JPH0651144A - Optical fiber coupler - Google Patents

Optical fiber coupler

Info

Publication number
JPH0651144A
JPH0651144A JP4206384A JP20638492A JPH0651144A JP H0651144 A JPH0651144 A JP H0651144A JP 4206384 A JP4206384 A JP 4206384A JP 20638492 A JP20638492 A JP 20638492A JP H0651144 A JPH0651144 A JP H0651144A
Authority
JP
Japan
Prior art keywords
light
waveguide
diffraction grating
photodiode
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4206384A
Other languages
Japanese (ja)
Other versions
JP3153886B2 (en
Inventor
Hisao Nagata
久雄 永田
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP20638492A priority Critical patent/JP3153886B2/en
Publication of JPH0651144A publication Critical patent/JPH0651144A/en
Application granted granted Critical
Publication of JP3153886B2 publication Critical patent/JP3153886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable a pair of many pieces of data to be transmitted by receiving the light emitted by a diffraction grating coupler with photodetectors. CONSTITUTION:This optical coupler has the diffraction grating coupler 3 within a waveguide structure and is disposed with a photodetector (photodiode) 6 array in parallel with the waveguide direction on its rear surface. The light emitted from the diffraction grating coupler 3 is received by the photodetectors 6. All the photodiodes 6 on the waveguide sense light when the exit light of a semiconductor laser 7 is coupled to the waveguide. The intensity of the received light is, however, higher with the photodiodes 6 nearer the incident end in such a case. For example, the intensity modulation of the exit light of the laser diode is detected by the arbitrary photodiode 6 by taking out the output of this photodiode 6. The path as a photocoupler changes eventually by changing the photodiode 6 out of which the output is taken.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光を用いた接続、すなわ
ち光カプラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical connection, that is, an optical coupler.

【0002】[0002]

【従来の技術】従来、電気回路内において、ある回路を
電気的に独立させたい場合、光カップラが用いられてき
た。これは半導体発光素子と受光素子を組み合わせたモ
ジュールで、発光素子と結線された第1の回路に電流が
流れると素子が発光し、その光を受光素子が受光してそ
れと接続する第2の回路に電気的な信号が発生するもの
である。第1の回路と第2の回路は光で接続している
が、電気的には独立となるため、たとえば回路1で発生
した電気的ノイズは回路2には伝わらない。
2. Description of the Related Art Conventionally, an optical coupler has been used to electrically separate a circuit in an electric circuit. This is a module in which a semiconductor light emitting element and a light receiving element are combined, and the element emits light when a current flows through the first circuit connected to the light emitting element, and the light receiving element receives the light and the second circuit is connected thereto. An electrical signal is generated at. Although the first circuit and the second circuit are connected by light, they are electrically independent and therefore, for example, electrical noise generated in the circuit 1 is not transmitted to the circuit 2.

【0003】[0003]

【発明が解決しようとする課題】ところが従来の光カプ
ラは1対1の光を用いたデータの伝送であり、半導体発
光素子とそれと対抗する受光素子とからなっている。そ
の間、光は空間あるいは発光素子の発光波長に対して透
明な材料を伝搬して受光素子に到達する。このため発光
素子と受光素子間の距離を短くする必要があった。この
距離を長くすると、光源に半導体レーザを用いても出射
光は広がるために損失が大きくなる。
However, the conventional optical coupler is for data transmission using one-to-one light, and is composed of a semiconductor light emitting element and a light receiving element which opposes the semiconductor light emitting element. Meanwhile, the light propagates through a material transparent in space or the emission wavelength of the light emitting element and reaches the light receiving element. Therefore, it is necessary to shorten the distance between the light emitting element and the light receiving element. If this distance is made longer, the emitted light spreads even if a semiconductor laser is used as the light source, resulting in a large loss.

【0004】[0004]

【課題を解決するための手段】本発明の光カプラは、光
導波路において、導波路内に導波光に対して放射損失係
数が0でない値を持つ2次以上の回折格子結合器を有
し、基板表面に導波方向と平行に受光素子アレイが配置
され、回折格子結合器により出射した光が、前記受光素
子で受光されることを特徴とする。
An optical coupler according to the present invention has, in an optical waveguide, a diffraction grating coupler of a second order or more having a radiation loss coefficient which is not 0 with respect to the guided light in the waveguide. A light receiving element array is arranged on the surface of the substrate in parallel with the waveguide direction, and the light emitted by the diffraction grating coupler is received by the light receiving element.

【0005】本発明の光カプラは、好ましくは前記導波
路上にエバネッセント光が導波路表面にしみだすことの
ない厚さ以上のクラッド層あるいはクラッド層とバッフ
ァ層を有することを特徴とする。
The optical coupler of the present invention is preferably characterized by having a clad layer or a clad layer and a buffer layer having a thickness not smaller than the evanescent light does not leak to the surface of the waveguide on the waveguide.

【0006】本発明の光カプラは、さらに好ましくは前
記回折格子が導波方向に対して一定間隔で一定長さで配
置され、各々の回折格子結合器からの出射光が1対1で
対応した受光素子アレイの受光素子に受光されることを
特徴とする。
In the optical coupler of the present invention, more preferably, the diffraction gratings are arranged at a constant interval in the waveguide direction and at a constant length, and the light emitted from each diffraction grating coupler corresponds to one to one. The light receiving element of the light receiving element array receives the light.

【0007】本発明の光カプラは、さらに好ましくは一
定間隔で配置された回折格子の長さが、導波路の入射端
面から基板内部に行くにつれて長くなっており、回折格
子結合器の全放射損失係数をα、各回折格子結合器の長
さをLで表すとき、各回折格子結合器のαLが一定では
なく、出射光強度が等しくなるように設計されている。
In the optical coupler of the present invention, more preferably, the lengths of the diffraction gratings arranged at regular intervals become longer from the incident end face of the waveguide toward the inside of the substrate, and the total radiation loss of the diffraction grating coupler is increased. When the coefficient is represented by α and the length of each diffraction grating coupler is represented by L, αL of each diffraction grating coupler is not constant but is designed so that the emitted light intensities become equal.

【0008】本発明では光導波路において、導波路構造
内に回折格子結合器を有し、基板表面あるいは裏面に導
波方向と平行に受光素子(フォトダイオード)アレイを
配置し、回折格子結合器により出射した光が、前記受光
素子で受光する構造を持った光カプラを提供する。半導
体レーザの出射光を導波路に結合すると、導波路上のす
べてのフォトダイオードは光を感じる。ただしこの場合
には入射端に近いフォトダイオードほど受光する光の強
度は大きくなる。たとえば任意のフォトダイオードの出
力を取り出すことで、レーザダイオードの出射光の強度
変調をそのフォトダイオードで受光できる。また出力を
取り出すフォトダイオードを変えることで、光カプラと
してのパスが変わることになる。もちろんこの光接続は
1対1だけではなく、1対多の接続も可能である。
In the present invention, in the optical waveguide, the diffraction grating coupler is provided in the waveguide structure, and the light receiving element (photodiode) array is arranged on the front surface or the back surface of the substrate in parallel with the waveguide direction. Provided is an optical coupler having a structure in which emitted light is received by the light receiving element. When the emitted light of the semiconductor laser is coupled to the waveguide, all photodiodes on the waveguide sense the light. However, in this case, the closer the photodiode is to the incident end, the higher the intensity of light received. For example, by extracting the output of an arbitrary photodiode, the intensity modulation of the light emitted from the laser diode can be received by that photodiode. Also, by changing the photodiode that takes out the output, the path as an optical coupler will change. Of course, this optical connection is not limited to one-to-one, and one-to-many connection is possible.

【0009】本発明では、導波路全域に回折格子を作製
した場合について述べた。ところがフォトダイオードア
レイの各ビット間の回折格子は、すべて導波損失をもた
らす。そこで導波路内部の回折格子結合器を導波方向に
対して一定間隔で一定長さに配置し、各々の回折格子結
合器からの出射光が1対1で対応したフォトダイオード
アレイのビットに受光されるようにするとよい。また入
射端近傍には回折格子結合器のない領域を設け、光源と
フォトダイオード間の距離を長くすることもできる。
The present invention has described the case where the diffraction grating is formed over the entire area of the waveguide. However, the diffraction grating between each bit of the photodiode array causes waveguide loss. Therefore, the diffraction grating couplers inside the waveguide are arranged at a constant length in the waveguide direction at a constant length, and the light emitted from each diffraction grating coupler is received by the corresponding bits of the photodiode array in a one-to-one correspondence. It should be done. It is also possible to increase the distance between the light source and the photodiode by providing a region without a diffraction grating coupler near the incident end.

【0010】上記いずれの場合も、各フォトダイオード
に到達する光強度、すなわちフォトン数は入射端から遠
ざかるにつれて弱くなる。これを解決する手段としては
以下の2通りの方法あるいはその組み合わせが考えられ
る。1つはフォトダイオードのサイズを入射端から遠ざ
かるにつれて大きくすることである。もう1つの方法は
各回折格子結合器のαLを等しくしないものである。こ
こでαは回折格子結合器の放射損失係数、Lは回折格子
結合器の長さである。このためには、Lを入射端から遠
ざかるにつれて長くする方法が最も簡単な方法である
が、これ以外に、回折格子の深さを入射端から遠ざかる
につれて深くしてαを徐々に大きくする方法、導波路構
造を導波方向に対して徐々に変化させる方法などが考え
られる。
In any of the above cases, the light intensity reaching each photodiode, that is, the number of photons, becomes weaker as the distance from the incident end increases. As means for solving this, the following two methods or a combination thereof can be considered. One is to increase the size of the photodiode as the distance from the incident end increases. Another method is to make αL of each diffraction grating coupler unequal. Here, α is the radiation loss coefficient of the diffraction grating coupler, and L is the length of the diffraction grating coupler. For this purpose, the simplest method is to lengthen L as the distance from the incident end increases, but other than this, a method of deepening the depth of the diffraction grating as the distance from the incident end increases α gradually, A method of gradually changing the waveguide structure with respect to the waveguide direction can be considered.

【0011】[0011]

【作用】光導波路内に設けた回折格子は出射結合器とし
て作用し、光信号をそれぞれのフォトダイオードに分配
する。
The diffraction grating provided in the optical waveguide functions as an output coupler and distributes an optical signal to each photodiode.

【0012】[0012]

【実施例】以下、本発明を図面を用いて詳細に説明す
る。図1は本発明の光カプラの製造工程を説明するため
の斜視図である。図2は、本発明の実施例で示した光導
波路内の光強度分布の計算結果を示すグラフである。図
3は、本発明の光カプラの断面模式図である。図4は、
フォトダイオードからの信号を取り出すために用いた電
気回路を説明するための図である。図5は、本発明の光
カプラの製造工程の中で、工程の一部の回折格子の製造
工程を説明するための斜視図である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view for explaining a manufacturing process of the optical coupler of the present invention. FIG. 2 is a graph showing the calculation result of the light intensity distribution in the optical waveguide shown in the example of the present invention. FIG. 3 is a schematic sectional view of the optical coupler of the present invention. Figure 4
It is a figure for explaining an electric circuit used for taking out a signal from a photodiode. FIG. 5 is a perspective view for explaining a part of the manufacturing process of the diffraction grating in the manufacturing process of the optical coupler of the present invention.

【0013】図1(a)または図5(a)に示すよう
に、石英ガラス基板1にCVDでGeO2膜2を厚み
0.5μmで成膜し、導波層(導波路)とした。図5
(b)に示すように、後工程のエッチングマスクとして
用いるCr膜20をスパッタ法でGeO2膜2上に成膜
した。図5(c)に示すように、その上に干渉露光法に
より周期0.5μmのフォトレジストの回折格子パター
ン21を形成した。このパターン21をマスクとしてC
r膜20をウエットエッチングし、図5(d)に示すよ
うに、Cr膜を格子状に加工した。図5(e)に示すよ
うに、この格子状のCr膜をマスクとしてCF4ガスに
よる反応性イオンエッチング技術(RIE)で深さ0.
15μmの回折格子3をGeO2膜2上に形成した。図
1(b)に示すように、格子状のCr膜を除去した後、
図1(c)に示すように、横方向の光の閉じ込めのため
に導波層の一部をリブ構造4となし、幅5μmを残し
て、深さ0.2μmエッチングした。図1(d)に示す
ように、再びCVD法により厚み1μmのSiO2クラ
ッド層5を成膜した。このようにして作製した光導波路
において、導波路内の回折格子は出射結合器(回折格子
結合器)として作用する。すなわち導波路を伝搬する光
は導波路内の回折格子によって回折され<導波路外へ出
射する。本光導波路内の導波光の光強度分布を計算した
結果を図2に示す。この計算では石英ガラス基板1、G
eO2膜2、およびCVDSiO2クラッド層5の屈折率
をそれぞれ1.460、1.603、1.450とし、
導波光の真空中での波長を780nmとした。この導波
路はシングルモードで基本波の等価屈折率は1.530
になる。回折格子を導波路に設けると導波光は回折格子
によって回折され、 sinθ=N−mλ/Λ を満たす角度θの方向に出射する。ここでNは導波路の
等価屈折率、λは入射光の真空中における波長、Λは回
折格子の周期である。またmは回折次数と呼ばれ、 −1<N−mλ/Λ<1 を満足する整数である。本実施例の場合、m=1のとき
のみ上式が成立し、放射される光は基板の垂線に対して
−1.23゜の角度を持つ。この際の放射損失係数、す
なわち回折効率は表面側に25.7cm-1、基板側に2
5.4cm-1となった。したがって、トータルで51.
1cm-1の放射損失になる。図1(e)に示すように、
最後にアモルファスシリコンのpinフォトダイオード
6のアレイを導波路上に作製した。図3に示すように、
フォトダイオードアレイの各ビットは長さ50μm、そ
れぞれの間隔は20μmとした。n番目のフォトダイオ
ードで受光する光強度Iは、入射光強度I0で規格化す
ると I/I0=exp[−(n−1)α(L+d)]×[1−exp(−αsL)] と表すことができる。ここでαは全放射損失係数、αs
は表面側への放射損失係数、Lはフォトダイオードの長
さ、dはフォトダイオードの間隔である。なお放射損失
係数以外の導波損失は無視している。これを用いるとフ
ォトダイオードに入射する光の強度は、n=1で入射光
の強度の12%、n=2で8%、n=3で6%、n=4
で4%、n=5で3%、そしてn=10では0.47%
になる。図3に示すように、光接続を確認するために、
出力10mWの780nm半導体レーザ7からの出射光
を導波路に結合した。各フォトダイオードからのデータ
の取り出しは、等価的に図4に示す回路で行った。フォ
トダイオードからデータをサンプリングするときには電
界効果トランジスタ(FET)8をon、FET9をo
ffとして信号取り出し電極10間の電流をモニタし
た。一方、データをモニタしないときにはFET8をo
ff、FET9をonにし、フォトダイオードの両端を
短絡してキャリアの蓄積を防いだ。なお、FET8のド
ライブは制御電極12のバイアス値で制御し、FET9
はそのバイアスをインバータ11で反転したバイアスで
ドライブした。それぞれのフォトダイオードからの出力
比はほぼ先の計算通り、n=1で12%、n=2で8
%、n=3で6%、n=4で4%、n=5で3%であっ
た。
As shown in FIG. 1 (a) or FIG. 5 (a), a GeO 2 film 2 having a thickness of 0.5 μm was formed on a quartz glass substrate 1 by CVD to form a waveguide layer (waveguide). Figure 5
As shown in (b), a Cr film 20 used as an etching mask in a later step was formed on the GeO2 film 2 by a sputtering method. As shown in FIG. 5C, a diffraction grating pattern 21 of photoresist having a period of 0.5 μm was formed thereon by an interference exposure method. C using this pattern 21 as a mask
The r film 20 was wet-etched, and the Cr film was processed into a lattice shape as shown in FIG. As shown in FIG. 5 (e), a depth of 0.
A 15 μm diffraction grating 3 was formed on the GeO 2 film 2. As shown in FIG. 1B, after removing the lattice-like Cr film,
As shown in FIG. 1C, a part of the waveguide layer was formed into a rib structure 4 for confining light in the lateral direction, and a depth of 0.2 μm was etched while leaving a width of 5 μm. As shown in FIG. 1D, a SiO2 clad layer 5 having a thickness of 1 μm was formed again by the CVD method. In the optical waveguide manufactured in this way, the diffraction grating in the waveguide functions as an outgoing coupler (diffraction grating coupler). That is, the light propagating through the waveguide is diffracted by the diffraction grating inside the waveguide and exits outside the waveguide. FIG. 2 shows the calculation result of the light intensity distribution of the guided light in the present optical waveguide. In this calculation, quartz glass substrate 1, G
The refractive indexes of the eO2 film 2 and the CVDSiO2 cladding layer 5 are 1.460, 1.603, and 1.450, respectively.
The wavelength of the guided light in vacuum was 780 nm. This waveguide is a single mode and has an equivalent refractive index of the fundamental wave of 1.530.
become. When the diffraction grating is provided in the waveguide, the guided light is diffracted by the diffraction grating and emitted in the direction of the angle θ that satisfies sin θ = N−mλ / Λ. Here, N is the equivalent refractive index of the waveguide, λ is the wavelength of the incident light in vacuum, and Λ is the period of the diffraction grating. Further, m is called a diffraction order, and is an integer satisfying -1 <N-mλ / Λ <1. In the case of the present embodiment, the above formula is established only when m = 1, and the emitted light has an angle of −1.23 ° with respect to the vertical line of the substrate. The radiation loss coefficient at this time, that is, the diffraction efficiency is 25.7 cm -1 on the surface side and 2 on the substrate side.
It became 5.4 cm -1 . Therefore, in total 51.
The radiation loss is 1 cm -1 . As shown in FIG. 1 (e),
Finally, an array of amorphous silicon pin photodiodes 6 was formed on the waveguide. As shown in FIG.
Each bit of the photodiode array has a length of 50 μm, and an interval between the bits is 20 μm. The light intensity I received by the n-th photodiode is I / I 0 = exp [− (n−1) α (L + d)] × [1−exp (−α s L when normalized by the incident light intensity I 0. )] It can be expressed as. Where α is the total radiation loss coefficient, αs
Is a radiation loss coefficient toward the surface side, L is the length of the photodiode, and d is the distance between the photodiodes. Waveguide losses other than the radiation loss coefficient are ignored. Using this, the intensity of light incident on the photodiode is 12% of the intensity of incident light when n = 1, 8% when n = 2, 6% when n = 3, and n = 4.
At 4%, n = 5 at 3%, and n = 10 at 0.47%
become. To check the optical connection, as shown in Figure 3,
Light emitted from a 780 nm semiconductor laser 7 having an output of 10 mW was coupled to the waveguide. Data was taken out from each photodiode equivalently by the circuit shown in FIG. When sampling data from the photodiode, the field effect transistor (FET) 8 is turned on and the FET 9 is turned on.
The current between the signal extraction electrodes 10 was monitored as ff. On the other hand, when data is not monitored, FET8 is turned on.
ff, FET9 was turned on and both ends of the photodiode were short-circuited to prevent carrier accumulation. The drive of the FET 8 is controlled by the bias value of the control electrode 12,
Driven with the bias inverted by the inverter 11. The output ratio from each photodiode is approximately 12% for n = 1 and 8 for n = 2, as calculated above.
%, 6% when n = 3, 4% when n = 4, and 3% when n = 5.

【0014】上記実施例では回折格子結合器から表面方
向に出射した光のみを受光している。ところが回折格子
結合器からは基板側にも光が出射するので、この光を有
効に利用するために、基板裏面あるいは導波路と基板間
に多層膜反射鏡を挿入し、基板側に出射した光を表面方
向に反射させてフォトダイオードで効率よく受光させる
こともできる。あるいは基板側にもフォトダイオードア
レイを設置することで、受光素子数を上記実施例の場合
の2倍に増すことも可能である。
In the above embodiment, only the light emitted from the diffraction grating coupler in the surface direction is received. However, since light is also emitted from the diffraction grating coupler to the substrate side, in order to effectively use this light, a multilayer film reflecting mirror is inserted between the backside of the substrate or the waveguide and the substrate, and the light emitted to the substrate side is used. Can also be reflected in the surface direction so that the photodiode can efficiently receive the light. Alternatively, by installing a photodiode array on the substrate side, it is possible to double the number of light receiving elements as compared with the case of the above embodiment.

【0015】[0015]

【発明の効果】本発明によると1対多のデータ転送が可
能な光カプラが実現できる。また発光素子とフォトダイ
オード間の距離を任意に設定できる。
According to the present invention, an optical coupler capable of one-to-many data transfer can be realized. Further, the distance between the light emitting element and the photodiode can be set arbitrarily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光カプラの製造工程を説明するための
斜視図である。
FIG. 1 is a perspective view for explaining a manufacturing process of an optical coupler of the present invention.

【図2】本発明の実施例で示した光導波路内の光強度分
布の計算結果を示すグラフである。
FIG. 2 is a graph showing a calculation result of a light intensity distribution in the optical waveguide shown in the example of the present invention.

【図3】本発明の光カプラの断面模式図である。FIG. 3 is a schematic sectional view of an optical coupler of the present invention.

【図4】フォトダイオードからの信号を取り出すために
用いた電気回路を説明するための図である。
FIG. 4 is a diagram for explaining an electric circuit used for extracting a signal from a photodiode.

【図5】本発明の光カプラの製造工程の中で、工程の一
部の回折格子の製造工程を説明するための斜視図であ
る。
FIG. 5 is a perspective view for explaining a part of the manufacturing process of the diffraction grating in the manufacturing process of the optical coupler of the present invention.

【符号の説明】[Explanation of symbols]

1 石英ガラス基板 2 GeO2膜 3 回折格子 4 リブ構造 5 SiO2クラッド層 6 フォトダイオード 7 半導体レーザ 8、9 FET 10 信号取り出し電極 11 インバータ 12 制御電極 20 Cr膜 21 フォトレジストの回折格子パターン 1 Quartz glass substrate 2 GeO2 film 3 Diffraction grating 4 Rib structure 5 SiO2 cladding layer 6 Photodiode 7 Semiconductor laser 8, 9 FET 10 Signal extraction electrode 11 Inverter 12 Control electrode 20 Cr film 21 Photoresist diffraction grating pattern

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/18 Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01S 3/18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光導波路において、導波路内に導波光に
対して放射損失係数が0でない値を持つ2次以上の回折
格子結合器を有し、基板表面に導波方向と平行に受光素
子アレイが配置され、回折格子結合器により出射した光
が、前記受光素子で受光されることを特徴とする光カプ
ラ。
1. An optical waveguide having a diffraction grating coupler of a second order or higher having a radiation loss coefficient not equal to 0 with respect to the guided light in the waveguide, and a light receiving element parallel to the waveguide direction on the substrate surface. An optical coupler in which an array is arranged and light emitted from a diffraction grating coupler is received by the light receiving element.
【請求項2】 前記導波路上にエバネッセント光が導波
路表面にしみだすことのない厚さ以上のクラッド層ある
いはクラッド層とバッファ層を有することを特徴とする
請求項1記載の光カプラ。
2. The optical coupler according to claim 1, further comprising a clad layer or a clad layer and a buffer layer having a thickness not exceeding the waveguide surface on which the evanescent light leaks.
【請求項3】 前記回折格子が導波方向に対して一定間
隔で一定長さで配置され、各々の回折格子結合器からの
出射光が1対1で対応した受光素子アレイの受光素子に
受光されることを特徴とする請求項1記載の光カプラ。
3. The diffraction gratings are arranged at a constant interval in the waveguide direction at a constant length, and the light emitted from each diffraction grating coupler is received by a light receiving element of a corresponding one of the light receiving element arrays. The optical coupler according to claim 1, wherein
【請求項4】 請求項3で一定間隔で配置された回折格
子の長さが、導波路の入射端面から基板内部に行くにつ
れて長くなっており、回折格子結合器の全放射損失係数
をα、各回折格子結合器の長さをLで表すとき、各回折
格子結合器のαLが一定ではなく、出射光強度が等しく
なるように設計された請求項1あるいは請求項2記載の
光カプラ。
4. The length of the diffraction grating arranged at a constant interval in claim 3 becomes longer from the incident end face of the waveguide toward the inside of the substrate, and the total radiation loss coefficient of the diffraction grating coupler is α, 3. The optical coupler according to claim 1, wherein when the length of each diffraction grating coupler is represented by L, .alpha.L of each diffraction grating coupler is not constant and the emitted light intensities are equal.
JP20638492A 1992-08-03 1992-08-03 Optical coupler Expired - Fee Related JP3153886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20638492A JP3153886B2 (en) 1992-08-03 1992-08-03 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20638492A JP3153886B2 (en) 1992-08-03 1992-08-03 Optical coupler

Publications (2)

Publication Number Publication Date
JPH0651144A true JPH0651144A (en) 1994-02-25
JP3153886B2 JP3153886B2 (en) 2001-04-09

Family

ID=16522453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20638492A Expired - Fee Related JP3153886B2 (en) 1992-08-03 1992-08-03 Optical coupler

Country Status (1)

Country Link
JP (1) JP3153886B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512543A (en) * 2006-10-11 2010-04-22 ファーウェイ テクノロジーズ カンパニー リミテッド Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
JP2011043699A (en) * 2009-08-21 2011-03-03 Tokyo Institute Of Technology Grating coupler
US8064745B2 (en) 2009-11-24 2011-11-22 Corning Incorporated Planar waveguide and optical fiber coupling
JP2016156946A (en) * 2015-02-24 2016-09-01 沖電気工業株式会社 Optical wavelength filter
US11256043B2 (en) 2018-03-09 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Optical device and photodetection system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021813A1 (en) * 2012-07-30 2014-02-06 Hewlett-Packard Development Company, L.P. Compact photonic platforms
US10209445B2 (en) 2012-07-30 2019-02-19 Hewlett Packard Enterprise Development Lp Method of fabricating a compact photonics platform
CN107765375B (en) * 2017-11-21 2019-06-25 南京大学 Chip based on double-layer grating-fiber perpendicular coupled structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512543A (en) * 2006-10-11 2010-04-22 ファーウェイ テクノロジーズ カンパニー リミテッド Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
JP2011043699A (en) * 2009-08-21 2011-03-03 Tokyo Institute Of Technology Grating coupler
US8064745B2 (en) 2009-11-24 2011-11-22 Corning Incorporated Planar waveguide and optical fiber coupling
JP2016156946A (en) * 2015-02-24 2016-09-01 沖電気工業株式会社 Optical wavelength filter
US11256043B2 (en) 2018-03-09 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Optical device and photodetection system

Also Published As

Publication number Publication date
JP3153886B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
US7233725B2 (en) 1×N fanout waveguide photodetector
US6788727B2 (en) Method and apparatus for tunable wavelength conversion using a bragg grating and a laser in a semiconductor substrate
EP1730559B1 (en) Method and apparatus providing an output coupler for an optical beam
US6483635B1 (en) Apparatus for light amplification
JP2008511862A (en) Lifetime reduction of generated carriers by two-photon absorption in semiconductor-based Raman lasers and amplifier semiconductor waveguides
JPH1154853A (en) System having raman fiber laser
EP0666623A1 (en) Multiwavelength upconversion waveguide laser
US4693545A (en) Apparatus for the controlled transmission of light
US6157760A (en) Two-way optical communication device and two-way optical communication apparatus
US20040151461A1 (en) Broadband optical pump source for optical amplifiers, planar optical amplifiers, planar optical circuits and planar optical lasers fabricated using group IV semiconductor nanocrystals
JPH0651144A (en) Optical fiber coupler
Dwivedi et al. Multicore fiber link with SiN integrated fan-out and InP photodiode array
US20050063659A1 (en) Method and apparatus for decreasing signal propagation delay in a waveguide
Cocorullo et al. New possibilities for efficient silicon integrated electro-optical modulators
US7720389B2 (en) Optical integrated circuit apparatus
JP3006666B2 (en) Optical coupling device and optical coupling method
JP3233239B2 (en) Functional optical coupler
JP5317198B2 (en) Grating coupler
JP3529275B2 (en) WDM light source
GB2170322A (en) Integrated optical device with wavelength-selective reflection
KR20030042565A (en) Optical semiconductor with curved optical waveguide
Yeh Advances in communication through light fibers
JP3950763B2 (en) Optical device
JP2003289153A (en) Optical transmission device having wavelength stabilizing mechanism
JP3663083B2 (en) Wavelength converter and optical transmission system using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees