JPH06504588A - Method for producing sintered carbonitride alloy for interrupted machining of difficult-to-work materials - Google Patents

Method for producing sintered carbonitride alloy for interrupted machining of difficult-to-work materials

Info

Publication number
JPH06504588A
JPH06504588A JP4501799A JP50179992A JPH06504588A JP H06504588 A JPH06504588 A JP H06504588A JP 4501799 A JP4501799 A JP 4501799A JP 50179992 A JP50179992 A JP 50179992A JP H06504588 A JPH06504588 A JP H06504588A
Authority
JP
Japan
Prior art keywords
alloy
xiv
raw material
carbon
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4501799A
Other languages
Japanese (ja)
Inventor
ウェイヌル,ゲロルド
オスカルソン,ロルフ
Original Assignee
サンドビック アクティエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンドビック アクティエボラーグ filed Critical サンドビック アクティエボラーグ
Publication of JPH06504588A publication Critical patent/JPH06504588A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight-% binder phase with extremely good properties at intermittent machining of materials difficult to machine. The method relates to the use of a raw material comprising a complex cubic carbonitride containing the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition 0.86 </= XIV </= 0.97, 0.44 </= XC </= 0.55, where XIV is the molar ratio of the group IV elements of the alloy and XC is the molar ratio of carbon.

Description

【発明の詳細な説明】 工作困難な材料の断続工作のための焼結炭窒化物合金を製造する方法 本発明は準仕上工作のための、高切削速度と低送りの極端に細密な工作にとって 例外的な特性を備えたチタンを主構成分とする焼結炭窒化物合金の製造方法に関 する。[Detailed description of the invention] Method for producing sintered carbonitride alloy for interrupted machining of difficult-to-work materials The present invention is suitable for extremely detailed machining with high cutting speeds and low feeds for semi-finishing machining. A method for producing a sintered carbonitride alloy with titanium as a main component that has exceptional properties. do.

チタン基焼結炭窒化物合金は通常サーメットと称されるか、これはこれまでの伝 統的なセメンテッドカーバイド、即ちタングステン基合金が高価であることから 、近年急速に使用されるようになった。Titanium-based sintered carbonitride alloys are commonly referred to as cermets, or Due to the high cost of traditional cemented carbides, i.e. tungsten-based alloys, has rapidly come into use in recent years.

USP3.971.656は、コアか高含有量のTiとNを育し、他方外囲リム が低含有量のTiとNを有し且つこれを補う高含有量のVla族の金属、点をも たらす。原料として、チタンとVl族金寓の炭窒化物が使用される。USP 3.971.656 grows a high content of Ti and N in the core, while the outer rim has a low content of Ti and N, and a supplementary high content of Vla group metals, also points. Tarasu. As raw materials, titanium and Vl group metal carbonitride are used.

この原料を変えることにより、コアーリムの組成を変えることが出来る。例えば 、スウェーデン特許459.862には、原料として(Ti。By changing this raw material, the composition of the core rim can be changed. for example , Swedish patent 459.862 contains (Ti) as a raw material.

Ta) Cを用いて、高含有量のチタンとタンタルを有し、且つ低含有リブデン とタングステン及びコアのものよりも高含有量の窒素を有している。これはなか んずく、可塑変形に対する抵抗を向上させる。Using Ta)C, it has a high content of titanium and tantalum and a low content of livedenum. and has a higher content of nitrogen than that of tungsten and core. This is inside Improves resistance to plastic deformation.

更に、スウェーデン特許出願8902306−3には、同一合金において種々の タイプのファーリム構造物を混入することにより、最適合金が得られるように、 その利点と欠点を均衡させる方法が開示されている。Furthermore, Swedish patent application 8902306-3 describes different types of the same alloy. By incorporating a type of far rim structure, the optimum alloy can be obtained. A method is disclosed that balances its advantages and disadvantages.

εP−A−259192はチタンと、これを除<n、v及びvl族の元素から囲 気で加熱して固溶体にし、その固溶体を粉砕して窒(ヒ炭素粉末にし、この粉末 をCo及び/或いはN+と混合してから焼結することにより製造される。εP-A-259192 contains titanium and other elements in the n, v and vl groups. The solid solution is heated with air to form a solid solution, and the solid solution is pulverized into nitrogen (arsenic) powder. It is manufactured by mixing Co and/or N+ with sintering.

原料が最終品合金の構成分になるべきものとして、炭素と窒素とこれに加えたI V族とV族からの少くとも2種の、好ましくは少くとも3種の金属の大部分、好 ましくは〉90%、最も好ましくは〉95%とを含有する斯〜る複合立方晶系炭 窒化物原料を用いて、最終品の焼結炭窒化物合金を製造するならば、特異な構造 と特異な特性が得られる結果となった。好ましくは、全ての窒素は上述の炭窒化 物原料に存在させる。The raw materials should be carbon, nitrogen, and added I as components of the final alloy. The majority of at least two, preferably at least three metals from group V and group V, preferably Preferably >90%, most preferably >95%. If a sintered carbonitride alloy is manufactured as a final product using nitride raw materials, a unique structure is required. As a result, unique characteristics were obtained. Preferably, all the nitrogen is carbonitrided as described above. Exist in raw materials.

上述の金属を具体的に云えば、全てのチタンとタンタルを本発明に係わる原料に 含有させる。好ましくは、更にバナジウム、ニオブ及び適切には更にジルコニウ ムとハウニウムを最終品焼結合金の構成部にする場合には、これらを含有させる 。vI族からの金属、Cr。Specifically speaking, all titanium and tantalum are used as raw materials for the present invention. Contain. Preferably further vanadium, niobium and suitably further zirconium. When aluminum and haunium are used as constituent parts of the final sintered alloy, they must be included. . Metal from group vI, Cr.

Mo及びWは、これらを含有させる場合には、多重炭rヒ物、車種炭fヒ物及び /或いは金属十炭素として加入するが、本発明の原料が立方晶系であるならば、 この原料の構成部であってもよい。When Mo and W are contained, multi-charcoal materials, car type carbon materials, and /or it is added as a metal ten carbon, but if the raw material of the present invention is cubic system, It may be a constituent part of this raw material.

本発明に係わる原料は、金属酸化物の、或いは金属自体の浸炭浸窒によって直接 に製造される。結果として、本質的に等軸のグレンを狭いグレンサイズ分布で有 する炭窒化物粉末か平均グレンサイズ0.8−3μm、好ましくはI−2μmの 状態で得られる。The raw materials related to the present invention are directly produced by carbonitriding of metal oxides or the metal itself. Manufactured in As a result, we have essentially equiaxed grains with a narrow grain size distribution. The carbonitride powder has an average grain size of 0.8-3 μm, preferably I-2 μm. obtained in the state.

料の組成から少し組成を変えるように加えて、粉砕し、その後に圧縮と焼結を公 知方法によって、好ましくは不活性雰囲気で実行する。In addition to slightly changing the composition of the raw material, it is crushed, then compressed and sintered. The method is preferably carried out under an inert atmosphere.

図1は上述の利点を発揮する複合原料の、モル比で表したIV族−V族−C−N の組成ダイヤグラムにおける[窓(Window) Jを示す拡大図であり、図 2は全モル比ダイヤグラムにおけるこの小領域の位置付けを示す図である。Figure 1 shows the group IV-group V-C-N expressed in molar ratio of the composite raw material exhibiting the above-mentioned advantages. This is an enlarged view showing Window J in the composition diagram of 2 is a diagram showing the position of this small region in the overall molar ratio diagram.

1■族金属はTi、 Zr及び/或いはHfであり、V族金属はV、Nb及び/ 或いはTaである。Group 1 metals are Ti, Zr and/or Hf, and group V metals are V, Nb and/or Or Ta.

図1から明らかなように、窓は以下の組成領域を含んで成る。As can be seen from FIG. 1, the window comprises the following compositional regions:

0.84≦X +v≦0.97 0.44≦Xc≦0.55 具体的には、 0.86≦Xl?≦0.95 0.46≦X1≦0.53 後者の制限窓は2種のものに分割され、その1種はTa以外に他のV族金属を含 量せず、以下の通りである。0.84≦X +v≦0.97 0.44≦Xc≦0.55 in particular, 0.86≦Xl? ≦0.95 0.46≦X1≦0.53 The latter limiting window is divided into two types, one of which contains other group V metals besides Ta. Without weighing, it is as follows.

0、905≦X9、・≦0.95 0.46≦Xe≦0.53 そして他種のものはTa以下のV族金属、即ちVとNbを含有しており、以下の 通りである。0, 905≦X9,・≦0.95 0.46≦Xe≦0.53 And other types contain V group metals below Ta, that is, V and Nb, and the following That's right.

0.86≦X+v≦0.905 0.46≦X、≦0.53 具体的には、以下の夫々の組成において良好な特性が得られる。0.86≦X+v≦0.905 0.46≦X, ≦0.53 Specifically, good characteristics can be obtained with each of the following compositions.

0.91≦X If≦0o95 0.46≦X、≦0.50 及び 0.86≦X +v≦0,90 0.49≦Xe ≦0.53 チタンに関しては、XT+>0.7、好ましくはXアl > 0.75を適用す る。0.91≦X If≦0o95 0.46≦X, ≦0.50 as well as 0.86≦X +v≦0,90 0.49≦Xe ≦0.53 For titanium, apply XT+>0.7, preferably XAl>0.75. Ru.

炭素と窒素の上述のモル比において、酸素量を<0.8%、好ましくはく0.5 %に維持することが望ましいとしても、通常量の酸素量を存在させる、即ち炭素 と窒素と置換してもよい。本発明は化学量論的炭窒化物並びに通常の準化学量論 的炭窒化物を含んでいる。In the above molar ratio of carbon and nitrogen, the amount of oxygen is <0.8%, preferably less than 0.5%. Although it is desirable to maintain a normal amount of oxygen, i.e. carbon may be replaced with nitrogen. The present invention applies to stoichiometric carbonitrides as well as conventional substoichiometric carbonitrides. Contains carbonitrides.

例 本発明に係わる複合原料(Tio、*s+ Taa、os+ Nba、os)  (Co、s++No、=s)並びに単純原料であるTiN、 Tic及びVCの 両原料を用いて、17.5%のNi+Coバインダ相を有するチタン基炭窒化物 合金を製造した。両ケースともに、COとNiの他にもWCとMoteを加えた 。同〜グレンサイズにするための粉砕(ミリング)後の圧縮圧力と焼結後の多孔 度は以下の通りに得られた。example Composite raw materials related to the present invention (Tio, *s+ Taa, os+ Nba, os) (Co, s++No, = s) and the simple raw materials TiN, Tic and VC. Titanium-based carbonitride with 17.5% Ni+Co binder phase using both raw materials An alloy was produced. In both cases, WC and Mote were added in addition to CO and Ni. . Compression pressure after crushing (milling) and porosity after sintering to achieve the same grain size The degree was obtained as follows.

多孔度 圧 縮 圧力N/mm” 本発明に係わる合金 AOO154 単純原料 AO6−AO8206 O4 国際調査報告 国際調査報告 PC′r/SE 91100888Porosity compression Pressure N/mm” Alloy according to the present invention AOO154 Simple raw materials AO6-AO8206 O4 international search report international search report PC'r/SE 91100888

Claims (1)

【特許請求の範囲】 1.公知方法の粉砕、加圧及び焼結により3−25重量%のバインダ相を有する 焼結チタン基炭窒化物合金を製造する方法において、該最終品合金に存在すべき 周期律表のIV族とV族からの金属の大部分と炭素と窒素とを含有する複合立方 晶系炭窒化物を含んで成る原料を用い、それにより当該合金が 0.86≦XIV≦0.97 0.44≦Xc≦0.55 但し、XIVが該合金のIV族元素のモル比であり、Xcが炭素のモル比である 、の組成 を有するようにしたことを特徴とする製造方法。 2.該炭窒化物原料が本質的に等軸のグレンを、平均グレンサイズが0.8−3 μm、好ましくは1−2μmの狭いグレンサイズ分布で以って含んで成ることを 特徴とする請求項1に記載の方法。 3.該複合原料の組成が: 0.86≦XIV≦0.95 0.46≦Xc≦0.53. である、請求項1或いは2に記載の方法。 4.該原料が金属の酸化物の、或いは金属それ自体の浸炭浸窒により直接に製造 されることを特徴とする、先行の請求項のいづれか1項に記載の方法。[Claims] 1. With a binder phase of 3-25% by weight by grinding, pressing and sintering using known methods. In the method of producing a sintered titanium-based carbonitride alloy, the A complex cube containing most of the metals from groups IV and V of the periodic table, as well as carbon and nitrogen. A raw material containing crystalline carbonitrides is used, thereby making the alloy 0.86≦XIV≦0.97 0.44≦Xc≦0.55 However, XIV is the molar ratio of group IV elements in the alloy, and Xc is the molar ratio of carbon. , the composition of A manufacturing method characterized by having the following. 2. The carbonitride feedstock has essentially equiaxed grains with an average grain size of 0.8-3. with a narrow grain size distribution of 1-2 μm, preferably 1-2 μm. A method according to claim 1, characterized in that: 3. The composition of the composite raw material is: 0.86≦XIV≦0.95 0.46≦Xc≦0.53. The method according to claim 1 or 2. 4. The raw material is produced directly by carburizing and nitriding metal oxides or the metal itself. Method according to any one of the preceding claims, characterized in that:
JP4501799A 1990-12-21 1991-12-19 Method for producing sintered carbonitride alloy for interrupted machining of difficult-to-work materials Pending JPH06504588A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9004119-5 1990-12-21
SE9004119A SE9004119D0 (en) 1990-12-21 1990-12-21 PREPARED FOR PREPARATION OF A SINTERED CARBON NITROGEN ALLOY FOR INTERMITTENT PROCESSING OF REPLACED MATERIALS
PCT/SE1991/000888 WO1992011396A1 (en) 1990-12-21 1991-12-19 Method of producing a sintered carbonitride alloy for intermittent machining of materials difficult to machine

Publications (1)

Publication Number Publication Date
JPH06504588A true JPH06504588A (en) 1994-05-26

Family

ID=20381289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4501799A Pending JPH06504588A (en) 1990-12-21 1991-12-19 Method for producing sintered carbonitride alloy for interrupted machining of difficult-to-work materials

Country Status (6)

Country Link
EP (1) EP0563203B1 (en)
JP (1) JPH06504588A (en)
AT (1) ATE151473T1 (en)
DE (1) DE69125626T2 (en)
SE (1) SE9004119D0 (en)
WO (1) WO1992011396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348386A (en) * 2000-12-19 2006-12-28 Honda Motor Co Ltd Method for producing composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338196B (en) * 2018-11-30 2020-12-11 岭南师范学院 Ti (C, N) -based metal ceramic and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU501073B2 (en) * 1974-10-18 1979-06-07 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys
US4769070A (en) * 1986-09-05 1988-09-06 Sumitomo Electric Industries, Ltd. High toughness cermet and a process for the production of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348386A (en) * 2000-12-19 2006-12-28 Honda Motor Co Ltd Method for producing composite material

Also Published As

Publication number Publication date
WO1992011396A1 (en) 1992-07-09
DE69125626D1 (en) 1997-05-15
EP0563203A1 (en) 1993-10-06
SE9004119D0 (en) 1990-12-21
EP0563203B1 (en) 1997-04-09
DE69125626T2 (en) 1997-07-24
ATE151473T1 (en) 1997-04-15

Similar Documents

Publication Publication Date Title
US5348806A (en) Cermet alloy and process for its production
JP2525938B2 (en) Sintered carbonitride alloy
US5330553A (en) Sintered carbonitride alloy with highly alloyed binder phase
US4451292A (en) Sintered hardmetals
JPH08508066A (en) Cermet and its manufacturing method
JP5840827B2 (en) Cermet member and method for producing cermet member
US4432795A (en) Sintered powdered titanium alloy and method of producing same
JPH06504588A (en) Method for producing sintered carbonitride alloy for interrupted machining of difficult-to-work materials
JPH06504586A (en) Method of producing sintered carbonitride alloy for precision milling
EP0563182B1 (en) Method of producing a sintered carbonitride alloy for fine to medium milling
JPH06503856A (en) Method for producing sintered carbonitride alloys for very fine milling during turning at high cutting speeds
JPH06504587A (en) Method of producing sintered carbonitride alloy for semi-finishing work
US5552108A (en) Method of producing a sintered carbonitride alloy for extremely fine machining when turning with high cutting rates
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
US5581798A (en) Method of producing a sintered carbonitride alloy for intermittent machining of materials difficult to machine
JPS58213842A (en) Manufacture of high strength cermet
JPH09300108A (en) Cutting tool of thermet of carbonic nitride with superior anti-wearing characteristic
JPH0517298B2 (en)
JPS59129751A (en) Superheat-resistant sintered alloy and its production
JPS605664B2 (en) Sintered materials for cutting tools and wear-resistant tools with excellent high-temperature properties