JPH06510268A - Silica airgel-like material manufacturing method - Google Patents
Silica airgel-like material manufacturing methodInfo
- Publication number
- JPH06510268A JPH06510268A JP4510552A JP51055292A JPH06510268A JP H06510268 A JPH06510268 A JP H06510268A JP 4510552 A JP4510552 A JP 4510552A JP 51055292 A JP51055292 A JP 51055292A JP H06510268 A JPH06510268 A JP H06510268A
- Authority
- JP
- Japan
- Prior art keywords
- alcogel
- silica
- drying
- tetraalkoxysilane
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/16—Preparation of silica xerogels
- C01B33/163—Preparation of silica xerogels by hydrolysis of organosilicon compounds, e.g. ethyl orthosilicate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 シリカ エアロゲル様材Vの製造−゛ 本発明は、シリカのエアロゲルと同様な材料の製造方法に関する。シリカニアク ゲルは、非常に低密度の多孔質材料であり、99%までの空気を含む。本発明に より製造される種顕のシリカエアロゲルは,通常シリカキセロゲルと呼ばれてい る。この材料は、大きな気孔率を持つため、優れた熱絶縁性を持ち、その材料の 竿毛孔径が可視光線の波長よりも小さいので、透明でもある。シリカエアロゲル の典型的な性質は次の通りである。[Detailed description of the invention] Production of silica airgel-like material V-゛ The present invention relates to a method of manufacturing silica aerogel-like materials. Sirikaniaku Gels are porous materials with very low density, containing up to 99% air. To the present invention The microscopic silica aerogel produced by Ru. This material has good thermal insulation properties due to its large porosity, which makes the material It is also transparent because the rod pore diameter is smaller than the wavelength of visible light. silica airgel The typical properties of are as follows.
密度ニア0〜250kg/z3 屈折率 1.02〜1.05 空気中熱伝導率:20℃で0 、 0 2 1 W / m K真空中熱伝導率 :20℃で0.008W/mK粒径: 4〜7n目 曇ミ孔径・ lO〜20nm 透過率 10i+zの厚さで88% シリカエアロゲルは、アスベストの絶縁性のほぼ2倍の良好な絶縁性を有し、そ れは透明でもあるので、窓の絶縁に用いることができる。シリカのキセロゲル/ エアロゲルは、その多孔性のために5非常に大きな液体吸引能力も持ち、複合生 材料の出発材料として、また触媒及び液体、例えば、電解液のためのキャリヤー としても用いることができる。Density near 0-250kg/z3 Refractive index 1.02-1.05 Thermal conductivity in air: 0, 0 2 1 W/mK at 20°C Thermal conductivity in vacuum : 0.008W/mK at 20℃ Particle size: 4-7nth Cloudy pore diameter・lO~20nm Transmittance 88% at 10i+z thickness Silica airgel has good insulation properties that are almost twice that of asbestos; Since it is also transparent, it can be used to insulate windows. Silica xerogel/ Due to its porosity, airgel also has a very large liquid suction capacity5, making composite As a starting material for materials and also as a carrier for catalysts and liquids, e.g. electrolytes It can also be used as
シリカエアロゲルを製造するため,i&初は珪酸ナトリウム水和物を出発材料と して用い、塩化水素を触媒とした珪酸塩と水との反応によりアクアゲル(aqu agel)を形成させていた.しかし5この製造経路は,乾燥工程を行う前にそ のアクアゲルをアルコールで洗浄しなければならないので、非常に時間のかかる ものである.乾燥工程は好ましくは全ての液体を除去し、希望のシリカ網状組織 だけを残すなめに必要である。In order to produce silica airgel, i & Hatsu uses sodium silicate hydrate as a starting material. Aqua gel is produced by the reaction between silicate and water using hydrogen chloride as a catalyst. Agel) was formed. However,5 this manufacturing route requires The aqua gel has to be washed with alcohol, which is very time-consuming. It is something. The drying step preferably removes all liquid and removes the desired silica network. It is necessary to leave only the lick.
最近、シリカエアロゲルを製造するための出発材料トシテテトラメトキシシラン 、S i(O C H 、)、、TMOS、も用いられるようになってきた,T MOSは取扱い易く、純粋な形に製造し易く、加水分解し易いため適切な出発材 料である.しかし、それは毒性を持ち、高価である。アルコゲルの形成は、所謂 ゾル・ゲル法で直接酸及び(又は)塩基を触媒としてTMOSを加水分解するこ とにより行われる.形成されたアルコゲルは水性メタノールによって取り囲まれ たシリカスケルトン<skeleton)である、その時に起きる問題は、エア ロゲルを得るためにそのシリカスケルトンから水性メタノールを除去すに、シリ カスケルトンを取り巻く液体を除去することが必要であり、これは、液体の前部 を取り去る時、アルコゲルに作用する毛細管力を除くか、又は少なくとも減少さ せることにより行うことができ、或は液体を除去する時,気孔が崩壊しないよう に網状組織を強化してもよ毛細管力を除く場合、二つの乾燥手順が可能であるa )臨界超過乾燥、二の場合液相中の溶媒を、その溶媒の臨界温度より高い温度の オートクレーブ中で、上昇させた圧力で気相に転化させる。この乾燥方法を修正 した方法では、一層低い臨界点を有するCO2の如き他の化合物で溶媒を抽出す ることである。臨界超過乾燥は、もし漏洩があると、追い出される多量のメタノ ールが爆発を起こすことがあるため幾らか危険な方法である。Recently, the starting material tositetetramethoxysilane for producing silica airgel , S i (O C H,), , TMOS has also come to be used, T MOS is a suitable starting material because it is easy to handle, easily manufactured in pure form, and easily hydrolyzed. It is a fee. However, it is toxic and expensive. The formation of alcogel is the so-called TMOS can be directly hydrolyzed using acid and/or base as a catalyst using the sol-gel method. This is done by The formed alcogel is surrounded by aqueous methanol The problem that occurs at that time is that the air To remove aqueous methanol from its silica skeleton to obtain logels, silica It is necessary to remove the liquid surrounding the cascade, this is the front part of the liquid When removing the alcogel, the capillary forces acting on the alcogel are removed or at least reduced. This can be done by removing the liquid, or by removing the liquid to prevent the pores from collapsing. Two drying procedures are possible when strengthening the network and also eliminating capillary forces. ) supercritical drying, in which the solvent in the liquid phase is dried at a temperature higher than the critical temperature of that solvent; In an autoclave, it is converted to the gas phase at elevated pressure. Modify this drying method In this method, the solvent is extracted with another compound, such as CO2, which has a lower critical point. Is Rukoto. Supercritical drying means that if there is a leak, a large amount of methane will be expelled. This is a somewhat dangerous method as the ball can cause an explosion.
b)凍結乾燥、この場合アルコゲルを凍結して固体にし、然る後、溶媒を減圧下 で昇華させる。b) Lyophilization, in which the alcogel is frozen to a solid state, after which the solvent is removed under reduced pressure. to sublimate it.
可能な第三の方法は次の通りである: C)溶媒の空気乾燥及び直接の蒸発、この場合液相を気相に転化する。乾燥工程 は、毛細管力のため通常気孔の崩壊及びゲルの亀裂形成をもたらすであろう6文 献では、気孔寸法分布を狭くし、従って、アルコゲルの歪み差を減少させるため DCCA C乾燥調節化学添加剤(Drying ConLrol Chemi cal Additive))をゾルに添加することが報告されており、それに よって亀裂がかなり減少する。しかし、得られるシリカ キセロゲルは比較的大 きな密度、例えば、約1.4g/cmコの密度を有する。厳密に言えば、a)の 製造方法だけがエアロゲルを与える結果になる。他の二つの方法b)及びC)で は、夫々シリカ シリカゲル及びシリカキセロゲルとして記載されることがある ゲルが得られ、それらは大略シリカエアロゲルと同じ性質を育する。A third possible method is as follows: C) Air drying and direct evaporation of the solvent, in which case the liquid phase is converted to the gas phase. Drying process 6 sentences which would normally result in pore collapse and gel crack formation due to capillary forces. In order to narrow the pore size distribution and thus reduce the strain difference of the alcogel, DCCA C drying control chemical additive (Drying ConLrol Chemi It has been reported that cal Additive) is added to the sol, and Cracks are thus considerably reduced. However, the resulting silica xerogel is relatively large. For example, it has a density of about 1.4 g/cm. Strictly speaking, a) Only the manufacturing method results in an aerogel. In the other two methods b) and C) may be described as silica, silica gel and silica xerogel, respectively. Gels are obtained, which develop roughly the same properties as silica aerogels.
臨界超過乾燥を用いた乾燥方法a)では、低密度及び比較的良好な光学的佐賀を 有するエアロゲルを与える結果になるが、その方法は乾燥中の高圧及び高温度に より高価で危険な方法である。窓の絶縁として用いるためのタイルの製造では、 多量のメタノールを強熱することができるようにするため、操作中にかなりの危 険要因になるオートクレーブを必要とする。臨界超過乾燥中、媒体として例えば 、CO2を用いることによ、す、溶媒の抽出が必要になる。Drying method a) using supercritical drying provides low density and relatively good optical saga. However, the method is susceptible to high pressures and temperatures during drying. It is a more expensive and dangerous method. In the manufacture of tiles for use as window insulation, Because large amounts of methanol can be ignited, there is considerable danger during operation. Requires autoclaving which can be dangerous. During supercritical drying, as a medium e.g. , CO2 requires extraction of the solvent.
乾燥方法b)は安価であるが、結晶化(即ち凍結)中の溶媒の体積膨張により、 乾燥中にゲルの亀裂を起こす結果になり易い。Drying method b) is inexpensive, but due to volume expansion of the solvent during crystallization (i.e. freezing), This tends to result in cracking of the gel during drying.
乾燥工程C)は、通常ゲル構造体の崩壊によりゲルの大きな収縮を伴って行われ る。特に反応性ではないこれらのキセロゲルから焼結により高密度ガラスを製造 する場合、有機残留物、即ち、DCCAを除去することが問題になる。Drying step C) is usually performed with large shrinkage of the gel due to collapse of the gel structure. Ru. High-density glasses are produced by sintering from these xerogels, which are not particularly reactive. In this case, it becomes a problem to remove the organic residue, namely DCCA.
本発明の目的は、比較的低密度(即ち0.5g/cm’より低い密度)を有し、 熱絶縁性材料として適切な材料であるシリカ キセロゲル(エアロゲル)を製造 するための方法を与える。The object of the present invention is to have a relatively low density (i.e. a density lower than 0.5 g/cm'); Manufactures silica xerogel (aerogel), a material suitable as a thermal insulation material. give you a way to do it.
本発明によれば、テトラアルコキシシランを加水分解及び重縮合して、水性アル コールにより取り囲まれたシリカ スケルトンであるアルコゲルを形成すること により、低密度のシリカ キセロゲルを製造するための新規で改良された方法が 与えられる。その方法は、形成されるアルコゲルをテトラアルコキシシランの/ 8液と接触させることを特徴とする。その接触を室温以上で維持してシリカスケ ルトンを安定化し、然る後、室温以上の温度でほぼ大気圧より高い圧力でゆっく り乾燥する。アルコゲルをテトラアルコキシシランの溶液と接触させる前に、ア ルコゲルを液体と接触させてそのゲルを洗浄しくンリカスケルトンを取り巻く水 性アルコールの組成を変化させるため)、表面上の官能基を置換するのが適切で ある。この液体は、例えば、水とアルコール、好ましくは約40%のメタノール との混合物からなる。この液体は数回取り換えてもよい。洗浄のために添加する 液体は、沸点までの温度、好ましくは室温を有する。According to the present invention, tetraalkoxysilane is hydrolyzed and polycondensed to produce an aqueous alkali Forming alcogel, which is a silica skeleton surrounded by coal A new and improved method for producing low-density silica xerogels has been developed. Given. The method involves converting the formed alcogel into tetraalkoxysilane/tetraalkoxysilane. It is characterized by contacting with 8 liquids. Maintain the contact above room temperature to remove the silica. The mixture is stabilized and then slowly heated at temperatures above room temperature and pressures above atmospheric pressure. and dry. Before contacting the alcogel with a solution of tetraalkoxysilane, To clean the gel by contacting the lucogel with a liquid, the water surrounding the lucogel skeleton is removed. (to change the composition of the alcohol), it is appropriate to substitute functional groups on the surface. be. This liquid can be, for example, water and alcohol, preferably about 40% methanol. consisting of a mixture of This liquid may be replaced several times. Add for cleaning The liquid has a temperature up to its boiling point, preferably room temperature.
アルコゲルを製造するためテトラメトキシシランを用いるのが適切であり、然る 後、形成されたゲルを、例えは、低級アルコール、特にメタノールの中に入れた テトラエトキシシランの溶液と接触させる。It is suitable to use tetramethoxysilane for producing alcogels, and Afterwards, the formed gel is placed in a lower alcohol, especially methanol. Contact with a solution of tetraethoxysilane.
アルコケルと後で添加したテトラアルコキシシランとの間の接触は、ゲル網状組 織の強化が行われるのに充分な長い時間、例えば、6時間から16日間、アルコ ゲルについての危険が起きない温度、好ましくは20〜200°C5特に40〜 80°Cの温度に維持するのが適切である。熟成時間を長くすると、生成物の気 孔を最大にj−1即ち、密度を最小にする結果になる。アルコゲルを液体、例え ば水性アルコールで洗浄すると、ゲルの収縮を少なくシ、気孔を大きくする結果 になる。Contact between the alcokel and the later added tetraalkoxysilane forms a gel network. Alco Temperatures at which no danger arises for the gel, preferably from 20 to 200°C, especially from 40 to It is suitable to maintain a temperature of 80°C. The longer the aging time, the more the product This results in a maximum of pores j-1, ie, a minimum density. Comparing alcogel to a liquid Washing with hydroalcohol reduces the shrinkage of the gel and enlarges the pores. become.
用いられるアルコールは、通常1.2、又は3価のアルカノール、特に1〜!0 @の炭素原子を有するもの、好ましくはメタノールである。The alcohol used is usually a 1.2- or trihydric alkanol, especially a 1-! 0 One having a carbon atom of @, preferably methanol.
余りにも早い乾燥は崩壊をもたらすので、調節された条件で乾燥を行うことが本 質的に重要である。調節された乾燥は、シリカスケルトンを取り巻く液体中に存 在する諸成分、又は高温でその液体から形成される成分を含む雰囲気中で乾燥を 行うことにより達成することができる。乾燥は、例えば、そのような雰囲気を持 つ室中で行なってもよく、或はアルコゲルが殆ど完全に覆われる、例えば、99 %まで覆われた状態に保ちながら行なってもよく、それによって同じ効果が得ら れる。乾燥は40〜200℃の範囲の温度で行うのが適切である。乾燥温度は室 温から水性アルコールの沸点まで徐々に変化させてもよい。Drying too quickly will lead to collapse, so it is essential to dry under controlled conditions. Qualitatively important. Controlled drying is due to the presence of fluids surrounding the silica skeleton. Drying in an atmosphere containing components present in the liquid or components formed from the liquid at elevated temperatures. This can be achieved by doing. Drying is carried out by e.g. It may be carried out in two chambers, or the alcogel may be almost completely covered, e.g. You can also do this while keeping it covered up to %, which will give you the same effect. It will be done. Drying is suitably carried out at a temperature in the range 40-200°C. The drying temperature is room The temperature may be gradually changed from the temperature to the boiling point of the aqueous alcohol.
このようにして形成されたキセロゲルは低い密度(例えば、Q、5g/cx’以 下)を持ち、均質な構造も有する。The xerogels thus formed have low densities (e.g., Q, 5 g/cx' or less). (lower) and also have a homogeneous structure.
実施例1 アルコゲルを、T M OSの加水分解及び重縮合により製造した。加水分解は 、触媒としてN H、OH、化学量論的量の水(TM01:Aル比、1・4)、 及び溶媒としてメタノールを用いて行なった。ゲル形成は約0℃で行われた。ア ルコゲルは、取り外し可能なネスコフイ/L L (Nescofi 1m)底 を有するパイμ・ノクス/テフロン型中に注型した。ゲル形成後、完全に覆った 状態て数時間まで放置した後、アルコゲルの入った型をテトラエトキシシラン( TEOS)及びメタノールの熟成溶液中に浸漬した。約24時間後浴からその型 を取り出し、その浴を覆ったまま更に24時間保持した。浸漬及び続く保存の全 期間中、温度を約60℃に保持した。次に、ゲルを97%の程度まで覆い、約6 0℃で1気圧の圧力で乾燥した。その乾燥により0,42〜0.13g/cy’ の範囲の密度を有する一体的なゲルが得られた。熟成溶液に異なったモル比のT EOS及びメタノールを用いた。熟成液体中のTEOSの量を増大し、この液体 中の時間を増大すると、密度は直線的に減少し、それに対応して無孔径が増大し た。乾燥中のアルコゲルの収縮は、モル比及び熟成時間により、15〜30%の 範囲にあった。キセロゲルの比表面積は、600〜650++2/gの範囲にあ った。形成されたシリカ キセロゲル材料の熱伝導率は、45°Cで0.024 ±0.004W/i、Kまで低下していることが測定された。Example 1 Alcogel was produced by hydrolysis and polycondensation of TMOS. Hydrolysis is , NH, OH as a catalyst, stoichiometric amount of water (TM01:Al ratio, 1.4), and methanol as a solvent. Gel formation was performed at approximately 0°C. a Lucogel is a removable Nescofi/L (Nescofi 1m) bottom The molds were cast into Pi μ Nox/Teflon molds with a After gel formation, completely covered After standing for up to several hours, the mold containing the alcogel was soaked with tetraethoxysilane ( TEOS) and methanol. About 24 hours after bathing the mold was removed and the bath was kept covered for an additional 24 hours. All soaking and subsequent storage The temperature was maintained at approximately 60°C during the period. Next, cover the gel to a degree of 97%, about 6 It was dried at 0° C. and 1 atmosphere pressure. 0.42~0.13g/cy' by drying A monolithic gel was obtained with a density in the range of . Different molar ratios of T in the aging solution EOS and methanol were used. Increasing the amount of TEOS in the aging liquid, this liquid With increasing time in the pores, the density decreases linearly and the nonporous diameter increases correspondingly. Ta. The shrinkage of alcogel during drying is 15-30% depending on the molar ratio and aging time. It was within range. The specific surface area of xerogel is in the range of 600 to 650++2/g. It was. The thermal conductivity of the silica xerogel material formed is 0.024 at 45°C. It was measured that the power was reduced to ±0.004 W/i,K.
実施例2 実施例1に記載したように、アルコゲルを製造した。Example 2 An alcogel was prepared as described in Example 1.
覆った状態で数時間まで放置した後、アルコゲルの入った型をメタノール及び水 (例えば、水30体積%)からなる液体中に浸漬した。液体混合物を24時間の 間隔で3回取り換えた。液体混合物中のアルコゲルを全洗浄中室温に維持した。After leaving it covered for up to several hours, the mold containing the alcogel is poured into methanol and water. (for example, 30% by volume of water). liquid mixture for 24 hours It was replaced three times at regular intervals. The alcogel in the liquid mixture was kept at room temperature during all washes.
4日後、洗浄溶液を実施例1の場合のようにテトラアルコキシシランの溶液で置 き換えた。その後は実施例1と同しである。After 4 days, the cleaning solution was replaced with a solution of tetraalkoxysilane as in Example 1. I changed it. The rest is the same as in Example 1.
水及びメタノールの溶液でアルコゲルを処理することにより、乾燥中のアルコゲ ルの収縮は少なくなった。乾燥中のアルコゲルの収縮は約13%であった。製造 されたシリカキセロゲルの熱伝導率は0.028±0.04W/llKまで低下 していることが測定された。By treating the alcogel with a solution of water and methanol, the alcogel during drying can be The shrinkage of the tube has decreased. The shrinkage of the alcogel during drying was approximately 13%. manufacturing The thermal conductivity of the silica xerogel decreased to 0.028 ± 0.04 W/llK. was measured.
アルコゲルを洗浄するために用いた液体混合物中の水の量を増大すると、表面積 は減少し、孔径は直線的に増大した。Increasing the amount of water in the liquid mixture used to wash the alcogel increases the surface area. decreased and the pore size increased linearly.
実施例3 実施例1及び2と同じ手順であるが、洗浄中に用いた液体混合物中、及びゲル網 状組織を強化するために用いたテトラアルコキシシランのための溶媒としてのメ タノールをエタノールによって置き換えた。Example 3 Same procedure as in Examples 1 and 2, but in the liquid mixture used during washing and in the gel network. as a solvent for the tetraalkoxysilane used to strengthen the Tanol was replaced by ethanol.
国際調査報告 国際調査報告 PCT/M) 92700096international search report international search report PCT/M) 92700096
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO912006A NO912006D0 (en) | 1991-05-24 | 1991-05-24 | PROCEDURE FOR THE MANUFACTURE OF A SILICA-AEROGEL-LIKE MATERIAL. |
NO912006 | 1991-05-24 | ||
PCT/NO1992/000096 WO1992020623A1 (en) | 1991-05-24 | 1992-05-22 | Process for the preparation of a silica aerogel-like material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06510268A true JPH06510268A (en) | 1994-11-17 |
Family
ID=19894166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4510552A Pending JPH06510268A (en) | 1991-05-24 | 1992-05-22 | Silica airgel-like material manufacturing method |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0646097A1 (en) |
JP (1) | JPH06510268A (en) |
BR (1) | BR9206051A (en) |
CA (1) | CA2109715A1 (en) |
FI (1) | FI935203A (en) |
NO (2) | NO912006D0 (en) |
WO (1) | WO1992020623A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007524703A (en) * | 2004-02-27 | 2007-08-30 | デルシテク オサケ ユキチュア | Process for preparing tunable bioresorbable sol-gel derived SiO2 |
JP2012508353A (en) * | 2008-11-12 | 2012-04-05 | アールダブルイー パワー アクチエンゲゼルシャフト | Insulation cartridge |
JP2013511461A (en) * | 2009-11-19 | 2013-04-04 | ベーエスハー ボッシュ ウント シーメンス ハオスゲレート ゲーエムベーハー | Method for producing porous SiO2 xerogel having characteristic pore diameter by bottom-up method using precursor having organic solid skeleton support |
JP2013511460A (en) * | 2009-11-19 | 2013-04-04 | ベーエスハー ボッシュ ウント シーメンス ハオスゲレート ゲーエムベーハー | Porous SiO2 xerogel with characteristic pore size, its stable dry precursor and its use. |
CN104712884A (en) * | 2013-12-12 | 2015-06-17 | 松下电器产业株式会社 | Thermal insulation material and electronic equipment using same |
WO2019044669A1 (en) * | 2017-09-01 | 2019-03-07 | Agc株式会社 | Methods for producing wet gel and xerogel |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4439217A1 (en) * | 1994-11-03 | 1996-05-09 | Hoechst Ag | Process for the production of aerogels |
DE19538333A1 (en) * | 1995-10-14 | 1997-04-17 | Basf Ag | Process for the subcritical production of aerogels |
US6764690B2 (en) | 1996-05-29 | 2004-07-20 | Delsitech Oy | Dissolvable oxides for biological applications |
DE19718740A1 (en) | 1997-05-02 | 1998-11-05 | Hoechst Ag | Process for the granulation of aerogels |
DE19718741A1 (en) | 1997-05-02 | 1998-11-05 | Hoechst Ag | Process for compacting aerogels |
DE19756633A1 (en) | 1997-12-19 | 1999-06-24 | Hoechst Ag | Lyogels and aerogels subcritically dried in a packed bed with minimal particle breakdown |
DE19801004A1 (en) | 1998-01-14 | 1999-07-15 | Cabot Corp | Production of spherical lyogel useful as precursor for permanently hydrophobic aerogel |
DE59811774D1 (en) | 1998-06-05 | 2004-09-09 | Cabot Corp | NANOPOROUS INTERPENETRIC ORGANIC-INORGANIC NETWORKS |
US6239243B1 (en) | 1999-06-10 | 2001-05-29 | Dow Corning Corporation | Method for preparing hydrophilic silica gels with high pore volume |
ES2174680B1 (en) * | 1999-09-03 | 2004-09-16 | Consejo Superior De Investigaciones Cientificas | LOW DENSITY INORGANIC-ORGANIC TERMOHIBRIDED MATERIALS AND THEIR OBTAINING PROCEDURE. |
GB0025940D0 (en) * | 2000-10-24 | 2000-12-13 | Secr Defence | Solvogels & a method of manufacturing the same |
JP4170734B2 (en) | 2002-11-13 | 2008-10-22 | 信越化学工業株式会社 | Composition for forming porous film, porous film and method for producing the same, interlayer insulating film, and semiconductor device |
US8034749B2 (en) | 2002-12-31 | 2011-10-11 | Baker Hughes Incorporated | Aerogels effective to reduce drilling fluid density |
FR2873677B1 (en) * | 2004-07-29 | 2007-08-17 | Armines Ass Pour La Rech Et Le | PROCESS FOR THE PREPARATION OF HYDROPHOBIC SILICA SEROGELS |
PT103257B (en) | 2005-04-05 | 2007-05-31 | Inst Superior Tecnico | METHOD OF SUBCRYTIC PRODUCTION OF SYMBOLS AND ALTERNATIVE AEROGISES HYBRID OF MODIFIED SILICA AND LATEX WITH ALCOXYSILAN GROUPS |
CA2619860A1 (en) * | 2005-08-25 | 2007-03-01 | Robert R. Keller, Sr. | Aerogel and method of manufacturing same |
PT106781A (en) | 2013-02-15 | 2014-08-18 | Inst Superior Técnico | FLEXIBLE HYBRID AERIALS PREPARED IN SUBCRYTIC CONDITIONS AND PREPARATION PROCESS FOR THE SAME |
US10889501B2 (en) | 2016-02-24 | 2021-01-12 | Massachusetts Institute Of Technology | Solar thermal aerogel receiver and materials therefor |
KR102092769B1 (en) | 2016-09-12 | 2020-03-24 | 주식회사 엘지화학 | Method of preparing for silica aerogel and silica aerogel prepared by the same |
KR102092770B1 (en) * | 2016-09-12 | 2020-03-24 | 주식회사 엘지화학 | Method of preparing for silica aerogel and silica aerogel prepared by the same |
WO2019210051A1 (en) | 2018-04-25 | 2019-10-31 | Massachusetts Institute Of Technology | Energy efficient soundproofing window retrofits |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE422045C (en) * | 1979-04-30 | 1985-03-18 | Guy Von Dardel | VIEW TO MAKE SILICA EROGEL IN THE FORM OF A SIGNIFICANT CRACKLESS, PREFERRED TRANSPARENT BLOCK AND USE OF THE SAME IN SOLAR PANELS |
US4402927A (en) * | 1980-04-22 | 1983-09-06 | Dardel Guy Von | Silica aerogel |
DE3616133A1 (en) * | 1985-09-25 | 1987-11-19 | Merck Patent Gmbh | SPHERICAL SIO (DOWN ARROW) 2 (DOWN ARROW) PARTICLES |
DD283701A7 (en) * | 1988-09-26 | 1990-10-24 | Veb Leuna-Werke "Walter Ulbricht",Dd | METHOD AND DEVICE FOR PRODUCING ORGANICALLY MODIFIED SILICA TAGS |
-
1991
- 1991-05-24 NO NO912006A patent/NO912006D0/en unknown
-
1992
- 1992-05-22 EP EP92910393A patent/EP0646097A1/en not_active Ceased
- 1992-05-22 BR BR9206051A patent/BR9206051A/en not_active Application Discontinuation
- 1992-05-22 JP JP4510552A patent/JPH06510268A/en active Pending
- 1992-05-22 CA CA002109715A patent/CA2109715A1/en not_active Abandoned
- 1992-05-22 WO PCT/NO1992/000096 patent/WO1992020623A1/en not_active Application Discontinuation
-
1993
- 1993-11-23 NO NO934233A patent/NO934233D0/en unknown
- 1993-11-23 FI FI935203A patent/FI935203A/en not_active Application Discontinuation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007524703A (en) * | 2004-02-27 | 2007-08-30 | デルシテク オサケ ユキチュア | Process for preparing tunable bioresorbable sol-gel derived SiO2 |
US10149825B2 (en) | 2004-02-27 | 2018-12-11 | Delsitech Oy | Method for preparing adjustably bioresorbable sol-gel derived SiO2 |
JP2012508353A (en) * | 2008-11-12 | 2012-04-05 | アールダブルイー パワー アクチエンゲゼルシャフト | Insulation cartridge |
JP2013511461A (en) * | 2009-11-19 | 2013-04-04 | ベーエスハー ボッシュ ウント シーメンス ハオスゲレート ゲーエムベーハー | Method for producing porous SiO2 xerogel having characteristic pore diameter by bottom-up method using precursor having organic solid skeleton support |
JP2013511460A (en) * | 2009-11-19 | 2013-04-04 | ベーエスハー ボッシュ ウント シーメンス ハオスゲレート ゲーエムベーハー | Porous SiO2 xerogel with characteristic pore size, its stable dry precursor and its use. |
CN104712884A (en) * | 2013-12-12 | 2015-06-17 | 松下电器产业株式会社 | Thermal insulation material and electronic equipment using same |
JP2015113924A (en) * | 2013-12-12 | 2015-06-22 | パナソニックIpマネジメント株式会社 | Heat insulation material |
CN104712884B (en) * | 2013-12-12 | 2018-01-02 | 松下知识产权经营株式会社 | Heat-barrier material and the electronic equipment for having used the heat-barrier material |
WO2019044669A1 (en) * | 2017-09-01 | 2019-03-07 | Agc株式会社 | Methods for producing wet gel and xerogel |
Also Published As
Publication number | Publication date |
---|---|
WO1992020623A1 (en) | 1992-11-26 |
AU1785292A (en) | 1992-12-30 |
NO912006D0 (en) | 1991-05-24 |
BR9206051A (en) | 1994-11-15 |
NO934233L (en) | 1993-11-23 |
CA2109715A1 (en) | 1992-11-26 |
AU662147B2 (en) | 1995-08-24 |
FI935203A (en) | 1994-01-13 |
EP0646097A1 (en) | 1995-04-05 |
NO934233D0 (en) | 1993-11-23 |
FI935203A0 (en) | 1993-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06510268A (en) | Silica airgel-like material manufacturing method | |
US4432956A (en) | Preparation of monolithic silica aerogels, the aerogels thus obtained and their use for the preparation of silica glass articles and of heat-insulating materials | |
US5409683A (en) | Method for producing metal oxide aerogels | |
EP0497966B1 (en) | A METHOD FOR PRODUCING METAL OXIDE AEROGELS HAVING DENSITIES LESS THAN 0.02 g/cm?3 | |
CN101372337B (en) | Method for preparing transparent silicon dioxide aerogel by co-precursor normal atmosphere drying | |
EP0018955B1 (en) | A method for the preparation of silica aerogel and its use | |
CA1288313C (en) | Process for forming transparent aerogel insulating arrays | |
CA2009680C (en) | Process for preparing monoliths of aerogels of metal oxides | |
CN106629750A (en) | Normal pressure preparation method for transparent silica bulk aerogel | |
KR101409884B1 (en) | Preparation method of hydrophobic monolith type silica aerogel | |
CN103319678B (en) | Solar water heater water tank polyurethane hard foam lagging material | |
CN110615663B (en) | Solid wood fiber/SiO2Aerogel composite thermal insulation material and preparation method thereof | |
CN106495169A (en) | A kind of hydrophobic type aerosil and preparation method thereof | |
KR100568898B1 (en) | Sol-gel process for the production of glass optical fiber preforms | |
JPS61136925A (en) | Manufacture of monolithic glass member | |
JPWO2019069406A1 (en) | Airgel and its manufacturing method | |
CN109020470A (en) | A kind of method that constant pressure and dry prepares aeroge complex heat-preservation felt | |
CN103738970B (en) | High transmittance nano-porous aerogel material and preparation method thereof | |
CN103319679B (en) | Polyurethane rigid foam inorganic fireproof thermal-insulation material for solar water tank | |
KR101909174B1 (en) | Manufacturing method of hydrophobic aerogel blanket and use of hydrophobic aerogel blanket manufactured tereby | |
KR100823071B1 (en) | A method for preparation of large area aerogel film having nano pores | |
Pajonk | A short history of the preparation of aerogels and carbogels | |
AU662147C (en) | Process for the preparation of a silica aerogel-like material | |
JP2981670B2 (en) | Manufacturing method of glass-like monolith | |
WO2020014828A1 (en) | Methods for forming aerogels |