JPH0650322B2 - Shock current measuring device - Google Patents
Shock current measuring deviceInfo
- Publication number
- JPH0650322B2 JPH0650322B2 JP62204393A JP20439387A JPH0650322B2 JP H0650322 B2 JPH0650322 B2 JP H0650322B2 JP 62204393 A JP62204393 A JP 62204393A JP 20439387 A JP20439387 A JP 20439387A JP H0650322 B2 JPH0650322 B2 JP H0650322B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- current measuring
- measuring device
- integrating
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は衝撃電流の測定に用いる衝撃電流測定器に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock current measuring device used for measuring shock current.
従来の技術 第7図(A)、(B)は従来のロゴスキーコイルの説明
図で、同図(B)は同図(A)に対して巻戻しを設け、
大円周に沿う誘起電圧を除去したものである。なお、第
7図はシールドを省略している。2. Description of the Related Art FIGS. 7 (A) and 7 (B) are explanatory views of a conventional Rogowski coil, and FIG. 7 (B) is provided with rewinding with respect to FIG.
The induced voltage along the great circumference is removed. The shield is omitted in FIG.
第7図において、閉曲面を貫通する被測定電流をiとす
ると、出力電圧E0は次式で求められる。In FIG. 7, when the measured current passing through the closed curved surface is i, the output voltage E 0 is calculated by the following equation.
ここで、 μ:透磁率 S:コイルの断面積 n:コイルの巻数 l:コイルの長さ C、R:積分用コンデンサおよび積分用抵抗 を示す 積分定数CRは被測定電流のパルス幅により決められ、
通常のそのパルス幅の10倍以上に選ぶ。 Here, μ: permeability S: cross-sectional area of coil n: number of turns of coil l: length of coil C, R: integration capacitor and integration resistance CR The integration constant CR is determined by the pulse width of the measured current. ,
Select at least 10 times the normal pulse width.
発明が解決しようとする問題点 第7図に示すロゴスキーコイルを用い、シンクロスコー
プで波形観測を行うとき、ノイズの関係で出力電圧E0
を大きくする必要がある。同一形状、すなわち大半径お
よびコイルの断面積が同一であり、また同一積分定数の
場合、出力電圧E0を大きくするにはコイルの巻数を増
加することになる。しかしながら、コイルの巻数を増加
するとコイルの長さが長くなるため、応答時間が遅くな
り、例えばナノ秒オーダーの早い現象の観測は不可能と
なる。Problems to be Solved by the Invention When the Rogowski coil shown in FIG. 7 is used and waveform observation is performed with a synchroscope, the output voltage E 0 is affected by noise.
Needs to be increased. When the shapes are the same, that is, the large radius and the cross-sectional area of the coil are the same, and the same integration constant is used, the number of turns of the coil is increased in order to increase the output voltage E 0 . However, if the number of turns of the coil is increased, the length of the coil becomes longer, so that the response time becomes slower, and it becomes impossible to observe a fast phenomenon of, for example, nanosecond order.
問題点を解決するための手段 本発明は上記の欠点を除去した衝撃電流測定器、すなわ
ち同一円周上に巻回した空心コイルを複数個に等分割
して分割コイルを形成し、該分割コイルそれぞれに積分
用抵抗を介挿してこれらを直列接続し、このうち所定の
1箇所のみ抵抗と積分用コンデンサの直列回路を介挿
し、該積分用コンデンサの両端電圧を波形観測装置に入
力するよう構成したことを特徴とする衝撃電流測定器。
同一円周上に巻回した空心コイルを複数個に等分割し
て分割コイルを形成し、該分割コイルそれぞれに積分用
抵抗を介挿してこれらを直列接続し、このうち所定の1
箇所のみに開口部を設け、最終の分割コイルに接続した
積分用抵抗の一端を最初の分割コイルまで巻戻して積分
用コンデンサを介挿して最初の分割コイルに接続し、該
積分用コンデンサの両端電圧を波形観測装置に入力する
よう構成したことを特徴とする衝撃電流測定器を提供し
ようとするものである。Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks, that is, a shock current measuring device, that is, an air-core coil wound on the same circumference is equally divided into a plurality of divided coils to form divided coils. A resistor for integration is inserted in each of them and these are connected in series, and a series circuit of the resistor and the capacitor for integration is inserted only at a predetermined one of them, and the voltage across the capacitor for integration is input to the waveform observing device. An impact current measuring instrument characterized by the above.
An air-core coil wound on the same circumference is equally divided into a plurality of divided coils to form divided coils, and an integrating resistor is inserted in each of the divided coils to connect them in series.
An opening is provided only at the location, one end of the integrating resistor connected to the final split coil is rewound to the first split coil, and the integrating capacitor is inserted to connect to the first split coil. It is intended to provide an impulse current measuring device characterized in that the voltage is inputted to a waveform observing device.
第5図は本発明の衝撃電流測定器の原理回路図で、1は
同一円周上に配置した分割コイル(図示では8分割した
8個の分割コイル)、2はそれぞれの分割コイル1に直
列接続された積分用抵抗、3は分割コイル1と積分用抵
抗2の直列回路に並列接続された積分用コンデンサで、
分割コイル1と積分用抵抗2と積分用コンデンサ3で1
つの組を形成し、第5図は8つの組より構成される。FIG. 5 is a circuit diagram of the principle of the shock current measuring device of the present invention. 1 is a split coil arranged on the same circumference (8 split coils divided into 8 in the figure), 2 is serial to each split coil 1. The connected integrating resistor 3 is an integrating capacitor connected in parallel to the series circuit of the split coil 1 and the integrating resistor 2,
1 with split coil 1, integrating resistor 2 and integrating capacitor 3
5 sets are formed, and FIG. 5 is composed of 8 sets.
第6図は第5図において2つの組を取り出したもので、
同図(A)において分割コイル1、1のインダクタンス
値L1、L2、積分用抵抗2、2の抵抗値R1、R2、
積分用コンデンサ3、3の静電容量値C1、C2がそれ
ぞれ相等しいとき(L1=L2、R1=R2、C1=L
2)はブリッジ回路を形成することになり、同図(A)
は同図(B)と等価となる。FIG. 6 shows two sets taken out in FIG.
In FIG. 1A, the inductance values L 1 and L 2 of the split coils 1 and 1 , the resistance values R 1 and R 2 of the integrating resistors 2 and 2 ,
When the capacitance values C 1 and C 2 of the integrating capacitors 3 and 3 are equal to each other (L 1 = L 2 , R 1 = R 2 , C 1 = L
2 ) will form a bridge circuit, as shown in FIG.
Is equivalent to FIG.
従って、第5図において分割コイル1、1、………のイ
ンダクタンス値L1、L2………、積分用抵抗2、2…
……の抵抗値R1、R2………、積分用コンデンサ3、
3………の静電容量値C1、C2………がそれぞれ相等
しいときは第1図と等価となる。Therefore, in FIG. 5, the inductance values L 1 , L 2 , ... Of the split coils 1, 1 ,.
... resistance values R 1 , R 2 ..., integration capacitor 3,
When the capacitance values C 1 , C 2 ... Of 3 ... Are equal to each other, it is equivalent to FIG.
第1図において、m個の分割コイル1が半径rの円周上
に配置され、その円周内を貫通する被測定電流をiとす
ると、出力電圧E0は次式で求められる。In FIG. 1, m divided coils 1 are arranged on the circumference of a radius r, and the measured current passing through the circumference is i, the output voltage E 0 is calculated by the following equation.
ここで、 N:1個当りの分割コイルの巻数 S:分割コイルの断面積 μ:透磁率 C、R:積分用コンデンサおよび積分用抵抗 を示す。 Here, N: the number of turns of the split coil per S: S: sectional area of the split coil μ: permeability C, R: integration capacitor and integration resistance
作用 従来のロゴスキーコイルと分割コイルを用いた本発明の
衝撃電流測定器の特性を比較する。Function The characteristics of the shock current measuring device of the present invention using the conventional Rogowski coil and the split coil will be compared.
半径rの円周上にピッチP、半径aで巻いたコイルを有
する従来のロゴスキーコイルと、これをm分割した分割
コイルを用いた本発明の衝撃電流測定器において、コイ
ル中の伝播時間Tは次式で求められる。In a conventional Rogowski coil having a coil wound at a pitch P and a radius a on the circumference of a radius r, and a shock current measuring instrument of the present invention using a split coil obtained by dividing the coil by m, the propagation time T in the coil is Is calculated by the following equation.
従来のロゴスキーコイルの伝播時間TRは 本発明の衝撃電流測定器の伝播時間TCは ここで、 C:光速 を示す。The propagation time T R of the conventional Rogowski coil The propagation time T C of the shock current measuring device of the present invention is Here, C: speed of light is shown.
よって、m分割したコイルを用いた本発明の衝撃電流測
定器は従来のロゴスキーコイルと比較すると、同一巻数
すなわち同一出力のときに伝播時間が1/mになる。こ
のことは同一応答時間のコイルを比較するとき、出力電
圧がm倍大きくとれることを意味する。Therefore, the impact current measuring device of the present invention using a coil divided into m has a propagation time of 1 / m when the number of turns is the same, that is, the same output, as compared with the conventional Rogowski coil. This means that when comparing coils having the same response time, the output voltage can be increased m times.
実施例 次に本発明の衝撃電流測定器を第2図〜第4図に示す実
施例について説明する。Embodiments Next, the shock current measuring device of the present invention will be described with reference to the embodiments shown in FIGS.
第2図は一実施例の回路図で、同一円周上に巻回した空
心コイルを等分割して、分割コイル1を8個配置し、該
分割コイル1それぞれに積分用抵抗2を直列接続し、こ
のうち所定の1箇所のみ積分用抵抗2と積分用コンデン
サ3の直列回路を介挿してこれらを直列に接続して閉回
路を形成し、積分用コンデンサ3の両端に波形観測装置
に接続する端子5を設け、半径rに沿う誘起電圧を除去
するために分割コイル1、積分用抵抗2、積分用コンデ
ンサ3をシールド4する。FIG. 2 is a circuit diagram of an embodiment, in which an air-core coil wound on the same circumference is equally divided, eight divided coils 1 are arranged, and an integrating resistor 2 is connected in series to each divided coil 1. Then, only a predetermined one of them is connected in series by inserting a series circuit of an integrating resistor 2 and an integrating capacitor 3 to form a closed circuit, and both ends of the integrating capacitor 3 are connected to a waveform observing device. The terminal 5 is provided, and the split coil 1, the integrating resistor 2, and the integrating capacitor 3 are shielded 4 to remove the induced voltage along the radius r.
また第3図は他の実施例の回路図で、同一円周上に巻回
した空心コイルを等分割して分割コイル1を8個配置
し、該分割コイル1それぞれに積分用抵抗2を直列接続
し、このうち所定の1箇所のみに開口部6を設け、最終
分割コイル1に接続した積分用抵抗2の一端を最初の分
割コイル1まで巻戻して積分用コンデンサ3を介挿して
最初の分割コイル1に接続して閉回路を形成し、該積分
用コンデンサ3の両端に波形観測装置に接続する端子5
を設け、半径rに沿う誘起電圧を除去するために開口部
6を除くところ、すなわち上記最終分割コイル1に接続
した積分用抵抗2の一端の巻戻し部に相応する分割コイ
ル1、抵抗2、積分用コンデンサ3をシールド4する。
第3図に示すように開口部6を設けると、被測定電流回
路を切断することなく、分割コイル1が巻付けられ、容
易に電流が観測できる。FIG. 3 is a circuit diagram of another embodiment, in which an air-core coil wound on the same circumference is equally divided and eight divided coils 1 are arranged, and an integrating resistor 2 is connected in series to each divided coil 1. The first division coil 1 is rewound by rewinding one end of the integration resistor 2 connected to the final division coil 1 to the first division coil 1 and inserting the integration capacitor 3 into the first division coil 1. Terminals 5 connected to the split coil 1 to form a closed circuit and connected to the waveform observing device at both ends of the integrating capacitor 3.
Where the opening 6 is removed in order to eliminate the induced voltage along the radius r, that is, the split coil 1, the resistor 2, which corresponds to the unwinding portion at one end of the integrating resistor 2 connected to the final split coil 1, The integrating capacitor 3 is shielded 4.
When the opening 6 is provided as shown in FIG. 3, the split coil 1 is wound without cutting the current circuit to be measured, and the current can be easily observed.
第4図は第2図のA−A′断面図で、分割コイル1と積
分用抵抗2のシールド状態を示したもので、分割コイル
1はコイル軸に対して短絡環とならないようにシールド
4を施し、積分用抵抗2は完全にシールド4を施す。FIG. 4 is a sectional view taken along the line AA ′ in FIG. 2, showing the shielded state of the split coil 1 and the integrating resistor 2. The split coil 1 is shielded so as not to form a short-circuit ring with respect to the coil axis. The integrating resistor 2 is completely shielded.
発明の効果 本発明の衝撃電流測定器は従来のロゴスキーコイルを比
較すると、形状すなわち断面積、巻数、積分定数が同一
の場合、上記(4)式より明らかなように本発明の衝撃電
流測定器の伝播時間は従来のロゴスキーコイルの伝播時
間に比べて1/mとなり、速い応答特性が得られる。ま
た従来のロゴスキーコイルの場合コイルの抵抗は巻線の
抵抗で決まるので、コイルのサージインピーダンスが微
少なるため、出力波形にリンギングが現れるが、本発明
の衝撃電流測定器の場合は、分割コイルに積分用抵抗を
挿入するので、その抵抗値を選定することにより、非振
動条件が得られるためにリンギングがなくなる利点があ
る。従って、従来困難であるとされていたナノ秒オーダ
ーの速い現象の測定が可能となるなどの効果があり、工
業的ならびに実用的価値大である。Effect of the Invention When comparing the conventional Rogowski coil of the present invention, when the shape, that is, the cross-sectional area, the number of turns, and the integration constant are the same, the impact current measurement of the present invention is clear as is clear from the above formula (4). The propagation time of the vessel is 1 / m of the propagation time of the conventional Rogowski coil, and fast response characteristics can be obtained. Further, in the case of the conventional Rogowski coil, the resistance of the coil is determined by the resistance of the winding, so the ring impedance appears in the output waveform because the surge impedance of the coil is very small, but in the case of the shock current measuring instrument of the present invention, the split coil Since the integration resistor is inserted in the, the resistance value is selected, and the non-vibration condition is obtained, so that there is an advantage that ringing is eliminated. Therefore, there is an effect that it is possible to measure a nanosecond-order fast phenomenon, which has been considered to be difficult in the past, and it is of great industrial and practical value.
第1図は本発明の衝撃電流測定器の回路図、第2図は本
発明の衝撃電流測定器の一実施例の回路図、第3図は本
発明の衝撃電流測定器の他の実施例の回路図、第4図は
第2図のA−A′断面図、第5図は本発明の衝撃電流測
定器の原理回路図、第6図(A)は原理を説明するため
に、第5図の一部を示す回路図、第6図(B)は第6図
(A)の等価回路図、第7図(A)および(B)はロゴ
スキーコイルの説明図である。 1:分割コイル、2:積分用抵抗 3:積分用コンデンサ、4:シールド 5:端子、6:開口部FIG. 1 is a circuit diagram of a shock current measuring device of the present invention, FIG. 2 is a circuit diagram of an embodiment of a shock current measuring device of the present invention, and FIG. 3 is another embodiment of a shock current measuring device of the present invention. FIG. 4, FIG. 4 is a sectional view taken along the line AA ′ in FIG. 2, FIG. 5 is a circuit diagram of the principle of the shock current measuring device of the present invention, and FIG. 6 (A) is a schematic diagram for explaining the principle. 5 is a circuit diagram showing a part of FIG. 5, FIG. 6 (B) is an equivalent circuit diagram of FIG. 6 (A), and FIGS. 7 (A) and 7 (B) are explanatory diagrams of the Rogowski coil. 1: split coil, 2: integration resistor 3: integration capacitor, 4: shield 5: terminal, 6: opening
Claims (1)
に等分割して分割コイルを形成し、該分割コイルそれぞ
れに積分用抵抗を介挿してこれらを直列接続して閉回路
を形成するかあるいはさらに該閉回路を途中で巻戻して
開口部を形成し、このうち所定の1箇所のみ積分用抵抗
と積分用コンデンサの直列回路を介挿し、該積分用コン
デンサの両端電圧を波形観測装置に入力するよう構成し
たことを特徴とする衝撃電流測定器。1. An air-core coil wound on the same circumference is equally divided into a plurality of divided coils to form divided coils, and an integrating resistor is inserted in each of the divided coils to connect them in series to form a closed circuit. Forming or further rewinding the closed circuit in the middle to form an opening, and inserting a series circuit of an integrating resistor and an integrating capacitor only in a predetermined one of them to form a waveform of the voltage across the integrating capacitor. An impact current measuring device characterized by being configured so as to input to an observation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62204393A JPH0650322B2 (en) | 1987-08-18 | 1987-08-18 | Shock current measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62204393A JPH0650322B2 (en) | 1987-08-18 | 1987-08-18 | Shock current measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6447959A JPS6447959A (en) | 1989-02-22 |
JPH0650322B2 true JPH0650322B2 (en) | 1994-06-29 |
Family
ID=16489798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62204393A Expired - Lifetime JPH0650322B2 (en) | 1987-08-18 | 1987-08-18 | Shock current measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0650322B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6366076B1 (en) * | 1997-04-21 | 2002-04-02 | Liaisons Electroniques-Mecaniques Lem Sa | Device with wide passband for measuring electric current intensity in a conductor |
IES20010370A2 (en) * | 2000-04-17 | 2001-10-17 | Suparules Ltd | Current measurement device |
JP7439424B2 (en) * | 2019-09-11 | 2024-02-28 | 富士電機株式会社 | Current sensor and energy meter |
-
1987
- 1987-08-18 JP JP62204393A patent/JPH0650322B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6447959A (en) | 1989-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1793207B1 (en) | Eddy current sensor and sensor coil for the same | |
JPH0650322B2 (en) | Shock current measuring device | |
US7148679B2 (en) | Transformer probe | |
JPH07260830A (en) | Current-detecting apparatus | |
JP2000065866A (en) | Current probe | |
JP2019027970A (en) | Current sensor and measurement device | |
CN206563762U (en) | HVDC standard voltage divider | |
US20170370967A1 (en) | Isolated voltage probe | |
JPS585668A (en) | Detector coil | |
JPH1151975A (en) | Integrating circuit for rogowski coil | |
SU920532A1 (en) | Electrical bridge | |
SU416634A1 (en) | ||
SU968774A1 (en) | Induction magnetoreceiver | |
JPH0527007Y2 (en) | ||
JP2870551B2 (en) | Method and apparatus for determining direction of occurrence of partial discharge | |
JPS5925015Y2 (en) | speedometer | |
SU993028A1 (en) | Gas flow meter | |
RU2168182C1 (en) | Contact free measuring electric current transducer | |
JPH0413662B2 (en) | ||
JPS59126961A (en) | Measuring device of large current | |
SU1233651A1 (en) | Apraratus for checking voltage drop rate | |
SU1765378A1 (en) | Inducing probe | |
JPH05326263A (en) | Noise filter | |
SU559105A1 (en) | Digital Thickness Gauge | |
SU116051A1 (en) | Device for detecting a fault in an electrical cable |