JPH0651090A - Flaw detecting method for heat conducting pipe - Google Patents

Flaw detecting method for heat conducting pipe

Info

Publication number
JPH0651090A
JPH0651090A JP4205666A JP20566692A JPH0651090A JP H0651090 A JPH0651090 A JP H0651090A JP 4205666 A JP4205666 A JP 4205666A JP 20566692 A JP20566692 A JP 20566692A JP H0651090 A JPH0651090 A JP H0651090A
Authority
JP
Japan
Prior art keywords
heat transfer
flaw detection
transfer tube
pipe
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4205666A
Other languages
Japanese (ja)
Inventor
Tomihito Wada
臣仁 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4205666A priority Critical patent/JPH0651090A/en
Publication of JPH0651090A publication Critical patent/JPH0651090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To judge whether any flaw exists in heat conduction pipes from change in the intensity of radioactivity sensed, by filling the space outside of each heat conduction pipe with uniform radiation source, and moving a flaw detection probe upon inserting into an applicable pipe. CONSTITUTION:To make flaw detection of heat conduction pipes 6 of a heat exchanger, the inner space of the trunk 5 is filled with a flaw detection inspecting liquid 9 having radioactiveness, and the space outside of each pipe 6 is filled with uniform radiation source. The lid 8 to the head part 1 is removed, and a flaw detecting probe 10 is inserted through any applicable heat conduction pipe 6 from chambers 3, 4, and a cable 13 is pulled to cause moving in the pipe 6. If a crack A is initiated at the peripheral surface of the pipe 6, it shortens the distance to the inner surface of the pipe 6 from radioactive particles in the inspecting liquid having permeated the crack, so that the intensity of the radioactivity permeating to the inside increases. When the probe 10 passes the place where crack A is generated, therefore, the intensity, of the radioactivity transmitted to the outside by the cable 13 as the dosage data upon sensing 11 and converting 12 increases. The obtained is compared with the past dosage data, and judgement as with flaw is passed accordingly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器、蒸気発生器
等の伝熱管を探傷検査する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting flaws in heat transfer tubes such as heat exchangers and steam generators.

【0002】[0002]

【従来の技術】原子力設備に使用される熱交換器等にお
いては、伝熱管内に放射能を含んだ液が流れるため、伝
熱管に「割れ」「孔食」「へこみ」等があると、重大な
事故を誘発するおそれがある。そのため、この種の伝熱
管にあっては供用期間中の探傷検査が義務づけられ、こ
の検査にはより高い探傷能力が望まれる。
2. Description of the Related Art In a heat exchanger or the like used in a nuclear facility, a liquid containing radioactivity flows in the heat transfer tube, so that the heat transfer tube has "cracks", "pitting corrosion", "dents", etc. May cause serious accidents. Therefore, this type of heat transfer tube is obliged to carry out flaw detection during service, and a higher flaw detection capability is desired for this inspection.

【0003】従来、かかる伝熱管の探傷方法として、渦
電流の変化から傷等の有無を検出する、いわゆる渦流探
傷法が知られている。渦流探傷法では、図3に示すごと
き探傷プローブaを伝熱管内に挿入して移動させ、この
プローブa内蔵の二つのコイルb,bに交番電圧を印加
して伝熱管の別々の位置に渦電流を生じさせる。いま、
一方のコイルbにより生起される渦電流が傷部を通過す
ると、その渦電流の経路が変化するため、この渦電流の
変化を上記両コイルb,bのインピーダンス差から検出
すれば、伝熱管の管壁中に傷等があるかどうかを判別で
きる。
As a conventional flaw detection method for such a heat transfer tube, a so-called eddy current flaw detection method is known, which detects the presence or absence of a flaw or the like from a change in eddy current. In the eddy current flaw detection method, a flaw detection probe a as shown in FIG. 3 is inserted into the heat transfer tube and moved, and an alternating voltage is applied to the two coils b, b built in this probe a to cause vortexes to move to different positions of the heat transfer tube. Generate an electric current. Now
When the eddy current generated by one coil b passes through the flaw, the path of the eddy current changes. Therefore, if the change in this eddy current is detected from the impedance difference between the coils b and b, the heat transfer tube It is possible to determine whether there are scratches in the tube wall.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た渦流探傷法には、次のような欠点がある。
However, the above-mentioned eddy current flaw detection method has the following drawbacks.

【0005】(1) 探傷プローブaのコイルbに電圧印加
すると、そのコイルbより生じる磁力線が伝熱管の管壁
中をその軸線方向に沿って透過し、これと直交する方向
に渦電流が生じるため、伝熱管の周方向の「割れ」に対
しては渦電流がほとんど変化せず検出が困難である。
(1) When a voltage is applied to the coil b of the flaw detection probe a, the magnetic field lines generated from the coil b pass through the tube wall of the heat transfer tube along its axial direction, and an eddy current is generated in a direction orthogonal to this. Therefore, the eddy current hardly changes with respect to the circumferential “crack” of the heat transfer tube, which is difficult to detect.

【0006】(2)通常、伝熱管は支持板や止め金等によ
り固定側に支持されるが、この場合、伝熱管の管壁から
磁力線が支持板や止め金側に漏れ出し、伝熱管の支持部
での検出精度を劣下させる。
(2) Normally, the heat transfer tube is supported on the fixed side by a support plate or a stopper plate, but in this case, the magnetic force lines leak from the tube wall of the heat transfer tube to the support plate or the stopper plate, and The detection accuracy at the support part is degraded.

【0007】(3)また、伝熱管がU字状の場合、そのU
字部では両コイルb,bにより生起される渦電流が異な
り検出精度が劣下する。
(3) If the heat transfer tube is U-shaped, the U
In the character portion, the eddy currents generated by both coils b, b are different, and the detection accuracy deteriorates.

【0008】本発明の目的は、前述した従来の欠点を一
挙に克服でき、探傷能力を大幅に向上することができる
新規な伝熱管の探傷方法を提供することにある。
An object of the present invention is to provide a novel flaw detection method for a heat transfer tube, which can overcome the above-mentioned conventional drawbacks all at once and greatly improve the flaw detection ability.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の探傷方法は、伝熱管の外側を一様な放射線
源で満たした後、この伝熱管の内部に放射線量を検出す
る探傷プローブを挿入して移動させ、その探傷プローブ
により検出される放射線量の変化によって上記伝熱管の
欠陥の有無を判別するものである。
In order to achieve the above object, the flaw detection method of the present invention detects the radiation dose inside the heat transfer tube after the outside of the heat transfer tube is filled with a uniform radiation source. The flaw detection probe is inserted and moved, and the presence or absence of a defect in the heat transfer tube is determined by the change in the radiation dose detected by the flaw detection probe.

【0010】[0010]

【作用】上記方法によれば、伝熱管の外側を一様な放射
線源で満たすことにより、割れ・孔食等の欠陥部では、
伝熱管の内面側に透過してくる放射線量が他の部分より
も高くなる。このため、放射線量を検出しうる探傷プロ
ーブを伝熱管内に挿入して移動させれば、そのプローブ
により検出される放射線量の変化から伝熱管の欠陥の有
無を判別できる。
According to the above method, by filling the outside of the heat transfer tube with a uniform radiation source, the defective portion such as cracks and pitting corrosion can be prevented.
The amount of radiation transmitted to the inner surface side of the heat transfer tube is higher than that of other portions. Therefore, if a flaw detection probe capable of detecting the radiation dose is inserted into the heat transfer tube and moved, the presence or absence of a defect in the heat transfer tube can be determined from the change in the radiation dose detected by the probe.

【0011】[0011]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0012】図1に、本発明方法が適用される伝熱管式
熱交換器の一例を示す。図において、1は中空状の頭体
であり、この頭体1の内空間は仕切板2により2つの室
3,4に区画されている。頭体1の一端部には、略有底
筒状の胴体5が液密状態で取付けられ、この胴体5の内
空間には略U字状の伝熱管6,6…が多数配設されてい
る。伝熱管6は、頭体1の一の室3に導入された流体を
胴体5内に導入される別の流体と熱交換させ頭体1の他
の室4を経て排出するもので、その伝熱管6の両端部は
それぞれ上記頭体1の室3,4に連通されている。ま
た、伝熱管6の中間部は、胴体5の内周面に所定間隔ご
とに取付けられた複数の支持板7,7…により支持され
ている。
FIG. 1 shows an example of a heat transfer tube type heat exchanger to which the method of the present invention is applied. In the figure, 1 is a hollow head body, and the inner space of the head body 1 is divided by a partition plate 2 into two chambers 3 and 4. A substantially bottomed tubular body 5 is attached to one end of the head body 1 in a liquid-tight state, and a large number of substantially U-shaped heat transfer tubes 6, 6 ... Are disposed in the inner space of the body 5. There is. The heat transfer tube 6 heat-exchanges the fluid introduced into the one chamber 3 of the head 1 with another fluid introduced into the body 5, and discharges the heat through another chamber 4 of the head 1. Both ends of the heat pipe 6 are communicated with the chambers 3 and 4 of the head body 1, respectively. Further, the middle portion of the heat transfer tube 6 is supported by a plurality of support plates 7, 7 ... Attached to the inner peripheral surface of the body 5 at predetermined intervals.

【0013】上記構成の熱交換器における伝熱管6を探
傷検査する場合、まず、胴体5内の空間に放射性を有す
る探傷検査液9を充填し、各伝熱管6の外側を一様な放
射線源で満した状態とする。探傷検査液9としては、こ
こでは放射性微粒子(例えば、セシウム同位体の粉末)
を含んだ液等が使用される。次に、頭体1の蓋8を取り
外して室3,4を開放し、一方の室3,4より所定の伝
熱管6内に図2に示すように探傷プローブ10を挿入す
る。探傷プローブ10は、主に、γ線モニタ等の放射線
量を検知する検知部11、検知部11により検知された
放射線量を電気信号に変換する変換部12、変換部12
により変換された線量信号を外部のマイコン (図示せ
ず) にデータ伝送するケーブル13からなる。そのた
め、この探傷プローブ10を伝熱管6内にその一端より
空気圧を利用して挿入し、ケーブル13を引張って伝熱
管6内で移動させると、随時、伝熱管6の外周側から内
面側に透過してくる放射線量が検知部11により検知さ
れ、変換部12で電気信号に変換された後、線量データ
としてケーブル13により外部に送信される。
When conducting a flaw detection inspection of the heat transfer tubes 6 in the heat exchanger having the above-mentioned structure, first, the space inside the body 5 is filled with a radioactive flaw detection inspection liquid 9, and the outside of each heat transfer tube 6 is uniformly irradiated with a radiation source. And fill up with. As the flaw detection test liquid 9, here, radioactive fine particles (eg, cesium isotope powder) are used.
A liquid containing is used. Next, the lid 8 of the head 1 is removed to open the chambers 3 and 4, and the flaw detection probe 10 is inserted into the predetermined heat transfer tube 6 from one of the chambers 3 and 4 as shown in FIG. The flaw detection probe 10 mainly includes a detection unit 11 that detects a radiation dose such as a γ-ray monitor, a conversion unit 12 that converts the radiation dose detected by the detection unit 11 into an electric signal, and a conversion unit 12.
It is composed of a cable 13 for transmitting the dose signal converted by the data to an external microcomputer (not shown). Therefore, when the flaw detection probe 10 is inserted into the heat transfer tube 6 from its one end using air pressure and the cable 13 is pulled and moved in the heat transfer tube 6, the flaw is transmitted from the outer peripheral side to the inner surface side of the heat transfer tube 6 at any time. The coming radiation amount is detected by the detection unit 11, converted into an electric signal by the conversion unit 12, and then transmitted as dose data to the outside by the cable 13.

【0014】いま、図2のように伝熱管6の外周面に割
れAが生じていると、その割れA内に探傷検査液9中の
放射性微粒子が浸透し、放射性微粒子から伝熱管6内面
までの距離が短くなり、管6の内面側に透過してくる放
射線量が増大する。すると、探傷プローブ10が割れA
の発生箇所を通過する際、そのプローブ10により検知
される放射線量が増大し、外部のマイコン等においては
過去の線量データとの比較から「欠陥有り」と判別され
る。また、伝熱管6の内面に腐蝕等によるへこみBがあ
る場合も、その箇所の管壁が薄いことに起因して伝熱管
6の内面側に透過する線量が増大し「欠陥有り」と判別
される。
As shown in FIG. 2, when a crack A is formed on the outer peripheral surface of the heat transfer tube 6, radioactive fine particles in the flaw detection test liquid 9 penetrate into the crack A, and from the radioactive fine particle to the inner surface of the heat transfer tube 6. Is shortened, and the amount of radiation transmitted to the inner surface of the tube 6 is increased. Then, the flaw detection probe 10 is cracked A
The radiation amount detected by the probe 10 increases when passing through the occurrence point of the, and an external microcomputer or the like determines that "there is a defect" based on comparison with past dose data. In addition, even when there is a dent B due to corrosion or the like on the inner surface of the heat transfer tube 6, the dose transmitted to the inner surface side of the heat transfer tube 6 increases due to the thin tube wall at that location, and it is determined that there is "a defect". It

【0015】このように、本実施例の探傷方法によれ
ば、伝熱管6の外側を放射性の探傷検査液9 (放射線
源) で満たし、その検査液9からの放射線量を伝熱管6
内で探傷プローブ10により検出することで、伝熱管6
の形状等にかかわらず直接伝熱管6の欠陥の有無を検出
することができる。即ち、伝熱管6の周方向に「割れ」
等が生じていても、伝熱管6内面側では放射線量が増加
するので、そのような欠陥も迅速かつ確実に検出でき
る。伝熱管6のU字部においても同様である。また、探
傷プローブ10が支持板7の内側を通過する際には、そ
の支持板7および伝熱管6間の隙間に放射性微粒子が入
り込むことにより、伝熱管6支持部でも、他の部分と同
様に検査を行え、その部分での極端な精度劣化も防止で
きる。
As described above, according to the flaw detection method of this embodiment, the outside of the heat transfer tube 6 is filled with the radioactive flaw detection inspection liquid 9 (radiation source), and the radiation amount from the inspection liquid 9 is transferred to the heat transfer pipe 6.
By detecting with the flaw detection probe 10 in the heat transfer tube 6,
It is possible to directly detect the presence or absence of a defect in the heat transfer tube 6 regardless of the shape or the like. That is, “cracking” occurs in the circumferential direction of the heat transfer tube 6.
Even if such a problem occurs, the radiation dose increases on the inner surface side of the heat transfer tube 6, so that such a defect can be detected quickly and reliably. The same applies to the U-shaped portion of the heat transfer tube 6. Further, when the flaw detection probe 10 passes through the inside of the support plate 7, the radioactive fine particles enter the gap between the support plate 7 and the heat transfer tube 6, so that the heat transfer tube 6 support portion is also treated in the same manner as other portions. Inspection can be performed, and extreme deterioration of accuracy can be prevented.

【0016】なお、上記実施例の探傷プローブ10は、
線量データをケーブル13により外部に送信するものと
したが、ワイヤレスプローブを用いてもよいことは当然
である。この場合、探傷プローブ10にアンテナを設
け、このアンテナにより外部に線量データを無線送信す
ればよい。また、上記実施例では、原子力設備における
伝熱管式熱交換器の探傷検査について説明したが、これ
に限らず、蒸気発生器等の伝熱管にも適用できる。
The flaw detection probe 10 of the above embodiment is
Although the dose data is transmitted to the outside via the cable 13, it goes without saying that a wireless probe may be used. In this case, the flaw detection probe 10 may be provided with an antenna, and the antenna may wirelessly transmit the dose data to the outside. Further, in the above-mentioned embodiment, the flaw detection inspection of the heat transfer tube type heat exchanger in the nuclear facility has been described, but the present invention is not limited to this, and can be applied to a heat transfer tube such as a steam generator.

【0017】[0017]

【発明の効果】以上要するに本発明によれば、伝熱管の
外側を一様な放射線源で満たした後、伝熱管内で探傷プ
ローブを移動させ、そのプローブにより検出される放射
線量の変化から伝熱管の欠陥の有無を判別するので、従
来の渦流探傷法に比して検査精度の向上および検査時間
の短縮を図れ、もって探傷能力を大幅に向上することが
できる。
In summary, according to the present invention, after the outside of the heat transfer tube is filled with a uniform radiation source, the flaw detection probe is moved within the heat transfer tube, and the radiation dose detected by the probe is transferred. Since it is determined whether or not there is a defect in the heat pipe, it is possible to improve the inspection accuracy and the inspection time as compared with the conventional eddy current flaw detection method, and it is possible to significantly improve the flaw detection capability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の伝熱管の探傷方法が適用される伝熱管
式熱交換器を示す正面断面図である。
FIG. 1 is a front sectional view showing a heat transfer tube heat exchanger to which a flaw detection method for a heat transfer tube according to the present invention is applied.

【図2】熱交換器の伝熱管内に探傷プローブを挿入した
状態を示す図である。
FIG. 2 is a diagram showing a state in which a flaw detection probe is inserted into a heat transfer tube of a heat exchanger.

【図3】従来の渦流探傷法に用いられる探傷プローブを
示す断面図である。
FIG. 3 is a sectional view showing a flaw detection probe used in a conventional eddy current flaw detection method.

【符号の説明】[Explanation of symbols]

1 頭体 5 胴体 6 伝熱管 9 探傷検査液 (放射線源) 10 探傷プローブ 11 検知部 12 変換部 13 ケーブル 1 head body 5 body 6 heat transfer tube 9 flaw detection test liquid (radiation source) 10 flaw detection probe 11 detection section 12 conversion section 13 cable

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 伝熱管の外側を一様な放射線源で満たし
た後、該伝熱管の内部に放射線量を検出する探傷プロー
ブを挿入して移動させ、該探傷プローブにより検出され
る放射線量の変化によって上記伝熱管の欠陥の有無を判
別することを特徴とする伝熱管の探傷方法。
1. After filling the outside of the heat transfer tube with a uniform radiation source, a flaw detection probe for detecting the radiation dose is inserted into the inside of the heat transfer tube and moved, and the radiation dose detected by the flaw detection probe is changed. A flaw detection method for a heat transfer tube, characterized in that the presence or absence of a defect in the heat transfer tube is determined by a change.
JP4205666A 1992-07-31 1992-07-31 Flaw detecting method for heat conducting pipe Pending JPH0651090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205666A JPH0651090A (en) 1992-07-31 1992-07-31 Flaw detecting method for heat conducting pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205666A JPH0651090A (en) 1992-07-31 1992-07-31 Flaw detecting method for heat conducting pipe

Publications (1)

Publication Number Publication Date
JPH0651090A true JPH0651090A (en) 1994-02-25

Family

ID=16510682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205666A Pending JPH0651090A (en) 1992-07-31 1992-07-31 Flaw detecting method for heat conducting pipe

Country Status (1)

Country Link
JP (1) JPH0651090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366013A (en) * 2020-11-10 2021-02-12 中国核动力研究设计院 Nuclear test method suitable for heat pipe reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366013A (en) * 2020-11-10 2021-02-12 中国核动力研究设计院 Nuclear test method suitable for heat pipe reactor
CN112366013B (en) * 2020-11-10 2022-04-15 中国核动力研究设计院 Nuclear test method suitable for heat pipe reactor

Similar Documents

Publication Publication Date Title
US4203069A (en) Method and apparatus for non-destructively testing electrically conductive elongate cylindrical components using an eddy current producing coil with a rotor to concentrate the magnetic field in a selected area
US3906358A (en) Probe train including a flaw detector and a radiation responsive recording means with alignment means having a natural curved cast
US5491409A (en) Multiple yoke eddy current technique for detection of surface defects on metal components covered with marine growth
US20050041775A1 (en) High speed digital radiographic inspection of piping
US3916302A (en) Multi-coil eddy current probe for determining angular location of irregularity in cylindrical test member
US5418823A (en) Combined ultrasonic and eddy-current method and apparatus for non-destructive testing of tubular objects to determine thickness of metallic linings or coatings
JPH0358478B2 (en)
US6792069B2 (en) Apparatus for inspecting a heat exchanger tube and group of heat exchanger tubes
US5821747A (en) Method and apparatus for scanning a plurality of parallel pipes for flaws using tube-to-tube through transmissions
JPH0651090A (en) Flaw detecting method for heat conducting pipe
US5442284A (en) Process for inspecting spacers of heat exchanger tubes in a heat exchanger
CN102928507B (en) Health monitoring device and method of GIS (gas insulated switchgears) tank
CN112415088A (en) Inner-through transverse pulse eddy current detection probe and use method thereof
GB2143331A (en) Apparatus for detecting the defective portion of a metallic tube
EP3514528B1 (en) Nondestructive inspection method for a heat exchanger employing adaptive noise thresholding
CN202814929U (en) Tank body health monitoring device of gas insulated switchgear (GIS)
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
JP3787347B2 (en) Heat transfer tube group inspection device
CN206523449U (en) Ray inspection machine and its imaging frock
EP0321013A2 (en) A method and apparatus for internal corrosion-inspection of pipes or tubes of a relatively small diameter
WO2023049975A1 (en) Internal duct integrity inspection equipment using magnetic metal memory
WO1994018540A1 (en) Sensing probe
KR100597726B1 (en) Determination method of failed fuel discrimination ratio by applying the correction factors compensated for the flow rate differences among the coolant sampling lines
Schepens et al. Rotating excitation probe for inspecting PWR SG tubes
Obrutsky et al. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes