JPH0651754B2 - Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof - Google Patents

Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof

Info

Publication number
JPH0651754B2
JPH0651754B2 JP62149055A JP14905587A JPH0651754B2 JP H0651754 B2 JPH0651754 B2 JP H0651754B2 JP 62149055 A JP62149055 A JP 62149055A JP 14905587 A JP14905587 A JP 14905587A JP H0651754 B2 JPH0651754 B2 JP H0651754B2
Authority
JP
Japan
Prior art keywords
acid
poly
aqueous solution
salt
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62149055A
Other languages
Japanese (ja)
Other versions
JPS63314217A (en
Inventor
隆一 香山
広幸 鈴木
さち子 草野
Original Assignee
日本パ−オキサイド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パ−オキサイド株式会社 filed Critical 日本パ−オキサイド株式会社
Priority to JP62149055A priority Critical patent/JPH0651754B2/en
Publication of JPS63314217A publication Critical patent/JPS63314217A/en
Publication of JPH0651754B2 publication Critical patent/JPH0651754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリ−α−ヒドロキシアクリル酸あるいはそ
の塩の製法に関し、特にそれらの水溶液の製法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing poly-α-hydroxyacrylic acid or a salt thereof, and particularly to a method for producing an aqueous solution thereof.

ポリ−α−ヒドロキシアクリル酸ソーダ(以下、PHA
Sと称す)に代表されるポリ−α−ヒドリキシアクリル
酸及びその塩は、金属イオン封鎖剤、過酸化物の安定化
剤、繊維漂白助剤、洗剤用ビルダー等として工業的に極
めて有用である。
Sodium poly-α-hydroxyacrylate (hereinafter referred to as PHA
Poly-α-hydroxyacrylic acid and salts thereof represented by S) are industrially extremely useful as sequestering agents, stabilizers for peroxides, fiber bleaching aids, detergent builders, etc. is there.

〔従来の技術〕[Conventional technology]

ポリ−α−ヒドロキシアクリル酸塩の製法については、
各種の方法が既に提唱されている。
For the production method of poly-α-hydroxyacrylate,
Various methods have already been proposed.

例えば、特公昭57−39249号公報によればα、β−ジハ
ロゲノプロピオン酸を、アルミナ等の触媒の存在下、気
相において脱塩化水素化し、得られるα−クロルアクリ
ル酸を水中で重合触媒と接触させ、ポリ−α−ヒドロキ
シアクリル酸のラクトン型化合物(以下、PLACと称
す)を得ている。
For example, according to JP-B-57-39249, α, β-dihalogenopropionic acid is dehydrochlorinated in the gas phase in the presence of a catalyst such as alumina, and the resulting α-chloroacrylic acid is used as a polymerization catalyst in water. To obtain a lactone type compound of poly-α-hydroxyacrylic acid (hereinafter referred to as PLAC).

また特公昭54−5839号公報によれば、α、β−ジクロル
プロピオン酸の水溶液を100℃以上の温度に加熱する
ことによつて、α−クロルアクリル酸を得、その水溶液
に対して重合触媒を作用させPLACを得る方法を提案
している。
Further, according to Japanese Patent Publication No. 54-5839, α-chloroacrylic acid is obtained by heating an aqueous solution of α, β-dichloropropionic acid to a temperature of 100 ° C. or higher, and polymerized with the aqueous solution. A method for obtaining PLAC by acting a catalyst is proposed.

さらに、特公昭57−27882号公報では、α−クロルアク
リル酸の水溶液にラジカル形成作用を有する重合触媒を
作用させ、生じるポリ−α−クロルアクリル酸を単離せ
ずに1時間以上、80〜100℃の温度に加熱する事によ
つてPLACを得る方法を提案している。
Further, in JP-B-57-27882, a polymerization catalyst having a radical-forming effect is allowed to act on an aqueous solution of α-chloroacrylic acid, and the resulting poly-α-chloroacrylic acid is isolated for 80 hours to 100% for 1 hour or more. It proposes a method of obtaining PLAC by heating to a temperature of ° C.

以上述べてきたように、従来の技術においては、いずれ
もα−ハロゲノアクリル酸を水中で重合させ、そのまま
加熱する事によつて、水に不溶性のポリラクトン(PL
AC)を得、これを別して取り出す事を基本としてい
る。ポリ−α−ヒドロキシアクリル酸塩を得ようとする
場合は、このPLACをアルカリ水溶液中に溶解させる
必要がある。
As described above, in all of the conventional techniques, α-halogenoacrylic acid is polymerized in water and heated as it is to obtain polylactone (PL) insoluble in water.
AC) is obtained, and this is taken out separately. In order to obtain poly-α-hydroxyacrylic acid salt, it is necessary to dissolve this PLAC in an alkaline aqueous solution.

このように、従来技術によつてポリ−α−ヒドロキシア
クリル酸塩の水溶液を得ようとする場合には、重合−
過−溶解という多段に亘る工程が必要であり、その故
に、過器、溶解槽等の装置が必要となる。また、時間
的にも、極めて効率が悪いという欠点を持っている。
Thus, when an aqueous solution of poly-α-hydroxyacrylic acid salt is to be obtained by the conventional technique, the polymerization-
A multi-step process of over-melting is required, and therefore a device such as a filter vessel and a melting tank is required. Also, it has a drawback of being extremely inefficient in terms of time.

また後で述べる実施例及び比較例で示されるごとく、従
来方法によつて得たポリ−α−ヒドロキシアクリル酸塩
は、高温に加熱した際、解重合反応が起りやすく、熱安
定性にも問題を抱えている。
Further, as shown in Examples and Comparative Examples described later, the poly-α-hydroxyacrylate obtained by the conventional method is apt to undergo a depolymerization reaction when heated to a high temperature and has a problem in thermal stability. Have a

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明の目的は、重合−過−溶解という多段階を経る
事なく、直接的にポリ−α−ヒドロキシアクリル酸塩の
水溶液を得、しかも熱安定性の良い製品を得る事にあ
る。
An object of the present invention is to directly obtain an aqueous solution of poly-α-hydroxyacrylate and to obtain a product having good thermal stability without going through multiple steps of polymerization-over-dissolution.

〔問題を解決するための手段〕[Means for solving problems]

本発明者等は、長年に亘つてポリ−α−ヒドロキシアク
リル酸塩の水溶液の製法を研究して来た。
The present inventors have, over the years, studied a method for producing an aqueous solution of poly-α-hydroxyacrylate.

その結果、α−ハロゲノアクリル酸あるいはその塩を水
中で重合させる際、重合時のpHをコントロールする事
によつて、水に不溶性のPLACを析出させる事なく、
直接、ポリ−α−ヒドロキシアクリル酸塩の水溶液を得
る事が可能である事を発見した。さらに、驚くべき事
に、本発明の方法に従つて合成されたポリ−α−ヒドロ
キシアクリル酸塩は、従来技術によつて得たものに比較
し、熱安定性が良いという事も同時に発見し、本発明を
完成するに至つた。
As a result, when polymerizing α-halogenoacrylic acid or a salt thereof in water, by controlling the pH during the polymerization, PLAC insoluble in water is not precipitated,
It was discovered that it is possible to directly obtain an aqueous solution of poly-α-hydroxyacrylate. Furthermore, it was surprisingly discovered at the same time that the poly-α-hydroxyacrylates synthesized according to the method of the present invention have better thermal stability than those obtained according to the prior art. The present invention has been completed.

すなわち、本発明は、α−ハロゲノアクリル酸あるいは
その塩を水中で重合させる際、重合反応液のpHを、3.
0〜8.0の間に制御する事を特徴とするポリ−α−ヒドロ
キシアクリル酸あるいはその塩の水溶液の製造方法であ
る。
That is, the present invention, when polymerizing α-halogenoacrylic acid or a salt thereof in water, the pH of the polymerization reaction solution, 3.
It is a method for producing an aqueous solution of poly-α-hydroxyacrylic acid or a salt thereof, which is characterized by controlling within a range of 0 to 8.0.

本発明を実施する際に使用するα−ハロゲノアクリル酸
あるいはその塩は、別途に製造されたものでもよく、
又、特公昭54−5839号公報に記載の方法のように、α、
β−ジクロルプロピオン酸を熱的に脱塩化水素化してα
−クロルアクリル酸を得ながら重合させるような方法に
おいても本発明を利用する事が可能である。
The α-halogenoacrylic acid or a salt thereof used in carrying out the present invention may be separately produced,
Further, as in the method described in Japanese Patent Publication No. 54-5839, α,
Thermally dehydrochlorinating β-dichloropropionic acid to give α
The present invention can also be used in a method of polymerizing while obtaining chloroacrylic acid.

さらに、α、β−ジハロゲノアクリル酸、あるいはその
エステルに対して塩基性物質を作用させ、α−ハロゲノ
アクリル酸、あるいはその塩を得、それを重合させて行
く方法においても応用できる。
Further, it can be applied to a method in which a basic substance is allowed to act on α, β-dihalogenoacrylic acid or its ester to obtain α-halogenoacrylic acid or its salt, and the resulting compound is polymerized.

本発明は、重合時におけるpHを3.0〜8.0の間に制御する
事に本質があるが、常に一定のpHを保持する必要はな
く、重合反応中暫時3.0〜8.0の範囲を逸脱してもかまわ
ない。しかし、重合に要する全時間の内、少なくとも2
5%以上の時間は、該pH範囲に保持する必要がある。
The present invention is essentially to control the pH during the polymerization to be 3.0 to 8.0, but it is not always necessary to maintain a constant pH, and it is possible to temporarily deviate from the range of 3.0 to 8.0 during the polymerization reaction. Absent. However, of the total time required for polymerization, at least 2
It is necessary to maintain the pH range for 5% or more.

重合時におけるpHは、3.0〜8.0の範囲が良いが、特に
は、4.0〜6.0の間にコントロールする方が好ましい。
The pH during the polymerization is preferably in the range of 3.0 to 8.0, but it is particularly preferable to control it within the range of 4.0 to 6.0.

pHが3.0よりも低い領域で重合させた場合には、均一
のまま重合させる事は困難であり、特にpH2.0以下で
は、必ず固型物(PLAC)が析出する。
When the polymerization is carried out in the region where the pH is lower than 3.0, it is difficult to carry out the polymerization as it is, and especially at pH 2.0 or less, the solid matter (PLAC) is always deposited.

pHが8.0よりも高領域で重合させた場合には、PH
ASの収率低下を起こし不利である。
When polymerized in a region where pH is higher than 8.0, PH
This is disadvantageous because it causes a decrease in AS yield.

pHを保持するには、pHメーターで直接pHを監視し
ながら、酸あるいはアルカリを適量加える事によつて行
なうのが一般的である。
In order to maintain the pH, it is common to add an appropriate amount of acid or alkali while directly monitoring the pH with a pH meter.

pH調整に使用する酸としては、塩酸、硫酸、硝酸、過
塩素酸等の無機酸、ギ酸、酢酸等の有機酸が使用可能で
あるが、塩酸を使用するのが一般的である。
As the acid used for pH adjustment, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and perchloric acid, and organic acids such as formic acid and acetic acid can be used, but hydrochloric acid is generally used.

アルカリとしては、水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、酢酸ナトリウム等が使用可能であ
るが、水酸化ナトリウムを使用するのが一般的である。
As the alkali, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium acetate or the like can be used, but sodium hydroxide is generally used.

本発明の方法は、回分式反応、連続式反応の両方におい
て利用可能である。
The method of the present invention can be used in both batch reaction and continuous reaction.

重合に使用する触媒は、一般に使用されている、過硫塩
酸、過酸化水素、アゾビスイソブチロニトニル、アゾビ
スシアノバレリツクアシツド、過酸化ベンゾイル等のラ
ジカル作用を有する触媒を使用する事ができる。
The catalyst used for the polymerization should be a commonly used catalyst having a radical action such as persulfuric acid, hydrogen peroxide, azobisisobutyronitonyl, azobiscyanovaleric acid, benzoyl peroxide, etc. You can

重合時の温度は、80〜120℃で良いが、一般に90〜
98℃が良い。
The temperature at the time of polymerization may be 80 to 120 ° C, but generally 90 to
98 ℃ is good.

本発明の方法によつて得られるポリ−α−ヒドロキシア
クリル酸塩水溶液中には、副生物としてNaCl等の塩化物
を含んでいるが、一般的な用途面で塩化物が直接悪影響
を持つ事は少ない。また塩化物を除去する必要性がある
場合には、限外過膜によつて低分子物質を除去する事
も可能である。
The poly-α-hydroxyacrylate aqueous solution obtained by the method of the present invention contains chlorides such as NaCl as a by-product, but the chlorides have a direct adverse effect on the general application. Is few. When it is necessary to remove chloride, it is also possible to remove low molecular weight substances by using an ultrafiltration membrane.

〔作用〕[Action]

本発明における作用機構については、明確な事は解明さ
れていないが次のように推定する事が出来る。
The mechanism of action in the present invention has not been clarified yet, but can be presumed as follows.

すなわち、α−ハロゲノアクリル酸を水中で重合させる
と、まずポリ−α−ハロゲノアクリル酸の形で重合し、
このポリマー骨格中の塩素は活性であるため速やかにH
2O分子と反応してCl の形で脱離し、ポリマーは、
ポリ−α−ヒドロキシアクリル酸に変化して行く。そし
て、水中のpHが2.5以下であると、ポリ−α−ヒドロ
キシアクリル酸は、ラクトン化反応を起こし、水不溶性
のPLACとなつて析出して行く。pHが3.0以上であ
れば、PLAC化は進まず、水溶性のポリ−α−ヒドロ
キシアクリル酸あるいはその塩となる。
That is, α-halogenoacrylic acid is polymerized in water.
And first polymerized in the form of poly-α-halogenoacrylic acid,
Since chlorine in the polymer skeleton is active, H
2Cl reacts with O molecule Desorbs in the form of
It changes to poly-α-hydroxyacrylic acid. That
When the pH in water is 2.5 or less, poly-α-hydro
Xyacrylic acid undergoes lactonization reaction and is insoluble in water
It will be deposited as PLAC. pH is above 3.0
If so, PLAC formation does not proceed, and water-soluble poly-α-hydro
Xyacrylic acid or its salt.

pH8.5以上で重合させる場合には、α−ハロゲノアク
リル酸塩が重合以前に加水分解して、ピルビン酸等の物
質に変質してしまうため収率面で著しく不利となる。
When the polymerization is carried out at a pH of 8.5 or more, the α-halogenoacrylic acid salt is hydrolyzed before the polymerization and is transformed into a substance such as pyruvic acid, which is extremely disadvantageous in terms of yield.

従来技術によつて得たPLACを使用して製造したポリ
−α−ヒドロキシアクリル酸塩が、本発明の方法による
ものに比較して熱安定性が悪い原因については、不明で
あるが、おそらく、従来方法による反応は、重合中にP
LACが固型として析出しながら重合の成長反応が起る
ために、ポリマー中に分枝や架橋が多く、分枝部分が熱
的に弱いのではないかと想像される。
The cause of the poor thermal stability of the poly-α-hydroxyacrylates produced using PLACs obtained according to the prior art as compared to those according to the process of the invention is unknown, but probably The conventional reaction is that P
It is conceivable that there are many branches and crosslinks in the polymer because the growth reaction of the polymerization occurs while LAC is precipitated as a solid form, and the branched portion is thermally weak.

本発明の方法においては、重合中、終始、液は均一であ
るので、ポリマーは直鎖状に成長し、故に熱的に安定で
あり、加熱によつて分子量があまり低下しないものと推
定される。
In the method of the present invention, since the liquid is uniform throughout the polymerization during the polymerization, it is presumed that the polymer grows linearly and is therefore thermally stable, and the molecular weight does not decrease so much by heating. .

〔発明の効果〕〔The invention's effect〕

本発明に従えば、過−溶解工程無しで、直接ポリ−α
−ヒドロキシアクリル酸塩の水溶液を製造する事が可能
であり、しかも、この方法によつて得られた製品は、従
来法のものに比べ、優れた性質を持つており、本発明は
工業的に意義深いものである。
According to the present invention, the poly-α
-It is possible to produce an aqueous solution of hydroxy acrylate, and the product obtained by this method has excellent properties as compared with the conventional method, and the present invention is industrially applicable. It is significant.

〔実施例〕〔Example〕

以下に本発明の方法における実施例を示す。 Examples of the method of the present invention are shown below.

実施例1〜6及び比較例1 500ml容の五つ口フラスコに、撹拌羽根、pH電極、温
度計、クーラーを取り付け、フラスコに、α−クロルア
ルキル酸53.3g(0.5mol)と水300mlに入れ、溶解
する。
Examples 1 to 6 and Comparative Example 1 A 500 ml five-necked flask was equipped with a stirring blade, pH electrode, thermometer, and cooler, and the flask was charged with 53.3 g (0.5 mol) of α-chloroalkyl acid and 300 ml of water. Put in and dissolve.

別に過硫酸カリ0.5gを水20mlに溶解しておき、
上記反応器を加熱して、90〜95℃にて過硫酸カリ水溶液
を2hrにかけて滴下した。その間、pHは表−1に示す
所定値を保持するように、20%NaOHを加えてコントロー
ルした。過硫酸カリ滴下終了後所定のpH下に保持し、
さらに1hrの間90〜95℃の間で撹拌を続けた。
Separately, 0.5 g of potassium persulfate was dissolved in 20 ml of water,
The reactor was heated, and an aqueous potassium persulfate solution was added dropwise at 90 to 95 ° C. over 2 hours. Meanwhile, the pH was controlled by adding 20% NaOH so as to maintain the predetermined value shown in Table 1. After dropping potassium persulfate, keep it at a predetermined pH,
Stirring was continued at 90-95 ° C for an additional hour.

その後、反応液を室温まで下げ、20%NaOHを適量加えて
pHを13.0とした後、全液重量が500gとなるよう純水
を加えてPHAS液を調整した。
After that, the reaction solution was cooled to room temperature, an appropriate amount of 20% NaOH was added to adjust the pH to 13.0, and pure water was added to adjust the total solution weight to 500 g to prepare a PHAS solution.

実施例におけるPHAS液の一部を取り、メタノール中
に注いでポリマーを析出させ、別し、これをくり返す
事によつて精製し、乾燥したサンプルを作り、赤外線ス
ペクトルを取つてみると、文献記載(特公昭54−20995
号公報)の方法で得たPHASと良く一致していた。
Taking a part of the PHAS solution in the examples, pouring it into methanol to precipitate the polymer, separating it, and refining it by repeating this to make a dried sample, and taking an infrared spectrum, Description (Japanese Patent Publication No. Sho 54-20995)
It was in good agreement with the PHAS obtained by the method described in Japanese patent publication).

実施例で得られたPHASについて、GPC(ゲルパー
ミエーシヨンクロマトグラフイー)にて平均分子量及び
PHAS濃度の分析を行なつた。GPCは、カラムは東
洋ソーダ製G500OPW及びG300OPWの直列を
使用し、溶離液は、リン酸バツフア(pH6.86)を使用し
た。検出には、RI(示差屈析計)及び光散乱計を直列
で使用し同時測定をした。分子量は、光散乱計によつて
重量平均分子量を求め、PHAS濃度は、RIによる面
積比率から求めた。PHAS濃度を求める際のスタンダ
ードは、特公昭54−20995号公報の方法に従つて得たP
HASを精製したものを使用した。
The PHAS obtained in the examples was analyzed for average molecular weight and PHAS concentration by GPC (gel permeation chromatography). In GPC, the column used was a series of Toyo Soda G500OPW and G300OPW, and the eluent was phosphate buffer (pH 6.86). For detection, an RI (differential diffractometer) and a light scatterometer were used in series to perform simultaneous measurement. The molecular weight was determined by a light scattering meter, and the PHAS concentration was determined from the area ratio by RI. The standard for obtaining the PHAS concentration is P obtained according to the method of Japanese Patent Publication No. 54-20995.
A purified HAS was used.

〔性能試験〕〔performance test〕

得られたPHAS液を使用して、H2O2の安定化性能をテ
トした。条件は、下記の通りであり、95℃で1時間加
熱したのちのH22の残存率をKMnO4滴定で求め、安定
度とした。
The obtained PHAS liquid was used to test the stabilizing performance of H 2 O 2 . The conditions were as follows, and the residual ratio of H 2 O 2 after heating at 95 ° C. for 1 hour was determined by KMnO 4 titration and used as the stability.

(条件) さらに、テスト終了液の一部を取り、GPCにて平均分
子量を測定した。これらの結果を表−1に示す。
(conditions) Further, a part of the liquid after the test was taken and the average molecular weight was measured by GPC. The results are shown in Table-1.

〔熱安定性試験〕[Thermal stability test]

得られたPHAS水溶液を100℃で5時間加熱した後
の平均分子量をGPCで測定した。得られた結果を表−
1に示す。
The obtained PHAS aqueous solution was heated at 100 ° C. for 5 hours, and then the average molecular weight was measured by GPC. Table of the obtained results
Shown in 1.

比較例2 重合時におけるPH調整を表−1に示されるようにした他
は、実施例と全く同様に反応させた。重合時のpHは、
最初1.0であり、最終的には0.2であつた。この場
合には、PLACの形で固型物が析出するので、反応
後、これを別し、得られたCakeを再び500ml反応器に
もどし、水350mlを加えて分散しておき、ここに20%
NaOHを加えて溶解し、pHが13.0になるように調
整した。分析等は実施例と全く同様にした。
Comparative Example 2 The reaction was carried out in exactly the same manner as in Example except that the PH adjustment during polymerization was as shown in Table 1. The pH during polymerization is
Initially it was 1.0 and finally it was 0.2. In this case, a solid substance is precipitated in the form of PLAC, so after the reaction, this is separated, the cake obtained is returned to the 500 ml reactor again, and 350 ml of water is added to disperse it. %
NaOH was added and dissolved, and the pH was adjusted to 13.0. The analysis and the like were exactly the same as in the example.

得られた結果を表−1に示す。The obtained results are shown in Table-1.

比較例3〜4 重合時におけるpHを1.5又は1.0とした他は、実施
例と全く同様に反応させた。反応終了後、析出している
PLACをそのまま撹拌しながら20%NaOHを加え
溶解し、pH13.0とした。その後は実施例と全く同様に処
理した。
Comparative Examples 3 to 4 The reaction was carried out in exactly the same manner as in the Example except that the pH during the polymerization was set to 1.5 or 1.0. After completion of the reaction, 20% NaOH was added to dissolve the precipitated PLAC as it was, and the pH was adjusted to 13.0. After that, the same treatment as in the example was performed.

得られた結果を表−1に示す。The obtained results are shown in Table-1.

比較例5 特公昭57−27882号公報の実施例2に従つて188gのPL
ACを得た。この内38g(PLACのラクトン化度を2/3
として、分子量ユニツトを76とした場合、0.5moleに
相当)を取り、500ml容の反応フラスコに入れ、水30
0mlを加えて分散させながら、20%NaOHを加えて溶解
し、pHを13.0とした。液重量が全体で500gとなるよ
うに水を加えた後は、実施例と同様に処理した。
Comparative Example 5 According to Example 2 of JP-B-57-27882, 188 g of PL was used.
AC was obtained. 38g of this (PLAC lactonization degree is 2/3
Assuming that the molecular weight unit is 76, it is equivalent to 0.5mole) and put it in a 500ml reaction flask, and add water 30
While adding 0 ml and dispersing, 20% NaOH was added and dissolved to adjust the pH to 13.0. After adding water so that the total liquid weight would be 500 g, the same treatment as in Example was carried out.

得られた結果を表−1に示す。The obtained results are shown in Table-1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】α−ハロゲノアクリル酸あるいはその塩を
水中で重合させる際、重合反応液のpHを3.0〜8.0の間に
制御する事を特徴とするポリ−α−ヒドロキシアクリル
酸あるいはその塩の水溶液の製造方法。
1. When polymerizing α-halogenoacrylic acid or a salt thereof in water, the pH of the polymerization reaction liquid is controlled to be within the range of 3.0 to 8.0, and poly-α-hydroxyacrylic acid or a salt thereof is characterized. A method for producing an aqueous solution.
【請求項2】重合反応液のpHを3.0〜8.0の範囲に保持す
べき時間が、重合に要する全時間の内、少なくとも25
%以上を占める事を特徴とする特許請求の範囲第1項記
載の製造方法。
2. The time during which the pH of the polymerization reaction solution should be maintained within the range of 3.0 to 8.0 is at least 25 out of the total time required for the polymerization.
% Or more, The manufacturing method of Claim 1 characterized by the above-mentioned.
JP62149055A 1987-06-17 1987-06-17 Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof Expired - Lifetime JPH0651754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149055A JPH0651754B2 (en) 1987-06-17 1987-06-17 Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149055A JPH0651754B2 (en) 1987-06-17 1987-06-17 Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof

Publications (2)

Publication Number Publication Date
JPS63314217A JPS63314217A (en) 1988-12-22
JPH0651754B2 true JPH0651754B2 (en) 1994-07-06

Family

ID=15466678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149055A Expired - Lifetime JPH0651754B2 (en) 1987-06-17 1987-06-17 Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof

Country Status (1)

Country Link
JP (1) JPH0651754B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327097B2 (en) * 1973-05-28 1976-09-02 Hoechst Ag, 6000 Frankfurt COPOLYMERISATE OF ACRYLIC ACID, OR YOUR ALKALINE OR AMMONIUM SALTS
SE410615B (en) * 1973-05-28 1979-10-22 Hoechst Ag DETERGENTS FOR DETERGENTS CONTAINING CO-POLYMERIZATION OF ALFA-HYDROXYACRYLIC ACID AND ACRYLIC ACID
JPS545839A (en) * 1977-06-14 1979-01-17 Foster Wheeler Corp Pipe butting welding

Also Published As

Publication number Publication date
JPS63314217A (en) 1988-12-22

Similar Documents

Publication Publication Date Title
SU1531859A3 (en) Method of obtaining biologically active mucopolysaccharides
JP4050338B2 (en) Method for recovering fluorinated carboxylic acid
SU1658820A3 (en) Method for preparing mucopolysaccharides
US4337215A (en) Process for purifying 2-acrylamido-2-methylpropanesulfonic acid
US4219498A (en) Process for preparing highly pure-2-acrylamido-2-methylpropanesulfonic acid
US4818788A (en) Process for producing polyvinyl ester having a high degree of polymerization and process for producing polyvinyl alcohol having a high degree of polymerization
JPH0548235B2 (en)
US3969329A (en) Process for producing high molecular weight acrylamide water-soluble polymers by controlling the viscosity of the polymerization reaction medium with a water-miscible organic solvent
JPH04504869A (en) High solid content copolymerization method of maleic anhydride and alkyl vinyl ether
JPH0651754B2 (en) Method for producing aqueous solution of poly-α-hydroxyacrylic acid or salt thereof
US4471076A (en) Process for the preparation of fluorocarbon polymers containing carboxyl groups, and certain starting materials required for this, and the fluoro-sulfato compounds formed as intermediate products in the process
US3994969A (en) Process for the manufacture of salts of poly-alpha-hydroxyacrylic acids
JP4361977B2 (en) Organic solution of dialkyl peroxydicarbonate, process for its preparation, production of halogenated polymer using this solution and halogenated polymer obtained
JP2870183B2 (en) Process for producing 1,3-phenylenedioxydiacetic acid
JPS5945666B2 (en) Method for producing aminocarboxylic acids
JP4345182B2 (en) Method for producing high purity cationic polymer
KR910008294B1 (en) Process for the preparation of wet polylactone with low moisture content
US3959240A (en) Catalytic process for the preparation of polyacrylonitrile and acrylonitrile copolymers
US4107411A (en) Method of preparing salts of poly-alpha-hydroxyacrylic acid
JPH0427243B2 (en)
US4182806A (en) Process for the manufacture of salts of poly-alpha-hydroxyacrylic acids
JPH1087795A (en) Production of polyester
JP2606633B2 (en) Method for producing alkali metal cis-epoxysuccinate
JPH01153654A (en) Production of ammonium fluorine-containing carboxylate
US4604172A (en) Process for the electrolysis of sodium chloride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term