JPH0651081A - Nuclear reactor stopping device - Google Patents

Nuclear reactor stopping device

Info

Publication number
JPH0651081A
JPH0651081A JP4204876A JP20487692A JPH0651081A JP H0651081 A JPH0651081 A JP H0651081A JP 4204876 A JP4204876 A JP 4204876A JP 20487692 A JP20487692 A JP 20487692A JP H0651081 A JPH0651081 A JP H0651081A
Authority
JP
Japan
Prior art keywords
bellows
temperature
control rod
sensitive member
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4204876A
Other languages
Japanese (ja)
Inventor
Akihiro Hara
昭浩 原
Hisato Matsumiya
壽人 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4204876A priority Critical patent/JPH0651081A/en
Publication of JPH0651081A publication Critical patent/JPH0651081A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To quicken the responsiveness for the rise of temp. and insert a control rod certainly in the reactor core. CONSTITUTION:A coil spring 36 is furnished between an upper and a lower extension rod 17, 17 and surrounded by long stretching bellows 34, and a double cylindrical structured thermo-sensitive member 35 is installed outside of the bellows, while a communication hole 31 is formed in the upper rod 17, and a liquid metal 32 is encapsulated in the bellows 34 and the member 35. In this thermal expansion type nuclear reactor stopping device, fins 38 in the form of flat plate are radially installed on the member 35 in the temp. sensing part 29. When the temp. of a cooling material rises in the event of failure in the nuclear reactor, the liquid metal 32 in the thermo-sensitive member 35 rises owing to the fins 38, and the long stretching bellows 34 are displaced by means of passage through the communication hole 31, and the control rod is inserted into the core.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速増殖炉に設置され
る熱膨張式の原子炉停止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal expansion type reactor shutdown device installed in a fast breeder reactor.

【0002】[0002]

【従来の技術】一般に、高速増殖炉の炉心は図11および
図12に示すように多数の燃料集合体1,1と、これら燃
料集合体1,1の間に挿入される複数の制御棒集合体2
と、燃料集合体1の最外部を包囲するようにして設けら
れる多数の遮蔽体(図示せず)によって形成されてい
る。
2. Description of the Related Art Generally, the core of a fast breeder reactor is composed of a large number of fuel assemblies 1, 1 and a plurality of control rod assemblies inserted between these fuel assemblies 1, 1 as shown in FIGS. Body 2
And a large number of shields (not shown) provided so as to surround the outermost portion of the fuel assembly 1.

【0003】燃料集合体1はラッパ管1a内に多数の燃
料ピン3を組み込んでおり、ラッパ管1aの下端に設け
たエントランスノズル4を炉心支持板5の開孔部に挿入
することにより定位置に設置される。
The fuel assembly 1 incorporates a large number of fuel pins 3 in a trumpet tube 1a, and an entrance nozzle 4 provided at the lower end of the trumpet tube 1a is inserted into an opening portion of a core support plate 5 so as to be fixed in position. Is installed in.

【0004】炉心内では炉心支持板5内の高圧プレナム
6から液体金属ナトリウムの冷却材がエントランスノズ
ル4の冷却材流入口7を通してラッパ管1a内に流入
し、続いて燃料ピン3の間を上昇し、ラッパ管1aの上
部のハンドリングヘッドから流出して、燃料集合体1を
除熱する。
In the core, a coolant of liquid metal sodium flows from the high pressure plenum 6 in the core support plate 5 into the trumpet pipe 1a through the coolant inlet port 7 of the entrance nozzle 4, and subsequently rises between the fuel pins 3. Then, the fuel assembly 1 is discharged from the handling head above the trumpet tube 1a to remove heat.

【0005】制御棒集合体2は下部案内管8と上部案内
管9と制御棒本体10と、これを吊下する延長管11とによ
り形成されている。下部案内管8は下端に形成されてい
るエントランスノズル12を炉心支持板5の開孔部に挿入
して定位置に設置される。
The control rod assembly 2 is formed by a lower guide tube 8, an upper guide tube 9, a control rod body 10 and an extension pipe 11 for suspending the control rod body 10. The lower guide tube 8 is installed at a fixed position by inserting the entrance nozzle 12 formed at the lower end into the opening of the core support plate 5.

【0006】このエントランスノズル12には高圧プレナ
ム6に連通する冷却材流入口13と、制御棒本体10内に連
通する連通孔14とが設けられている。また、制御棒本体
10内には中性子吸収体ピンが組み込まれている。
The entrance nozzle 12 is provided with a coolant inlet 13 communicating with the high pressure plenum 6 and a communication hole 14 communicating with the control rod body 10. Also, the control rod body
A neutron absorber pin is incorporated in the 10.

【0007】制御棒本体10の再挿入時には、制御棒本体
10の下部に設けた係合部15を下部案内管8底部のダッシ
ュポット16内に挿入して定位置に設置される。制御棒本
体10の上端には上方へ延出させた延長棒17を有し、この
延長棒17の上端部に掴み部18が形成されている。この掴
み部18により延長管11の下端部を掴むことによって制御
棒本体10は延長管11に吊下される。
When the control rod body 10 is reinserted, the control rod body 10
The engaging portion 15 provided at the lower portion of 10 is inserted into the dashpot 16 at the bottom of the lower guide tube 8 and installed at a fixed position. The control rod body (10) has an extension rod (17) extending upward, and a grip portion (18) is formed at the upper end of the extension rod (17). The control rod body 10 is suspended from the extension pipe 11 by grasping the lower end portion of the extension pipe 11 by the grip portion 18.

【0008】延長管11を制御棒駆動機構(図示せず)に
よって上下動させることによって制御棒本体10を炉心内
に挿入したり、引抜いたりする。この制御棒本体10の除
熱は高圧プレナム6からエントランスノズル12の冷却材
流入口13、連通孔14とを通って下部案内管8内を上昇す
る冷却材によって行われる。
By vertically moving the extension pipe 11 by a control rod drive mechanism (not shown), the control rod body 10 is inserted into or pulled out from the core. This heat removal of the control rod body 10 is performed by the coolant that rises in the lower guide pipe 8 from the high pressure plenum 6 through the coolant inlet port 13 of the entrance nozzle 12 and the communication hole 14.

【0009】図12に図11のG部を拡大して示したように
延長棒17を切断したその間に図11で示したばね部30にコ
イルばね36を介在し、このコイルばね36の外側にベロー
ズ34を設け、このベローズ34およびコイルばね36の外側
を包囲して図11で示した感温部29に二重円筒状感温部材
35を設けている。この感温部材35内およびベローズ34内
に液体金属32として液体金属ナトリウムを封入してい
る。
As shown in FIG. 12 by enlarging the portion G in FIG. 11, the extension rod 17 is cut, and the coil spring 36 is interposed between the spring portion 30 shown in FIG. 11 and the bellows outside the coil spring 36. A double cylindrical temperature-sensitive member is provided in the temperature-sensing portion 29 shown in FIG. 11 by surrounding the outside of the bellows 34 and the coil spring 36.
35 are provided. Liquid metal sodium is sealed as the liquid metal 32 in the temperature sensitive member 35 and the bellows 34.

【0010】ベローズ34は延長棒17,17間に支持板33で
両端部が固定されている。二重円筒状感温部材35の両端
部は環状端栓37で封止されている。ベローズ34内と感温
部材35との間は上部の延長棒17に形成した連通孔31によ
り連通している。
Both ends of the bellows 34 are fixed by support plates 33 between the extension rods 17, 17. Both ends of the double cylindrical temperature-sensitive member 35 are sealed with annular end plugs 37. The inside of the bellows 34 and the temperature sensitive member 35 are communicated with each other by a communication hole 31 formed in the extension bar 17 on the upper side.

【0011】[0011]

【発明が解決しようとする課題】通常の原子炉運転時に
は延長管11の上下動作により制御棒本体10の炉心内への
挿入度を調整して炉出力を調整する。また、炉出力が異
常に上昇したり、冷却材が減少する等の異常が生じる
と、制御棒本体10を炉心内に緊急挿入させて炉を停止さ
せるスクラム動作が行われる。
During normal reactor operation, the extension of the extension pipe 11 is adjusted to adjust the insertion degree of the control rod body 10 into the core to adjust the reactor power. Further, when an abnormality such as an abnormal increase in the reactor output or a decrease in the coolant occurs, a scram operation is carried out to urgently insert the control rod body 10 into the core and stop the furnace.

【0012】一方、高速増殖炉においては緊急時に何ら
かの原因で延長管11が下降不能となって制御棒本体10を
炉心内に挿入できないというスクラム失敗の場合を想定
し、このスクラム失敗時にも炉心の反応度を臨界よりも
低く抑える必要がある。
On the other hand, in a fast breeder reactor, it is assumed that the extension pipe 11 cannot be lowered for some reason in an emergency and the control rod body 10 cannot be inserted into the core. It is necessary to keep the reactivity below the critical level.

【0013】その理由はスクラム失敗が起きると、原子
炉出力が過剰に増大して冷却材の温度が上昇し、ひいて
は炉心損傷事故につながる可能性があることによる。
The reason for this is that if a scrum failure occurs, the reactor power will increase excessively and the temperature of the coolant will rise, which may lead to a core damage accident.

【0014】図13は反応度と事故時間との関係を示した
もので、図13に示すようにスクラム失敗時には炉心内に
おいてはドップラ効果および冷却材の密度効果によって
制御棒反応度が0の臨界よりも高い同図中線aの正の反
応度が発生する。
FIG. 13 shows the relationship between the reactivity and the accident time. As shown in FIG. 13, when the scram fails, the criticality of the control rod reactivity is 0 due to the Doppler effect and the coolant density effect in the core. A higher positive reactivity of the line a in FIG.

【0015】しかし、従来の熱膨張式原子炉停止装置に
おいては、延長管11および延長棒17が事故による冷却材
の温度上昇に伴って軸方向に膨張し、制御棒本体10を炉
心内に挿入し、同図中線bの反応度が発生する。
However, in the conventional thermal expansion type reactor shutdown device, the extension pipe 11 and the extension rod 17 expand axially as the temperature of the coolant increases due to an accident, and the control rod body 10 is inserted into the core. However, the reactivity indicated by the line b in the figure occurs.

【0016】従来はこれらの正,負の反応度が重ね合わ
せた全反応度を同図中線cのように臨界より低い負の正
の反応度領域に保持して、原子炉の安全性を確保してい
る。
Conventionally, the total reactivity obtained by superimposing these positive and negative reactivities is kept in the negative positive reactivity region lower than the critical level as shown by the line c in the figure, and the safety of the nuclear reactor is improved. Have secured.

【0017】従来の熱膨張式原子炉停止装置において
は、原子炉異常時のスクラム失敗に伴う冷却材の温度上
昇に感応し、感温部材内の液体金属が熱膨張する。しか
しながら、感温部材内の液体金属が昇温されるまでに時
間がかかり、制御棒の膨張による負の反応度効果が十分
即効的に得られない課題がある。
In the conventional thermal expansion reactor shutdown device, the liquid metal in the temperature sensing member thermally expands in response to the temperature rise of the coolant caused by the scrum failure at the time of abnormal reactor operation. However, there is a problem that it takes time until the temperature of the liquid metal in the temperature sensitive member is raised, and the negative reactivity effect due to the expansion of the control rod cannot be sufficiently promptly obtained.

【0018】本発明は上記課題を解決するためになされ
たもので、冷却材の温度上昇に対する応答性が優れ、か
つ制御棒を炉心内に確実に挿入できる原子炉停止装置を
提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a reactor shutdown device which has excellent responsiveness to a rise in temperature of a coolant and which can surely insert a control rod into a core. .

【0019】[0019]

【課題を解決するための手段】本発明は炉心に設置され
た案内管内に昇降自在に収納される制御棒本体と、この
制御棒本体の上端から上方へ延出された延長棒と、この
延長棒の上部に設けた掴み部と係合して前記制御棒本体
を吊下する延長管と、前記延長棒の一部に介在したばね
と、このばねの伸縮と連動するベローズと、このベロー
ズおよび前記ばねの外側を包囲して設けられた二重円筒
状感温部材と、この感温部材内および前記ベローズ内に
封入された液体金属と、前記べローズ内および前記感温
部材内を連通している連通孔とを具備した原子炉停止装
置において、前記感温部材にフィンを取り付けるか、ま
たは感温部材を波形に形成して、熱伝達面積を大きくす
ることを特徴とする。また、液体金属に液体リチウムを
使用するか、または制御棒本体の周囲に燃料ピンを環状
に設けたことを特徴とする。
According to the present invention, there is provided a control rod body housed in a guide tube installed in a reactor core so as to be able to move up and down, an extension rod extending upward from an upper end of the control rod body, and an extension thereof. An extension pipe that engages with a grip portion provided on the upper part of the rod to suspend the control rod body, a spring interposed in a part of the extension rod, a bellows that interlocks with expansion and contraction of the spring, and the bellows and A double-cylindrical temperature-sensing member surrounding the outside of the spring, a liquid metal sealed in the temperature-sensing member and the bellows, and a communication between the bellows and the temperature-sensing member. In the reactor shutdown device including the communication hole, a fin is attached to the temperature-sensitive member or the temperature-sensitive member is formed in a corrugated shape to increase a heat transfer area. Further, it is characterized in that liquid lithium is used as the liquid metal, or a fuel pin is provided in an annular shape around the control rod body.

【0020】[0020]

【作用】感温部材にフィンを取り付けた場合、このフィ
ンにより冷却材の温度上昇をべローズ内の液体金属によ
り速やかに熱を伝達する。このため、感温部材内の液体
金属の昇温時間が短くなり、感温部材内の液体金属の熱
膨張が速まる。したがって、制御棒の膨張による負の反
応度効果が即効的に得られる。
When the fin is attached to the temperature sensitive member, the fin quickly transfers the heat of the coolant due to the liquid metal in the bellows. Therefore, the temperature rise time of the liquid metal in the temperature sensitive member is shortened, and the thermal expansion of the liquid metal in the temperature sensitive member is accelerated. Therefore, the negative reactivity effect due to the expansion of the control rod is immediately obtained.

【0021】また、感温部材を波状の形状とし、熱伝達
面の面積を大きくすることにより、冷却材の温度上昇を
ベローズ内の液体金属により速く熱を伝達する。このた
め、感温部材内の液体金属の昇温時間が短くなり、感温
部の液体金属の熱膨張が速まり、制御棒の膨張による負
の反応度効果が即効的に得られる。
Further, by making the temperature sensitive member wavy and increasing the area of the heat transfer surface, the temperature rise of the coolant can be more quickly transferred to the liquid metal in the bellows. Therefore, the temperature rise time of the liquid metal in the temperature sensitive member is shortened, the thermal expansion of the liquid metal in the temperature sensitive portion is accelerated, and the negative reactivity effect due to the expansion of the control rod is immediately obtained.

【0022】さらに、べローズ内の液体金属に液体リチ
ウムを使用することにより、原子炉出力が過剰に増大し
た時の中性子束レベルの上昇に伴い、ベローズ内のリチ
ウムのLi(n,α)反応による発熱が増える。このた
め、感温部材内の液体金属の昇温時間が短くなり、感温
部の液体金属の熱膨張が速まる。したがって、制御棒の
膨張による負の反応度効果が即効的に得られる。
Furthermore, by using liquid lithium as the liquid metal in the bellows, the Li (n, α) reaction of lithium in the bellows is accompanied by an increase in the neutron flux level when the reactor power is excessively increased. Fever increases. Therefore, the temperature rise time of the liquid metal in the temperature sensitive member is shortened, and the thermal expansion of the liquid metal in the temperature sensitive portion is accelerated. Therefore, the negative reactivity effect due to the expansion of the control rod is immediately obtained.

【0023】また、制御棒本体のまわりに燃料ピンを環
状に設けることにより、原子炉異常時には燃料ピンの出
力が上昇する。それに伴い燃料ピンのまわりの冷却材の
温度が上昇し、この昇温した冷却材が直接感温部材に達
する。このため、感温部材内の液体金属の昇温時間が短
くなり、感温部の液体金属の熱膨張が速まる。したがっ
て、制御棒膨張による負の反応度効果が即効的に得られ
る。
Further, by providing the fuel pin in an annular shape around the main body of the control rod, the output of the fuel pin increases when the reactor is abnormal. Along with this, the temperature of the coolant around the fuel pin rises, and this raised coolant directly reaches the temperature sensitive member. Therefore, the temperature rise time of the liquid metal in the temperature sensitive member is shortened, and the thermal expansion of the liquid metal in the temperature sensitive portion is accelerated. Therefore, the negative reactivity effect due to the control rod expansion is immediately obtained.

【0024】[0024]

【実施例】【Example】

(第1の実施例)図1から図3を参照して本発明に係る
原子炉停止装置の第1の実施例を説明する。なお、図2
は図1のA部を拡大した縦断面図で、図3は図2のB−
B矢視方向断面図である。図中、図11および図12と同一
部分には同一符号を付して重複する部分の説明は省略す
る。
(First Embodiment) A first embodiment of the reactor shutdown device according to the present invention will be described with reference to FIGS. Note that FIG.
2 is an enlarged vertical sectional view of the portion A in FIG. 1, and FIG.
It is a sectional view taken along arrow B. 11, those parts which are the same as those corresponding parts in FIGS. 11 and 12 are designated by the same reference numerals, and a description of the overlapping parts will be omitted.

【0025】本第1の実施例が従来例と異なる点は図1
に示す感温部29に平板状のフィン38を放射状に取り付け
たことにある。その他の構成は従来例と同様である。
FIG. 1 shows that the first embodiment is different from the conventional example.
The fins 38 having a flat plate shape are radially attached to the temperature sensing portion 29 shown in FIG. Other configurations are similar to those of the conventional example.

【0026】すなわち、図1に示す感温部29は図2に拡
大して示したように二重円筒状感温部材35からなってお
り、この感温部材35の外側に図3に示したように平板状
のフィン38を放射状に取り付けて熱伝達面積を大きくし
ている。
That is, the temperature sensitive portion 29 shown in FIG. 1 comprises a double cylindrical temperature sensitive member 35 as shown in an enlarged view in FIG. Thus, the flat fins 38 are radially attached to increase the heat transfer area.

【0027】次に上記構成の第1の実施例の作用効果を
説明する。原子炉異常時に冷却材の温度が上昇した場
合、冷却材中に突出しているフィン38により冷却材の温
度上昇を感温部材35内の液体金属32により速やかに熱を
伝達する。このため、感温部材35内の液体金属32は温度
が上昇しながら膨張し、連通孔31を通って、べローズ部
28の長尺べローズ34を変位させ、制御棒を炉心に挿入す
る。
Next, the function and effect of the first embodiment having the above structure will be described. When the temperature of the coolant rises when the reactor is abnormal, the fins 38 protruding into the coolant quickly transfer the temperature rise of the coolant to the liquid metal 32 in the temperature sensitive member 35. Therefore, the liquid metal 32 in the temperature-sensitive member 35 expands while the temperature rises, passes through the communication hole 31, and reaches the bellows portion.
Displace 28 long bellows 34 and insert the control rod into the core.

【0028】これにより制御棒本体10は従来より速やか
に炉心内に挿入されるため、原子炉に異常時が生じた場
合、制御棒膨張による負の反応度効果が即効的に得られ
る。 (第2の実施例)次に図4から図6を参照して本発明の
第2の実施例を説明する。図5は図4のC部を拡大して
示す縦断面図で、図6は図5のD−D矢視方向断面図で
ある。図中、図11および図12と同一部分には同一符号を
付して重複する部分の説明は省略する。
As a result, the control rod body 10 is inserted into the core more quickly than in the conventional case, so that in the event of an abnormality in the reactor, the negative reactivity effect due to the expansion of the control rod can be immediately obtained. (Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS. 5 is an enlarged vertical sectional view showing a portion C of FIG. 4, and FIG. 6 is a sectional view taken along the line D-D of FIG. 11, those parts which are the same as those corresponding parts in FIGS. 11 and 12 are designated by the same reference numerals, and a description of the overlapping parts will be omitted.

【0029】本第2の実施例が従来例と異なる点は感温
部29の感温部材35の外側管を図6に拡大して示したよう
に波状形状に形成して熱伝達面の面積を大きくしたこと
にある。また、感温部29の強度を補強するために補強棒
39を延長棒17と感温部29とに取り付け、補強棒39を束ね
るように補強環40を設置している。
The difference of the second embodiment from the conventional example is that the outer tube of the temperature sensing member 35 of the temperature sensing portion 29 is formed in a wavy shape as shown in an enlarged view in FIG. Has been increased. In addition, a reinforcing rod to reinforce the strength of the temperature sensitive part 29.
39 is attached to the extension rod 17 and the temperature sensing unit 29, and a reinforcing ring 40 is installed so as to bundle the reinforcing rods 39.

【0030】次に第2の実施例の作用効果を説明する。
原子炉異常時に冷却材温度が上昇した場合、感温部29の
熱伝達面の面積が大きいため、冷却材の温度上昇を感温
部材35内の液体金属32により速やかに熱を伝達する。こ
のため、感温部材35内の液体金属32は温度が上昇しなが
ら膨張し連通孔31を通って、ベローズ34を変位させ、制
御棒を炉心に挿入する。
Next, the function and effect of the second embodiment will be described.
When the temperature of the coolant rises when the reactor is abnormal, the area of the heat transfer surface of the temperature sensing unit 29 is large, so that the temperature rise of the coolant is quickly transferred to the liquid metal 32 in the temperature sensing member 35. Therefore, the liquid metal 32 in the temperature sensitive member 35 expands as the temperature rises, passes through the communication hole 31, displaces the bellows 34, and inserts the control rod into the core.

【0031】これにより制御棒本体10は従来より速やか
に炉心内に挿入されるため、原子炉に異常時が生じた場
合、制御棒の膨張による負の反応度効果が即効的に得ら
れる。
As a result, the control rod body 10 is inserted into the core more quickly than in the conventional case, so that in the event of an abnormality in the reactor, the negative reactivity effect due to the expansion of the control rod is immediately obtained.

【0032】(第3の実施例)次に図7から図8を参照
して本発明の第3の実施例を説明する。図8は図7のE
部を拡大して示す縦断面図である。図中、図11および図
12と同一部分には同一符号を付して重複する部分の説明
は省略する。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 8 shows E of FIG.
It is a longitudinal cross-sectional view which expands and shows a part. Figure, Figure 11 and Figure
The same parts as 12 are designated by the same reference numerals, and the description of the overlapping parts will be omitted.

【0033】本第3の実施例が従来例と異なる点は感温
部材35内およびベローズ34内の液体金属を従来の液体ナ
トリウムから液体リチウム41に置き換えたことにある。
なお、その他の構成は図11の従来例と同様である。
The third embodiment is different from the conventional example in that the liquid metal in the temperature sensitive member 35 and the bellows 34 is replaced with the conventional liquid sodium by the liquid lithium 41.
The other configurations are the same as those of the conventional example of FIG.

【0034】次に第3の実施例の作用効果を説明する。
原子炉異常時、原子炉出力が過剰に増大した時の中性子
束レベルの上昇に伴い、感温部材35およびべローズ34内
の液体リチウム41によるLi(n,α)反応が増大す
る。Li(n,α)反応による発熱の増大は瞬時に生じ
る。このため、感温部材35の液体リチウム41が昇温され
る時間が短くなり、感温部材35内の液体金属の熱膨張が
速やかになる。したがって、べローズ34の変位も速やか
になり、制御棒を炉心に挿入する時間が短くなる。
Next, the function and effect of the third embodiment will be described.
When the reactor power is abnormally increased and the neutron flux level is increased when the reactor power is excessively increased, the Li (n, α) reaction by the liquid lithium 41 in the temperature sensitive member 35 and the bellows 34 is increased. An increase in heat generation due to the Li (n, α) reaction instantaneously occurs. For this reason, the time during which the temperature of the liquid lithium 41 of the temperature sensitive member 35 is raised is shortened, and the thermal expansion of the liquid metal in the temperature sensitive member 35 becomes rapid. Therefore, the displacement of the bellows 34 becomes quick, and the time for inserting the control rod into the core becomes short.

【0035】これにより制御棒本体10は従来より速やか
に炉心内の挿入されるため、原子炉に異常時が生じた場
合、制御棒膨張による負の反応度効果が即効的に得られ
る。 (第4の実施例)次に図9および図10を参照して本発明
の第4の実施例を説明する。図10は図9のF−F矢視方
向の横断面図、とりわけ燃料集合体1,1間の下部案内
管8内の横断面図を示している。なお、図中、図11およ
び図12と同一部分には同一符号を付して重複する部分の
説明は省略する。
As a result, the control rod main body 10 is inserted into the core more quickly than in the conventional case, so that when an abnormal state occurs in the reactor, the negative reactivity effect due to the expansion of the control rod can be immediately obtained. (Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 10 shows a cross-sectional view taken along the line FF of FIG. 9, and more particularly, a cross-sectional view inside the lower guide tube 8 between the fuel assemblies 1 and 1. In the figure, the same parts as those in FIGS. 11 and 12 are designated by the same reference numerals, and the description of the overlapping parts will be omitted.

【0036】本実施例は燃料集合体1,1間の下部案内
管8内部に燃料ピン42を、制御棒本体10のまわりに環状
に設けている。この燃料ピン42の冷却材流量を確保する
ため連通孔14の開口面積を広げている。さらに、従来設
置されていた導入管を削除している。
In this embodiment, a fuel pin 42 is provided in an annular shape around the control rod body 10 inside the lower guide tube 8 between the fuel assemblies 1 and 1. The opening area of the communication hole 14 is widened in order to secure the coolant flow rate of the fuel pin 42. In addition, the previously installed introduction pipe has been deleted.

【0037】次に第4の実施例の作用効果を説明する。
原子炉異常時には下部案内管8の内部の燃料ピン42の出
力が上昇し、それに伴いこの燃料ピンのまわりの冷却材
温度が上昇する。この昇温した冷却材が直接感温部材35
に達する。このため、感温部29の液体金属32が昇温され
る時間が短くなる。感温部29の液体金属32は温度が上昇
しながら膨張し連通孔31を通って、ベローズ34を変位さ
せ、制御棒を炉心に挿入する。
Next, the function and effect of the fourth embodiment will be described.
When the reactor is abnormal, the output of the fuel pin 42 inside the lower guide pipe 8 rises, and the temperature of the coolant around the fuel pin rises accordingly. The temperature-increasing coolant is directly connected to the temperature sensitive member 35.
Reach Therefore, the time during which the temperature of the liquid metal 32 of the temperature sensing unit 29 is raised is shortened. The liquid metal 32 of the temperature sensing section 29 expands while the temperature rises, passes through the communication hole 31, displaces the bellows 34, and inserts the control rod into the core.

【0038】これにより制御棒本体10は従来より速やか
に炉心内の挿入されるため、原子炉に異常時が生じた場
合、制御棒膨張による負の反応度効果が即効的に得られ
る。
As a result, the control rod main body 10 is inserted into the core more quickly than in the conventional case, so that when an abnormal state occurs in the reactor, the negative reactivity effect due to the expansion of the control rod can be immediately obtained.

【0039】[0039]

【発明の効果】本発明によれば、原子炉異常時の冷却材
の温度上昇を利用しているため、周囲の温度上昇に対す
る応答性が速やかで、かつ従来より確実に制御棒を炉心
内へ挿入させることができ、大きな負の制御棒反応度を
炉心に与えることができる。よって、スクラム失敗事故
が万一生じても炉出力を自動的に減衰させ、原子炉の固
有の安全性を高くすることができる。
According to the present invention, since the temperature rise of the coolant at the time of reactor abnormality is utilized, the responsiveness to the ambient temperature rise is quick and the control rods are more reliably transferred into the core. It can be inserted and can give a large negative control rod reactivity to the core. Therefore, even if a scrum failure accident occurs, the reactor power can be automatically attenuated, and the inherent safety of the reactor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉停止装置の第1の実施例を
示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a reactor shutdown device according to the present invention.

【図2】図1におけるA部を拡大して示す縦断面図。FIG. 2 is a vertical cross-sectional view showing an enlarged part A in FIG.

【図3】図2におけるB−B矢視方向を切断して示す横
断面図。
FIG. 3 is a transverse cross-sectional view taken along the line BB in FIG.

【図4】本発明に係る原子炉停止装置の第2の実施例を
示す縦断面図。
FIG. 4 is a longitudinal sectional view showing a second embodiment of the reactor shutdown device according to the present invention.

【図5】図4におけるC部を拡大して示す縦断面図。5 is a vertical cross-sectional view showing an enlarged part C in FIG.

【図6】図5におけるD−D矢視方向を切断して示す横
断面図。
FIG. 6 is a transverse cross-sectional view taken along the line D-D in FIG.

【図7】本発明に係る原子炉停止装置の第3の実施例を
示す縦断面図。
FIG. 7 is a vertical cross-sectional view showing a third embodiment of the reactor shutdown device according to the present invention.

【図8】図7におけるE部を拡大して示す縦断面図。FIG. 8 is a vertical cross-sectional view showing an enlarged part E in FIG.

【図9】本発明に係る原子炉停止装置の第4の実施例を
示す縦断面図。
FIG. 9 is a vertical cross-sectional view showing a fourth embodiment of a nuclear reactor shutdown device according to the present invention.

【図10】図9におけるF−F矢視方向を切断して示す
横断面図。
FIG. 10 is a transverse cross-sectional view taken along the line FF in FIG.

【図11】従来の原子炉停止装置を示す縦断面図。FIG. 11 is a vertical sectional view showing a conventional reactor shutdown device.

【図12】図11におけるG部を拡大して示す縦断面図。12 is an enlarged vertical cross-sectional view showing a G portion in FIG.

【図13】図11における反応度と事故時間との関係を示
す特性図。
13 is a characteristic diagram showing the relationship between the reactivity and the accident time in FIG.

【符号の説明】[Explanation of symbols]

1…燃料集合体、2…制御棒集合体、3…燃料ピン、4
…エントランスノズル、5…炉心支持板、6…高圧プレ
ナム、7…冷却材流入口、8…下部案内管、9…上部案
内管、10…制御棒本体、11…延長管、12…エントランス
ノズル、13…冷却材流入口、14…連通孔、15…係合部、
16…ダッシュポット、17…延長棒、18…掴み部、28…ベ
ローズ部、29…感温部、30…ばね部、31…連通孔、32…
液体金属、33…支持板、34…長尺ベローズ、35…感温部
材、36…コイルばね、37…端栓、38…フィン、39…補強
棒、40…補強環、41…液体リチウム、42…燃料ピン。
1 ... Fuel assembly, 2 ... Control rod assembly, 3 ... Fuel pin, 4
... Entrance nozzle, 5 ... Core support plate, 6 ... High pressure plenum, 7 ... Coolant inlet, 8 ... Lower guide tube, 9 ... Upper guide tube, 10 ... Control rod body, 11 ... Extension tube, 12 ... Entrance nozzle, 13 ... Coolant inlet, 14 ... Communication hole, 15 ... Engagement part,
16 ... Dash pot, 17 ... Extension rod, 18 ... Gripping part, 28 ... Bellows part, 29 ... Temperature sensing part, 30 ... Spring part, 31 ... Communication hole, 32 ...
Liquid metal, 33 ... Support plate, 34 ... Long bellows, 35 ... Temperature sensitive member, 36 ... Coil spring, 37 ... End plug, 38 ... Fin, 39 ... Reinforcing rod, 40 ... Reinforcing ring, 41 ... Liquid lithium, 42 … Fuel pin.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉心に設置された案内管内に昇降自在に
収納される制御棒本体と、この制御棒本体の上端から上
方へ延出された延長棒と、この延長棒の上部に設けた掴
み部と係合して前記制御棒本体を吊下する延長管と、前
記延長棒の一部に介在したばねと、このばねの伸縮と連
動するベローズと、このベローズおよび前記ばねの外側
を包囲して設けられた二重円筒状感温部材と、この感温
部材内および前記ベローズ内に封入された液体金属と、
前記べローズ内および前記感温部材内を連通している連
通孔とを具備し、前記感温部材にフィンを取り付ける
か、または前記感温部材を波形に形成して熱伝達面積を
大きくしてなることを特徴とする原子炉停止装置。
1. A control rod body housed in a guide tube installed in a core so as to be able to move up and down, an extension rod extending upward from an upper end of the control rod body, and a grip provided on an upper portion of the extension rod. An extension pipe that engages with a portion to suspend the control rod body, a spring interposed in a part of the extension rod, a bellows that interlocks with the expansion and contraction of the spring, and surrounds the bellows and the outside of the spring. A double cylindrical temperature-sensitive member provided as a liquid metal enclosed in the temperature-sensitive member and the bellows,
A communication hole that communicates the inside of the bellows and the inside of the temperature-sensitive member, and a fin is attached to the temperature-sensitive member, or the temperature-sensitive member is formed in a corrugated shape to increase a heat transfer area. A reactor shutdown device characterized in that
【請求項2】 炉心に設置された案内管内に昇降自在に
収納される制御棒本体と、この制御棒本体の上端から上
方へ延出された延長棒と、この延長棒の上部に設けた掴
み部と係合して前記制御棒本体を吊下する延長管と、前
記延長棒の一部に介在したばねと、このばねの伸縮と連
動するベローズと、このベローズおよび前記ばねの外側
を包囲して二重円筒状感温部材と、この感温部材内およ
び前記ベローズ内に封入された液体金属と、前記べロー
ズ内および前記感温部材内を連通している連通孔とを具
備し、前記液体金属に液体リチウムを使用するか、また
は前記制御棒本体の周囲に環状に燃料ピンを設けてなる
ことを特徴とする原子炉停止装置。
2. A control rod body housed in a guide tube installed in the core so as to be able to move up and down, an extension rod extending upward from the upper end of the control rod body, and a grip provided on the upper portion of the extension rod. An extension pipe that engages with a portion to suspend the control rod body, a spring interposed in a part of the extension rod, a bellows that interlocks with the expansion and contraction of the spring, and surrounds the bellows and the outside of the spring. And a double cylindrical temperature-sensitive member, a liquid metal sealed in the temperature-sensitive member and the bellows, and a communication hole communicating between the bellows and the temperature-sensitive member. A nuclear reactor shutdown device characterized in that liquid lithium is used as the liquid metal, or an annular fuel pin is provided around the control rod body.
JP4204876A 1992-07-31 1992-07-31 Nuclear reactor stopping device Pending JPH0651081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4204876A JPH0651081A (en) 1992-07-31 1992-07-31 Nuclear reactor stopping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4204876A JPH0651081A (en) 1992-07-31 1992-07-31 Nuclear reactor stopping device

Publications (1)

Publication Number Publication Date
JPH0651081A true JPH0651081A (en) 1994-02-25

Family

ID=16497863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4204876A Pending JPH0651081A (en) 1992-07-31 1992-07-31 Nuclear reactor stopping device

Country Status (1)

Country Link
JP (1) JPH0651081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500993A (en) * 2011-12-06 2015-01-08 テラパワー, エルエルシー Reactivity control device and control method in nuclear fission reactor, nuclear fission reactor, and method for manufacturing reactivity control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500993A (en) * 2011-12-06 2015-01-08 テラパワー, エルエルシー Reactivity control device and control method in nuclear fission reactor, nuclear fission reactor, and method for manufacturing reactivity control device

Similar Documents

Publication Publication Date Title
JPH0651081A (en) Nuclear reactor stopping device
JP3160476B2 (en) Reactor core debris cooling system
JPH0777593A (en) Core of fast reactor
JPH06242277A (en) Control rod assembly
US4588549A (en) Automatic coolant flow control device for a nuclear reactor assembly
JPS5946884A (en) Reactor shutdown device
JP2807375B2 (en) Control rod assembly
JP2698605B2 (en) Control rod for gas cooled reactor
JP2723295B2 (en) Control rod assembly
JPH05215883A (en) Control rod assembly
JPH05323081A (en) Control rod assembly
JP3110901B2 (en) Fast breeder reactor
JPS58124989A (en) Reactor shutdown device
JPH0422231B2 (en)
JPH08297185A (en) Fuel assembly and core
JPH07318680A (en) Gas encapsulated assembly for fast reactor
JPS604883A (en) Upper mechanism of core
JPH01156697A (en) Automatic shut-down device for nuclear reactor
JPH06273565A (en) Reactor shutdown equipment
JPS60205278A (en) Fast breeder reactor
JP3132917B2 (en) Control rod shaft extension mechanism
JPH05302989A (en) Reactor trip device
JPS61230084A (en) Control rod device for nuclear reactor
JPH0755980A (en) Reactor shutdown device
JPS623392B2 (en)