JPH0650367U - Giant magnetostrictive actuator - Google Patents

Giant magnetostrictive actuator

Info

Publication number
JPH0650367U
JPH0650367U JP9037792U JP9037792U JPH0650367U JP H0650367 U JPH0650367 U JP H0650367U JP 9037792 U JP9037792 U JP 9037792U JP 9037792 U JP9037792 U JP 9037792U JP H0650367 U JPH0650367 U JP H0650367U
Authority
JP
Japan
Prior art keywords
giant magnetostrictive
cylinder
rod
casing
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9037792U
Other languages
Japanese (ja)
Other versions
JP2598434Y2 (en
Inventor
祐一 細川
Original Assignee
日本電子機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子機器株式会社 filed Critical 日本電子機器株式会社
Priority to JP1992090377U priority Critical patent/JP2598434Y2/en
Publication of JPH0650367U publication Critical patent/JPH0650367U/en
Application granted granted Critical
Publication of JP2598434Y2 publication Critical patent/JP2598434Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

(57)【要約】 【目的】 熱膨張による動作不良の発生をなくし、大き
な駆動量を得る。 【構成】 電磁コイル12内に摺動穴4Aを有する超磁
歪筒4を設け、摺動穴4A内には、所定の熱膨張率の非
磁性材料から鍔付筒状に形成されたストッパ筒6を介し
超磁歪ロッド5を設ける。そして、超磁歪ロッド5を設
定ばね11により、ストッパ筒6内のストッパ部6Cに
押付け、ストッパ筒6の鍔部6Dを超磁歪筒4の下端側
端面4Cに押付けてこれらに予荷重を付与し、ケーシン
グ1内で軸方向に位置決めする。電磁コイル13から超
磁歪筒4と超磁歪ロッド5の双方同時に磁場を作用さ
せ、大きな変位量でプッシュロッド10を駆動できる。
また、超磁歪筒4および超磁歪ロッド5が軸方向に熱膨
張したときには、これに対応してストッパ筒6が軸方向
逆向きに熱膨張し、超磁歪筒4および超磁歪ロッド5の
熱膨張分を吸収することができる。
(57) [Abstract] [Purpose] To eliminate the occurrence of malfunction due to thermal expansion and obtain a large drive amount. [Structure] A super-magnetostrictive cylinder 4 having a sliding hole 4A is provided in an electromagnetic coil 12, and a stopper cylinder 6 is formed in the sliding hole 4A from a non-magnetic material having a predetermined coefficient of thermal expansion in the form of a flange. The giant magnetostrictive rod 5 is provided through the. Then, the giant magnetostrictive rod 5 is pressed against the stopper portion 6C in the stopper cylinder 6 by the setting spring 11, and the flange portion 6D of the stopper cylinder 6 is pressed against the lower end side end surface 4C of the giant magnetostrictive cylinder 4 to preload them. , Axially in the casing 1. The magnetic field is simultaneously applied to both the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 from the electromagnetic coil 13, and the push rod 10 can be driven with a large displacement amount.
Further, when the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 thermally expand in the axial direction, the stopper cylinder 6 correspondingly thermally expands in the opposite axial direction, and the thermal expansion of the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 occurs. Can absorb minutes.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、例えば超磁歪式噴射弁や開閉弁等に好適に用いられる超磁歪式アク チュエータに関し、特に、熱膨張により特性が変化するのを防止できるようにし た超磁歪式アクチュエータに関する。 The present invention relates to a giant magnetostrictive actuator suitably used in, for example, a giant magnetostrictive injection valve and an on-off valve, and more particularly to a giant magnetostrictive actuator capable of preventing characteristics from changing due to thermal expansion.

【0002】[0002]

【従来の技術】[Prior art]

一般に、筒状のケーシングと、該ケーシングの軸方向に伸長して該ケーシング 内に設けられ、該ケーシングの一端側に設けられる駆動対象物を駆動すべく、磁 場がかけられたときに軸方向に伸縮する超磁歪ロッドと、該超磁歪ロッドの周囲 に位置して前記ケーシング内に設けられ、外部から通電されることにより該超磁 歪ロッドに磁場をかける電磁コイルと、前記ケーシングの他端側に設けられ、該 ケーシング内で前記超磁歪ロッドを軸方向に位置決めする位置決め部材とからな る超磁歪式アクチュエータを用いた燃料噴射弁は、例えば特開平3−24317 4号公報等により知られている。 Generally, a cylindrical casing and an axial direction when the magnetic field is applied to drive an object to be driven which is provided in the casing by extending in the axial direction of the casing and provided on one end side of the casing. A giant magnetostrictive rod that expands and contracts, an electromagnetic coil that is provided inside the casing around the giant magnetostrictive rod, applies a magnetic field to the giant magnetostrictive rod by being energized from the outside, and the other end of the casing. A fuel injection valve using a giant magnetostrictive actuator, which is provided on the side of the casing and comprises a positioning member for axially positioning the giant magnetostrictive rod in the casing, is known from, for example, Japanese Patent Laid-Open No. 3-243174. ing.

【0003】 この種の従来技術による燃料噴射弁では、ケーシングの一端側に燃料の噴射口 を有する弁座を設け、該弁座に駆動対象物となる内開き式の弁体を着座させるべ く、該弁体を弁ばねにより常時閉弁方向に付勢すると共に、超磁歪ロッドの一端 側を弁体に固着し、電磁コイルからの磁場により該超磁歪ロッドが縮小したとき に、該超磁歪ロッドにより弁体を弁ばねに抗してリフトさせ、前記噴射口からケ ーシング内の燃料を外部に向けて噴射させるようにしている。In this type of conventional fuel injection valve, a valve seat having a fuel injection port is provided on one end side of the casing, and an inward opening type valve body to be driven should be seated on the valve seat. , The valve body is always urged in the valve closing direction by a valve spring, and one end side of the giant magnetostrictive rod is fixed to the valve body, and when the giant magnetostrictive rod is contracted by the magnetic field from the electromagnetic coil, the giant magnetostrictive rod is The rod lifts the valve body against the valve spring, and the fuel in the casing is injected from the injection port to the outside.

【0004】 また、ケーシングの他端側には、前記超磁歪ロッドの他端側端面に当接する位 置決め部材としての蓋体を設け、該蓋体により超磁歪ロッドを前記弁体と共に弁 座側に向けて押圧し、前記弁ばねのばね荷重を調整するようにしている。そして 、超磁歪ロッドは電磁コイルからの磁場により縮小変形するときに、前記蓋体か ら離間するのを規制され、弁体を弁ばねに抗して確実にリフトさせるようになっ ている。Further, a lid body as a positioning member that abuts on the other end side end surface of the giant magnetostrictive rod is provided on the other end side of the casing, and the giant magnetostrictive rod is seated together with the valve body by the lid body. The spring load of the valve spring is adjusted by pressing the valve spring toward the side. When the giant magnetostrictive rod is contracted and deformed by the magnetic field from the electromagnetic coil, the giant magnetostrictive rod is restricted from being separated from the lid body, and the valve body is reliably lifted against the valve spring.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、上述した従来技術では、ケーシングの一端側に駆動対象物となる弁 体を設け、ケーシングの他端側には蓋体を設け、該蓋体と弁体との間で超磁歪ロ ッドをケーシング内で軸方向に位置決めするようにしているから、超磁歪ロッド の周囲に設けた電磁コイルが外部からの通電により発熱すると、このときの熱影 響等によって超磁歪ロッドが前記蓋体と弁体との間で軸方向に熱膨張することが ある。そして、超磁歪ロッドはケーシングに比較して熱膨張率が大きく、蓋体は ケーシングに一体的に固定されているので、超磁歪ロッドは熱膨張時に弁体側に 向けて伸びてしまい、電磁コイルからの磁場により超磁歪ロッドを伸縮変形させ るだけでは弁体を所望のリフト量をもって駆動できないという問題がある。 By the way, in the above-mentioned conventional technique, a valve body to be driven is provided on one end side of the casing, and a lid body is provided on the other end side of the casing, and the giant magnetostrictive rod is provided between the lid body and the valve body. Since the magnet is positioned in the casing in the axial direction, when the electromagnetic coil provided around the supermagnetostrictive rod generates heat due to external energization, the supermagnetostrictive rod and the lid body are affected by the thermal effect at this time. Thermal expansion may occur in the axial direction with the valve body. Since the giant magnetostrictive rod has a higher coefficient of thermal expansion than the casing and the lid is integrally fixed to the casing, the giant magnetostrictive rod expands toward the valve body side during thermal expansion, and the giant coil displaces from the electromagnetic coil. There is a problem that the valve body cannot be driven with a desired lift amount only by expanding and contracting the giant magnetostrictive rod by the magnetic field of.

【0006】 また、従来技術では、超磁歪ロッドの磁場による伸縮変形量は熱膨張による変 形量に比べ小さいため、超磁歪ロッドの熱膨張によって弁ばねのばね荷重が変化 するばかりでなく、超磁歪ロッドの伸縮変形量も熱膨張に大きく影響されてしま い、弁体のリフト量が変化して噴射流量の特性等が変動するという問題がある。Further, in the prior art, since the amount of expansion and contraction deformation of the giant magnetostrictive rod due to the magnetic field is smaller than the amount of deformation due to thermal expansion, not only the spring load of the valve spring changes due to thermal expansion of the giant magnetostrictive rod, but also The amount of expansion and contraction of the magnetostrictive rod is also greatly affected by thermal expansion, and there is a problem in that the lift amount of the valve element changes and the characteristics of the injection flow rate and the like change.

【0007】 一方、駆動対象物となる弁体を外開き式とし、超磁歪ロッドが伸び変形したと きに弁体を開弁させる構成とすると、超磁歪ロッドの熱膨張により弁体が開弁方 向に変位して弁座から離座することがあり、シール不良等の原因になるという問 題がある。On the other hand, if the valve body to be driven is of the outward opening type and the valve body is opened when the giant magnetostrictive rod expands and deforms, the valve body opens due to thermal expansion of the giant magnetostrictive rod. There is a problem that it may be displaced in the direction and separated from the valve seat, which may cause seal failure.

【0008】 本考案は上述した従来技術の問題に鑑みなされたもので、本考案は大きなリフ ト量をもって駆動対象物を駆動でき、特性不良等が発生するのを効果的に防止で きるようにした超磁歪式アクチュエータを提供することを目的としている。The present invention has been made in view of the above-mentioned problems of the prior art. The present invention can drive an object to be driven with a large lift amount, and can effectively prevent characteristic defects from occurring. It is an object of the present invention to provide a giant magnetostrictive actuator.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

上述した課題を解決するために本考案は、筒状のケーシングと、該ケーシング の軸方向に伸長して該ケーシング内に設けられ、磁場がかけられたときに軸方向 に伸縮する超磁歪筒と、該超磁歪筒内に同軸に配設され、前記ケーシングの一端 側に設けられる駆動対象物を先端側で駆動すべく、磁場がかけられたときに軸方 向に伸縮する超磁歪ロッドと、該超磁歪ロッドと超磁歪筒との間に配設され、前 記超磁歪筒の伸縮を該超磁歪ロッドに伝える伝達部材と、前記超磁歪筒とケーシ ングとの間に位置して該ケーシングに設けられ、外部から通電されることにより 前記超磁歪筒と超磁歪ロッドとに磁場をかける電磁コイルとからなる構成を採用 している。 In order to solve the above-mentioned problems, the present invention provides a tubular casing, and a giant magnetostrictive tube that extends in the axial direction of the casing and is provided inside the casing and expands and contracts in the axial direction when a magnetic field is applied. A giant magnetostrictive rod which is coaxially disposed in the giant magnetostrictive cylinder and which expands and contracts in the axial direction when a magnetic field is applied so as to drive a drive target provided on one end side of the casing on the tip side; A transmission member that is disposed between the giant magnetostrictive rod and the giant magnetostrictive cylinder and that transmits the expansion and contraction of the giant magnetostrictive cylinder to the giant magnetostrictive rod, and the casing that is located between the giant magnetostrictive cylinder and the casing. And a magnetic coil that applies a magnetic field to the giant magnetostrictive cylinder and the giant magnetostrictive rod by being energized from the outside.

【0010】 また、前記伝達部材は、前記超磁歪筒および超磁歪ロッドよりも大きな熱膨張 率を有する材料によって形成するのが好ましい。Further, it is preferable that the transmission member is made of a material having a larger coefficient of thermal expansion than the giant magnetostrictive cylinder and the giant magnetostrictive rod.

【0011】[0011]

【作用】[Action]

上記構成により、電磁コイルからの磁場を超磁歪筒と超磁歪ロッドとにかけた ときに、例えば超磁歪筒と超磁歪ロッドとが伸び変形すると、超磁歪筒の伸びは 伝達部材を介して超磁歪ロッドに伝えられ、超磁歪筒の伸び量に超磁歪ロッドの 伸び量を加算した大きなリフト量をもって駆動対象物を駆動できる。 With the above configuration, when the magnetic field from the electromagnetic coil is applied to the giant magnetostrictive cylinder and the giant magnetostrictive rod, for example, when the giant magnetostrictive cylinder and the giant magnetostrictive rod undergo extension deformation, the extension of the giant magnetostrictive cylinder will be transmitted through the transmission member. The object to be driven can be driven with a large lift amount transmitted to the rod and adding the extension amount of the giant magnetostrictive rod to the extension amount of the giant magnetostrictive cylinder.

【0012】 また、伝達部材を熱膨張率の大きい材料で形成するようにすれば、電磁コイル の発熱等によって超磁歪筒および超磁歪ロッドが軸方向に熱膨張したときには、 これに対応して伝達部材を軸方向に熱膨張させることができ、超磁歪筒および超 磁歪ロッドの熱膨張分を伝達部材の熱膨張によって吸収することができる。Further, when the transmission member is made of a material having a large coefficient of thermal expansion, when the giant magnetostrictive cylinder and the giant magnetostrictive rod thermally expand in the axial direction due to heat generation of the electromagnetic coil or the like, the corresponding transmission is performed. The member can be thermally expanded in the axial direction, and the thermal expansion of the giant magnetostrictive cylinder and the giant magnetostrictive rod can be absorbed by the thermal expansion of the transmission member.

【0013】[0013]

【実施例】【Example】

以下、本考案の実施例を、図1に基づいて説明する。 An embodiment of the present invention will be described below with reference to FIG.

【0014】 図中、1は超磁歪式アクチュエータの本体を構成するケーシングを示し、該ケ ーシング1は電磁ステンレス鋼等の磁性材料から円筒状に形成され、該ケーシン グ1の上端側内周には段部1Aが形成されている。また、該ケーシング1の上、 下両端側はカシメ部1B,1Cとなり、該カシメ部1B,1C間にはケーシング 1内に位置して後述する蓋体2、コイルボビン8、スペーサ筒9、底蓋7等が固 定されている。In the drawing, reference numeral 1 denotes a casing that constitutes the main body of the giant magnetostrictive actuator, and the casing 1 is formed of a magnetic material such as electromagnetic stainless steel into a cylindrical shape, and is formed on the inner periphery of the upper end side of the casing 1. Has a step portion 1A. Further, the upper and lower ends of the casing 1 are caulked portions 1B and 1C, and a space between the caulked portions 1B and 1C is located in the casing 1 and a lid body 2, a coil bobbin 8, a spacer cylinder 9 and a bottom lid which will be described later. 7 mag is fixed.

【0015】 2は前記ケーシング1の一端側を閉塞する蓋体を示し、該蓋体2は電磁ステン レス鋼等の磁性材料により段付円板状に形成され、円板状の大径部2Aと、該大 径部2Aの下面側中央から下向きに突出する中径部2B、小径部2Cとから構成 されている。そして、該蓋体2は、ケーシング1の段部1Aとカシメ部1Bとの 間で大径部2Aをカシメ固定することによりケーシング1内に取付けられ、大径 部2Aには、各インシュレータ3Aを介し端子ピン3,3が貫通して設けられて いる。Reference numeral 2 denotes a lid body that closes one end side of the casing 1, and the lid body 2 is formed of a magnetic material such as electromagnetic stainless steel in a stepped disc shape, and has a disc-shaped large diameter portion 2A. And a medium diameter portion 2B and a small diameter portion 2C which project downward from the center of the lower surface side of the large diameter portion 2A. The lid 2 is mounted in the casing 1 by caulking and fixing the large diameter portion 2A between the stepped portion 1A and the caulking portion 1B of the casing 1, and the large diameter portion 2A is provided with each insulator 3A. Terminal pins 3 and 3 are provided so as to penetrate therethrough.

【0016】 4は前記ケーシング1の軸方向に伸長してケーシング1内に設けられた超磁歪 筒を示し、該超磁歪筒4は例えばネオジム(Nd)−鉄母合金またはジスプロシ ウム(Dy)−鉄、テルビウム(Tb)−鉄母合金等の超磁歪材料から正の磁歪 特性をもった細長い円筒状に形成され、該超磁歪筒4の中央には後述するストッ パ筒6が挿嵌される摺動穴4Aが形成されている。ここで、該超磁歪筒4は上端 側端面4Bが前記蓋体2の中径部2Bに当接し、摺動穴4A内に蓋体2の小径部 2Cを嵌合させることにより、ケーシング1内に位置決めされている。Reference numeral 4 denotes a giant magnetostrictive cylinder extending in the axial direction of the casing 1 and provided inside the casing 1. The giant magnetostrictive cylinder 4 is, for example, neodymium (Nd) -iron master alloy or dysprosium (Dy)-. A super-magnetostrictive material such as iron or terbium (Tb) -iron master alloy is formed into an elongated cylindrical shape having a positive magnetostrictive characteristic, and a stop tube 6 to be described later is inserted in the center of the super-magnetostrictive tube 4. A sliding hole 4A is formed. Here, in the giant magnetostrictive cylinder 4, the upper end side end surface 4B is brought into contact with the medium diameter portion 2B of the lid body 2 and the small diameter portion 2C of the lid body 2 is fitted into the sliding hole 4A, thereby It is located in.

【0017】 また、該超磁歪筒4の下端側端面4Cはストッパ筒6の鍔部6D等を介して後 述する設定ばね12により軸方向上向きに付勢され、初期荷重が付与されている 。そして、該超磁歪筒4は後述する電磁コイル13からの磁場、例えば1kOe (キロエルステッド)の磁場により全長L1に対して1000PPM(1000 ×10-6)の比率で軸方向に伸び変形する。また、該超磁歪筒4は、例えば1× 10-5/℃程度の熱膨張率α1(線膨張係数)を有し、周囲温度が1℃上昇する 毎に全長L1に対して軸方向に、Further, the lower end side surface 4C of the giant magnetostrictive cylinder 4 is axially urged upward by a setting spring 12 to be described later via a collar portion 6D of the stopper cylinder 6, and an initial load is applied. The giant magnetostrictive cylinder 4 is expanded and deformed in the axial direction at a ratio of 1000 PPM (1000 × 10 −6 ) with respect to the total length L1 by a magnetic field from the electromagnetic coil 13 described later, for example, a magnetic field of 1 kOe (kiloested). Further, the giant magnetostrictive cylinder 4 has a coefficient of thermal expansion α1 (linear expansion coefficient) of, for example, about 1 × 10 −5 / ° C., and the axial direction with respect to the total length L1 is increased every time the ambient temperature rises by 1 ° C.

【0018】[0018]

【数1】 △L1=L1×α1 で示す寸法△L1だけ熱膨張する。[Equation 1] ΔL1 = L1 × α1 Thermally expands by a dimension ΔL1.

【0019】 5は前記超磁歪筒4の内側に同軸に配設された超磁歪ロッドを示し、該超磁歪 ロッド5は超磁歪筒4と同様に正の超磁歪材料から全長L2の長さを有する円柱 状に形成され、電磁コイル12から磁場がかけられたときに全長L2に対して前 記超磁歪筒4と同じ比率で軸方向に伸び変形する。そして、該超磁歪ロッド5は 後述するストッパ筒6と共に超磁歪筒4の摺動穴4A内に挿嵌され、該超磁歪ロ ッド5の先端はストッパ筒6の開口端から突出している。また、該超磁歪ロッド 5は前記超磁歪筒4と同じ熱膨張率α1を有し、周囲温度が1℃上昇する毎に全 長L2に対して軸方向に、Reference numeral 5 denotes a giant magnetostrictive rod coaxially arranged inside the giant magnetostrictive cylinder 4, and the giant magnetostrictive rod 5 is made of a positive giant magnetostrictive material and has a total length L 2 like the giant magnetostrictive cylinder 4. When the magnetic field is applied from the electromagnetic coil 12, it is elongated and deformed in the axial direction at the same ratio as that of the giant magnetostrictive cylinder 4 with respect to the total length L2. The super-magnetostrictive rod 5 is inserted into the sliding hole 4A of the super-magnetostrictive tube 4 together with a stopper tube 6 described later, and the tip of the super-magnetostrictive rod 5 projects from the opening end of the stopper tube 6. Further, the giant magnetostrictive rod 5 has the same coefficient of thermal expansion α1 as the giant magnetostrictive cylinder 4, and every time the ambient temperature rises by 1 ° C., the axial direction with respect to the total length L2,

【0020】[0020]

【数2】 △L2=L2×α1 で示す寸法△L2だけ熱膨張する。## EQU00002 ## Thermal expansion is performed by the dimension .DELTA.L2 shown by .DELTA.L2 = L2.times..alpha.1.

【0021】 6は前記超磁歪ロッド5の上端側から被せられ、超磁歪ロッド5と共に前記超 磁歪筒4の摺動穴4A内に下端側から差込まれたストッパ筒を示し、該ストッパ 筒6は前記超磁歪筒4および超磁歪ロッド5よりも大きい、例えば1.2〜2. 4×10-5/℃程度の熱膨張率α2を有するアルミニウムや黄銅等の非磁性材料 により細長い筒状に形成され、筒状部6Aの上端側には下面側が平坦な当接面6 Bとなった円板状のストッパ部6Cが一体形成されている。ここで、該ストッパ 筒6はストッパ部6Cの上面側が隙間Gを介して超磁歪筒4内で前記蓋体2と対 向し、この隙間Gにより筒6のストッパ筒6が熱膨張したときにストッパ部6C 側に変位するのが許されている。また、該ストッパ筒6の開口端側となる筒状部 6Aの下端側には径方向外向きに突出する大径の鍔部6Dが一体形成され、スト ッパ筒6から突出する超磁歪ロッド5の先端を、後述の設定ばね12でプッシュ ロッド10を介して付勢することにより、該鍔部6Dの上側面が前記超磁歪筒4 の下端側端面4Cに当接し、超磁歪筒4に予荷重を付与している。そして、該ス トッパ筒6は筒状部6A、ストッパ部6Cおよび鍔部6Dの厚さ分を含めて全長 L3に形成され、該ストッパ筒6は温度が1℃上昇する毎に全長L3に対して軸 方向に、Reference numeral 6 denotes a stopper cylinder which is covered from the upper end side of the giant magnetostrictive rod 5 and is inserted together with the giant magnetostrictive rod 5 into the sliding hole 4 A of the giant magnetostrictive cylinder 4 from the lower end side. Is larger than the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5, for example, 1.2 to 2. A non-magnetic material such as aluminum or brass having a coefficient of thermal expansion α2 of about 4 × 10 −5 / ° C. is formed into a slender tubular shape, and the lower surface side of the tubular portion 6A has a flat contact surface 6B. The disk-shaped stopper portion 6C is integrally formed. Here, the stopper cylinder 6 faces the lid body 2 in the giant magnetostrictive cylinder 4 with the upper surface side of the stopper portion 6C through a gap G, and when the stopper cylinder 6 of the cylinder 6 is thermally expanded by the gap G. Displacement to the stopper portion 6C side is permitted. Further, a large-diameter flange portion 6D protruding outward in the radial direction is integrally formed on the lower end side of the cylindrical portion 6A which is the opening end side of the stopper cylinder 6, and the giant magnetostrictive rod protruding from the stopper cylinder 6 is formed. By urging the tip end of 5 through a push rod 10 by a setting spring 12 described later, the upper side surface of the collar portion 6D abuts on the lower end side end surface 4C of the super magnetostrictive cylinder 4, and the super magnetostrictive cylinder 4 is attached. Preload is applied. The stopper cylinder 6 is formed to have a total length L3 including the thicknesses of the cylindrical portion 6A, the stopper portion 6C and the collar portion 6D, and the stopper cylinder 6 has a length L3 with respect to the total length L3 each time the temperature rises by 1 ° C. Axially,

【0022】[0022]

【数3】 △L3=L3×α2 で示す寸法△L3だけ熱膨張する。## EQU3 ## Thermal expansion is performed by the dimension ΔL3 shown by ΔL3 = L3 × α2.

【0023】 さらに、ストッパ筒6の全長L3は、前述の超磁歪筒4および超磁歪ロッド5 の全長L1,L2との間に、Furthermore, the total length L3 of the stopper cylinder 6 is between the total lengths L1 and L2 of the above-described giant magnetostrictive barrel 4 and giant magnetostrictive rod 5.

【0024】[0024]

【数4】 △L3=L3×α2 =(L1+L2)×α1 =△L1+△L2 なる関係が成立するように設定され、ストッパ筒6は鍔部6Dが超磁歪筒4の下 側端面4Cに当接して上側への変位が規制され、ストッパ部6Cが隙間Gによっ て上向きの変位を許されているから、超磁歪筒4および超磁歪ロッド5の熱膨張 分をストッパ筒6がストッパ部6C側に伸長することによって吸収でき、この熱 膨張分によって後述のプッシュロッド10が軸方向に変位するのを防止している 。[Formula 4] ΔL3 = L3 × α2 = (L1 + L2) × α1 = ΔL1 + ΔL2 The stopper cylinder 6 has a flange portion 6D that contacts the lower end surface 4C of the giant magnetostrictive cylinder 4. Since the displacement to the upper side is regulated and the stopper portion 6C is allowed to be displaced upward due to the gap G, the stopper cylinder 6 causes the stopper portion 6C to cover the thermal expansion amount of the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5. It can be absorbed by extending to the side, and the push rod 10 described later is prevented from axially displacing due to this thermal expansion.

【0025】 7はケーシング1の先端側に設けられた底蓋を示し、該底蓋7の中央にはロッ ド挿通穴7Aが穿設され、該ロッド挿通穴7Aから後述するプッシュロッド10 の軸部10Cが伸縮自在に突出している。Reference numeral 7 denotes a bottom lid provided on the front end side of the casing 1, and a rod insertion hole 7A is formed at the center of the bottom lid 7, and the rod insertion hole 7A extends from the shaft of a push rod 10 to be described later. The portion 10C is elastically projected.

【0026】 8はケーシング1と超磁歪筒4との間に挿嵌されたコイルボビンを示し、該コ イルボビン8は筒状部8Aと、該筒状部8Aの両端に形成された鍔部8B,8C とからなり、該各鍔部8B,8Cがケーシング1の内側に嵌合されている。また 、上端側の鍔部8Bには前記各端子ピン3が植設され、該コイルボビン8の筒状 部8Aの内側は、前記超磁歪筒4および後述するプッシュロッド10の押圧部1 0Bが挿通される摺動穴8Dとなり、該摺動穴8Dの上端側には蓋体2の中径部 2Bが嵌合されている。Reference numeral 8 denotes a coil bobbin inserted between the casing 1 and the giant magnetostrictive cylinder 4, and the coil bobbin 8 has a tubular portion 8A and collar portions 8B formed at both ends of the tubular portion 8A. 8C, and the collar portions 8B and 8C are fitted inside the casing 1. The terminal pins 3 are planted in the flange 8B on the upper end side, and the supermagnetostrictive cylinder 4 and the pressing portion 10B of the push rod 10 described later are inserted inside the cylindrical portion 8A of the coil bobbin 8. The sliding hole 8D is formed, and the middle diameter portion 2B of the lid 2 is fitted on the upper end side of the sliding hole 8D.

【0027】 9は前記コイルボビン8の鍔部8Cと底蓋7との間に位置してケーシング1の 先端側に嵌合されたスペーサ筒を示し、該スペーサ筒9は前記底蓋7をケーシン グ1のカシメ部1Cとの間に挟持し、底蓋7がケーシング1の内側に動かないよ うに位置決めしている。Reference numeral 9 denotes a spacer cylinder which is located between the flange portion 8 C of the coil bobbin 8 and the bottom cover 7 and is fitted to the front end side of the casing 1. The spacer cylinder 9 serves to cover the bottom cover 7 with the casing. The bottom lid 7 is positioned so that the bottom lid 7 does not move inside the casing 1 by being sandwiched between it and the crimped portion 1C.

【0028】 10は駆動対象物としてのプッシュロッドを示し、該プッシュロッド10は大 径円板状のばね受部10Aと、該ばね受部10Aの一側に突設された円柱状の押 圧部10Bと、ばね受部10Aの中央から他側に突設された段付円柱状の軸部1 0Cとから構成され、ばね受部10Aが前記スペーサ筒9の内側に摺動可能に挿 嵌されている。ここで、押圧部10Bの一側端面中央には浅底の凹部10Dが形 成され、該凹部10D内には、例えばフッ素系樹脂等からなるシート状の緩衝材 11を介して超磁歪ロッド5の先端が嵌合され、軸部10Cは前述の底蓋7のロ ッド挿通穴7Aから摺動可能に突出している。Reference numeral 10 denotes a push rod as an object to be driven. The push rod 10 includes a large-diameter disk-shaped spring receiving portion 10A and a columnar pressing force protruding from one side of the spring receiving portion 10A. The spring receiving portion 10A includes a stepped columnar shaft portion 10C protruding from the center of the spring receiving portion 10A to the other side, and the spring receiving portion 10A is slidably fitted inside the spacer tube 9. Has been done. Here, a shallow recess 10D is formed in the center of one end surface of the pressing portion 10B, and the giant magnetostrictive rod 5 is formed in the recess 10D via a sheet-shaped cushioning material 11 made of, for example, a fluororesin. Of the shaft portion 10C is slidably protruded from the rod insertion hole 7A of the bottom cover 7 described above.

【0029】 12はスペーサ筒9内に位置して前記プッシュロッド10のばね受部10Aと 底蓋7との間に配設された設定ばねを示し、該設定ばね12はプッシュロッド1 0を介して超磁歪ロッド5を常時上向きに付勢し、超磁歪ロッド5の上端をスト ッパ筒6のストッパ部6Cに押付け、ストッパ筒6の鍔部6Dを超磁歪筒4の下 端側端面4Cに当接させることにより、超磁歪ロッド5および超磁歪筒4に初期 荷重を付与している。Reference numeral 12 denotes a setting spring located inside the spacer cylinder 9 and arranged between the spring receiving portion 10 A of the push rod 10 and the bottom cover 7. The setting spring 12 is provided via the push rod 10. The super-magnetostrictive rod 5 is constantly urged upward, the upper end of the super-magnetostrictive rod 5 is pressed against the stopper portion 6C of the stopper cylinder 6, and the flange portion 6D of the stopper cylinder 6 is attached to the lower end surface 4C of the super-magnetostrictive cylinder 4. The initial load is applied to the giant magnetostrictive rod 5 and the giant magnetostrictive cylinder 4 by bringing them into contact with.

【0030】 13は前記コイルボビン8に巻回された電磁コイルを示し、該電磁コイル13 はコイルボビン8の上端側に設けられた端子ピン3,3に接続され、外部からの 通電により励磁されて磁場を発生させる。そして、該電磁コイル13は前記超磁 歪筒4および超磁歪ロッド5に磁場をかけることにより、この超磁歪筒4および 超磁歪ロッド5を軸方向に伸び変形させる。Reference numeral 13 denotes an electromagnetic coil wound around the coil bobbin 8. The electromagnetic coil 13 is connected to the terminal pins 3 provided on the upper end side of the coil bobbin 8 and is excited by an external current to generate a magnetic field. Generate. Then, the electromagnetic coil 13 applies a magnetic field to the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 so that the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 are stretched and deformed in the axial direction.

【0031】 本実施例による超磁歪式アクチュエータは上述の如き構成を有するもので、次 にその作動について説明する。The giant magnetostrictive actuator according to the present embodiment has the above-mentioned configuration, and its operation will be described below.

【0032】 まず、電磁コイル13に駆動パルスを給電し、該電磁コイル13により超磁歪 筒4および超磁歪ロッド5に磁場をかけると、超磁歪筒4および超磁歪ロッド5 はこのときの磁場の強さに応じて同時に伸び変形する。この場合、超磁歪筒4の 上端側端面4Bは蓋体2に当接し、上向きの変位を規制されているので、超磁歪 筒4が伸び変形したときにストッパ筒6の鍔部6Dを下側に変位させ、該ストッ パ筒6を介して超磁歪ロッド5を下側に変位させる。ここで、ストッパ筒6内の 超磁歪ロッド5も上側端面5Aがストッパ筒6のストッパ部6Cにより上向きの 変位を規制されているため、超磁歪ロッド5の先端は超磁歪筒4の伸びに超磁歪 ロッド5自身の伸びを加えた変位量をもって下向きに伸び、超磁歪筒4の伸縮変 化量に超磁歪ロッド5の伸縮変形量を加算した値でプッシュロッド10を設定ば ね12に抗して下向きに変位させる。First, when a drive pulse is supplied to the electromagnetic coil 13 and a magnetic field is applied to the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 by the electromagnetic coil 13, the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 generate a magnetic field at this time. It stretches and deforms simultaneously depending on the strength. In this case, since the upper end surface 4B of the giant magnetostrictive cylinder 4 is in contact with the lid 2 and its upward displacement is restricted, when the giant magnetostrictive cylinder 4 is stretched and deformed, the flange portion 6D of the stopper cylinder 6 is moved downward. Then, the giant magnetostrictive rod 5 is displaced downward through the stopper cylinder 6. Here, since the upper end surface 5A of the giant magnetostrictive rod 5 in the stopper tube 6 is also restricted from being displaced upward by the stopper portion 6C of the stopper tube 6, the tip of the giant magnetostrictive rod 5 does not extend beyond the extension of the giant magnetostrictive tube 4. Magnetostrictive rod 5 expands downward with an amount of displacement that includes the elongation of itself, and push rod 10 is set to a value that resists push rod 10 by the value obtained by adding the amount of expansion and contraction deformation of giant magnetostrictive rod 5 to the amount of expansion and contraction deformation of giant magnetostrictive rod 4. And move it downward.

【0033】 そして、本実施例では、ストッパ筒6を超磁歪筒4および超磁歪ロッド5より も大きな熱膨張率α2を有するアルミニウムまたは黄銅等の非磁性材料により筒 状に形成し、該ストッパ筒6の全長L3を超磁歪筒4の全長L1および超磁歪ロ ッド5の全長L3との間に、前記数4の関係が成立するようにL1およびL2を 設定し、ストッパ筒6内に収納した超磁歪ロッド5の上端側端面5Aをストッパ 部6Cに押付け、該ストッパ筒6の鍔部6Dを超磁歪筒4の下端側端面4Cに押 付けてこれらをケーシング1内で軸方向に位置決めするようにしたから、超磁歪 筒4および超磁歪ロッド5が熱膨張したときには、ストッパ筒6の筒状部6Aが 同様に熱膨張し、超磁歪ロッド5の上側変位を規制するストッパ部6Cを逆方向 に変位させて超磁歪筒4および超磁歪ロッド5の熱膨張による変形を相殺できる 。In this embodiment, the stopper cylinder 6 is formed in a cylindrical shape from a non-magnetic material such as aluminum or brass having a coefficient of thermal expansion α2 larger than that of the super magnetostrictive cylinder 4 and the super magnetostrictive rod 5, and the stopper cylinder 6 is formed. The total length L3 of 6 is set between the total length L1 of the giant magnetostrictive cylinder 4 and the overall length L3 of the giant magnetostrictive rod 5 so that L1 and L2 are satisfied so that the relation of the above equation 4 is established, and they are stored in the stopper barrel 6. The upper end surface 5A of the giant magnetostrictive rod 5 is pressed against the stopper portion 6C, and the flange portion 6D of the stopper cylinder 6 is pressed against the lower end surface 4C of the giant magnetostrictive cylinder 4 to position them axially in the casing 1. Therefore, when the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 thermally expand, the tubular portion 6A of the stopper cylinder 6 similarly thermally expands, and the stopper portion 6C that restricts the upward displacement of the giant magnetostrictive rod 5 reverses. In the direction Position is allowed to be offset the deformation due to thermal expansion of the super magnetostrictive tube 4 and the giant magnetostrictive rod 5.

【0034】 従って、本実施例によれば、超磁歪筒4と超磁歪ロッド5の伸縮変形量の和を もってプッシュロッド10を大きな駆動量(リフト量)で駆動することができる 。また、超磁歪筒4および超磁歪ロッド5の熱膨張によってプッシュロッド10 のリフト量が変化するのを効果的に防止でき、プッシュロッド10を駆動パルス に対応した正規のリフト量で駆動させることができる。また、設定ばね12のば ね荷重が超磁歪筒4および超磁歪ロッド5の熱膨張によって変化するのを防止で き、超磁歪筒4および超磁歪ロッド5に一定の初期荷重を付与し続けることがで きる。Therefore, according to the present embodiment, the push rod 10 can be driven with a large driving amount (lift amount) with the sum of the expansion and contraction deformation amounts of the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5. Further, it is possible to effectively prevent the lift amount of the push rod 10 from changing due to the thermal expansion of the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5, and it is possible to drive the push rod 10 with a regular lift amount corresponding to the drive pulse. it can. Further, it is possible to prevent the spring load of the setting spring 12 from changing due to the thermal expansion of the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5, and to keep applying a constant initial load to the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5. You can

【0035】 なお、前記実施例では、ストッパ筒6の熱膨張率α2、全長L3を超磁歪筒4 の全長L1、超磁歪ロッド5の全長L2および熱膨張率α1に基づき前記数4の 関係を満たすようにするものとして述べたが、本考案はこれに限らず、例えばス トッパ筒6の熱膨張率α2を超磁歪筒4および超磁歪ロッド5の熱膨張率α1よ りも大きくし、超磁歪筒4および超磁歪ロッド5の熱膨張分(△L1+△L2) をストッパ筒6の熱膨張とケーシング1の熱膨張とによって相殺するようにして もよい。In the above embodiment, the coefficient of thermal expansion α2 and the total length L3 of the stopper cylinder 6 are expressed by the following formula 4 based on the total length L1 of the giant magnetostrictive cylinder 4, the total length L2 of the giant magnetostrictive rod 5 and the coefficient of thermal expansion α1. However, the present invention is not limited to this. For example, the thermal expansion coefficient α2 of the stopper cylinder 6 is made larger than the thermal expansion coefficient α1 of the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5, and The thermal expansion (ΔL1 + ΔL2) of the magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 may be offset by the thermal expansion of the stopper cylinder 6 and the thermal expansion of the casing 1.

【0036】 また、前記実施例では、超磁歪筒4および超磁歪ロッド5を正の磁歪特性をも った超磁歪材料によって形成するものとして述べたが、本考案はこれに限らず、 例えば超磁歪筒4および超磁歪ロッド5を負の磁歪特性をもった超磁歪材料によ って形成し、この超磁歪ロッドに磁場がかけられたときに駆動対象物としてのプ ッシュロッド等を所望のリフト量をもって駆動させる構成としてもよい。Further, in the above embodiment, the giant magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 are described as being formed of a giant magnetostrictive material having a positive magnetostrictive characteristic, but the present invention is not limited to this and, for example, The magnetostrictive cylinder 4 and the giant magnetostrictive rod 5 are formed of a giant magnetostrictive material having a negative magnetostrictive characteristic, and when a magnetic field is applied to the giant magnetostrictive rod, a push rod or the like as a drive target is lifted to a desired lift. It may be configured to be driven with a certain amount.

【0037】 さらに、前記実施例では、プッシュロッドを駆動するようにした超磁歪式アク チュエータを例に挙げて説明したが、本考案はこれに限らず、例えば超磁歪式噴 射弁等に内蔵されるアクチュエータに適用してもよく、また超磁歪式開閉弁とし て、スプール弁体やポペット弁体等に超磁歪ロッドの一端側を取付けるようにし てもよい。また、ディスクブレーキ等に適用してもよく、この場合には超磁歪ロ ッドの伸縮変形を摩擦パッドに伝えてディスクに制動力を付与する構成とすれば よい。Further, in the above embodiment, the description has been given by taking the giant magnetostrictive actuator that drives the push rod as an example, but the present invention is not limited to this, and is incorporated in, for example, a giant magnetostrictive injection valve or the like. The present invention may be applied to the actuator described above, or as a giant magnetostrictive on-off valve, one end side of the giant magnetostrictive rod may be attached to a spool valve body, a poppet valve body or the like. Further, it may be applied to a disc brake or the like, and in this case, the expansion / contraction deformation of the giant magnetostrictive rod may be transmitted to the friction pad to apply the braking force to the disc.

【0038】[0038]

【考案の効果】[Effect of device]

以上詳述した通り、本考案によれば、超磁歪アクチュエータを、筒状のケーシ ングと、該ケーシングの軸方向に伸長して該ケーシング内に設けられ、磁場がか けられたときに軸方向に伸縮する超磁歪筒と、該超磁歪筒内に同軸に配設され、 前記ケーシングの一端側に設けられる駆動対象物を先端側で駆動すべく、磁場が かけられたときに軸方向に伸縮する超磁歪ロッドと、該超磁歪ロッドと超磁歪筒 との間に配設され、前記超磁歪筒の伸縮を該超磁歪ロッドに伝える伝達部材と、 前記超磁歪筒とケーシングとの間に位置して該ケーシングに設けられ、外部から 通電されることにより前記超磁歪筒と超磁歪ロッドとに磁場をかける電磁コイル とから構成したから、電磁コイルからの磁場を超磁歪筒と超磁歪ロッドとにかけ たときに、超磁歪筒の伸縮変形量に超磁歪ロッドの伸縮変形量を加算した大きな リフト量をもって駆動対象物を駆動できる。 As described above in detail, according to the present invention, the giant magnetostrictive actuator is provided in the casing extending in the axial direction of the cylindrical casing and the casing, and the axial direction when the magnetic field is applied. The super-magnetostrictive tube that expands and contracts in the direction of the axis and the axial direction of expansion and contraction when a magnetic field is applied in order to drive the drive target installed on one end side of the casing coaxially inside the super-magnetostrictive tube. A giant magnetostrictive rod, a transmission member disposed between the giant magnetostrictive rod and the giant magnetostrictive tube, and transmitting the expansion and contraction of the giant magnetostrictive tube to the giant magnetostrictive rod, and a position between the giant magnetostrictive tube and the casing. The electromagnetic coil is installed in the casing and applies a magnetic field to the supermagnetostrictive cylinder and the supermagnetostrictive rod by being energized from the outside. Therefore, the magnetic field from the electromagnetic coil is applied to the supermagnetostrictive cylinder and the supermagnetostrictive rod. When applied to You can drive a large lift amount with a driven object by adding the expansion deformation of the super magnetostrictive rod stretching deformation of the cylinder.

【0039】 また、伝達部材を熱膨張率の大きい材料で形成するようにすれば、電磁コイル の発熱等によって超磁歪筒および超磁歪ロッドが軸方向に熱膨張したときには、 これに対応して伝達部材を軸方向に熱膨張させることができ、超磁歪筒および超 磁歪ロッドの熱膨張分を伝達部材の熱膨張によって吸収することができ、特性不 良等の発生を効果的に防止できる上に、超磁歪式噴射弁等に適用したときには弁 体のリフト量が熱膨張によって変化するのを防止でき、シール不良等の発生もな くすことができる。Further, if the transmission member is made of a material having a large coefficient of thermal expansion, when the supermagnetostrictive cylinder and the supermagnetostrictive rod thermally expand in the axial direction due to heat generation of the electromagnetic coil or the like, the transmission is correspondingly performed. The member can be thermally expanded in the axial direction, the thermal expansion of the giant magnetostrictive cylinder and the giant magnetostrictive rod can be absorbed by the thermal expansion of the transmission member, and the occurrence of characteristic defects can be effectively prevented. When applied to a super-magnetostrictive injection valve or the like, it is possible to prevent the lift amount of the valve body from changing due to thermal expansion, and it is possible to prevent the occurrence of defective sealing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例による超磁歪式アクチュエータ
を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a giant magnetostrictive actuator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケーシング 4 超磁歪筒 5 超磁歪ロッド 6 ストッパ筒(伝達部材) 10 プッシュロッド(駆動対象物) 13 電磁コイル 1 Casing 4 Giant Magnetostrictive Cylinder 5 Giant Magnetostrictive Rod 6 Stopper Cylinder (Transmission Member) 10 Push Rod (Drive Target) 13 Electromagnetic Coil

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 筒状のケーシングと、該ケーシングの軸
方向に伸長して該ケーシング内に設けられ、磁場がかけ
られたときに軸方向に伸縮する超磁歪筒と、該超磁歪筒
内に同軸に配設され、前記ケーシングの一端側に設けら
れる駆動対象物を先端側で駆動すべく、磁場がかけられ
たときに軸方向に伸縮する超磁歪ロッドと、該超磁歪ロ
ッドと超磁歪筒との間に配設され、前記超磁歪筒の伸縮
を該超磁歪ロッドに伝える伝達部材と、前記超磁歪筒と
ケーシングとの間に位置して該ケーシングに設けられ、
外部から通電されることにより前記超磁歪筒と超磁歪ロ
ッドとに磁場をかける電磁コイルとから構成してなる超
磁歪式アクチュエータ。
1. A tubular casing, a giant magnetostrictive barrel which is provided in the casing so as to extend in the axial direction of the casing and expands and contracts in the axial direction when a magnetic field is applied, and in the giant magnetostrictive barrel. A giant magnetostrictive rod that expands and contracts in the axial direction when a magnetic field is applied so as to drive the object to be driven provided on one end side of the casing coaxially, and the giant magnetostrictive rod and the giant magnetostrictive cylinder. And a transmission member that transmits expansion and contraction of the super magnetostrictive cylinder to the supermagnetostrictive rod, and is provided between the supermagnetostrictive cylinder and the casing.
A giant magnetostrictive actuator comprising an electromagnetic coil that applies a magnetic field to the giant magnetostrictive cylinder and the giant magnetostrictive rod when energized from the outside.
【請求項2】 前記伝達部材は、前記超磁歪筒および超
磁歪ロッドよりも大きな大きな熱膨張率を有する材料に
よって形成してなる請求項1に記載の超磁歪式アクチュ
エータ。
2. The giant magnetostrictive actuator according to claim 1, wherein the transmission member is made of a material having a larger coefficient of thermal expansion than the giant magnetostrictive cylinder and the giant magnetostrictive rod.
JP1992090377U 1992-12-09 1992-12-09 Giant magnetostrictive actuator Expired - Fee Related JP2598434Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992090377U JP2598434Y2 (en) 1992-12-09 1992-12-09 Giant magnetostrictive actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992090377U JP2598434Y2 (en) 1992-12-09 1992-12-09 Giant magnetostrictive actuator

Publications (2)

Publication Number Publication Date
JPH0650367U true JPH0650367U (en) 1994-07-08
JP2598434Y2 JP2598434Y2 (en) 1999-08-09

Family

ID=13996882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992090377U Expired - Fee Related JP2598434Y2 (en) 1992-12-09 1992-12-09 Giant magnetostrictive actuator

Country Status (1)

Country Link
JP (1) JP2598434Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510508A (en) * 1999-09-30 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Valve for controlling liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510508A (en) * 1999-09-30 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Valve for controlling liquid

Also Published As

Publication number Publication date
JP2598434Y2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US6570474B2 (en) Magnetostrictive electronic valve timing actuator
US5361053A (en) Super magnetostriction type actuator
KR20150086191A (en) Fuel injection valve for an internal combustion engine
JPH0650367U (en) Giant magnetostrictive actuator
JP3580046B2 (en) Plunger storage sleeve fixing device for solenoid valve
JP3205387B2 (en) Giant magnetostrictive actuator
JP2591545Y2 (en) Giant magnetostrictive actuator
JPH069163U (en) Giant magnetostrictive actuator
JPH069160U (en) Giant magnetostrictive actuator
JP2598443Y2 (en) Giant magnetostrictive actuator
JPH0622571A (en) Ultramagnetostrictive type actuator
JP3090569B2 (en) Giant magnetostrictive actuator
JP2955466B2 (en) Giant magnetostrictive actuator
JPH09324723A (en) Fuel injection valve
JPH069159U (en) Giant magnetostrictive actuator
EP1666796B1 (en) Gas safety valve with a damper for the movable armature
JP2005344628A (en) Valve gear
JPH069164U (en) Giant magnetostrictive actuator
JPH07259690A (en) Super magneto-striction type actuator
JPH0655273U (en) Giant magnetostrictive actuator
JPH069162U (en) Giant magnetostrictive actuator
JPH06129217A (en) Ultra magneto-striction type actuator
JPH10331741A (en) Super-magnetostriction type fuel injection valve
JP2955527B2 (en) solenoid valve
JP2575240Y2 (en) Electromagnetic actuator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees