4603157A (en) Intermediate for composite material
Baker et al. High-strain fatigue studies of a composite material
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
Goel et al. Polyimide fibers: structure and morphology
JPH0258367B2 (en)
GB2161273A (en) Testing carbon fibre
US4216262A (en) Surface treatment of carbon fibers
JP2002121295A (en) Carbon fiber-reinforced plastic and method for producing the same
Ikuta et al. Interfacial Reinforcement in Composites with PPT Aramid Fiber Modified by Network-Intercalation Method