JPH0650086B2 - Boil-off gas compressor - Google Patents

Boil-off gas compressor

Info

Publication number
JPH0650086B2
JPH0650086B2 JP2284386A JP2284386A JPH0650086B2 JP H0650086 B2 JPH0650086 B2 JP H0650086B2 JP 2284386 A JP2284386 A JP 2284386A JP 2284386 A JP2284386 A JP 2284386A JP H0650086 B2 JPH0650086 B2 JP H0650086B2
Authority
JP
Japan
Prior art keywords
gas
boil
point
compressor
liquefied natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2284386A
Other languages
Japanese (ja)
Other versions
JPS62182468A (en
Inventor
孝悦 浅井
正俊 嶋北
正浩 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2284386A priority Critical patent/JPH0650086B2/en
Publication of JPS62182468A publication Critical patent/JPS62182468A/en
Publication of JPH0650086B2 publication Critical patent/JPH0650086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイルオフガス、特に液化天然ガスタンクよ
りボイルオフしたガスをデイーゼルエンジンなどに供給
するための圧縮機に関する。
Description: TECHNICAL FIELD The present invention relates to a compressor for supplying boil-off gas, particularly gas boiled-off from a liquefied natural gas tank, to a diesel engine or the like.

〔従来の技術〕[Conventional technology]

従来技術の例を第3図に示す。同図において、液化天然
ガスタンク1よりボイルオフしたガス21は、管22により
圧縮機10に導入され、該圧縮機10により加圧昇温され、
熱交換器5で海水により常温にまで冷却されてデイーゼ
ルエンジン6に燃料として供給される。圧縮機10は、1
例としてレシプロ型の4段の圧縮機構11,12,13,14を
有し、電動機15により駆動される。各圧縮機構は連結管
23で連結されており、図示省略したがガスの吸入圧縮に
必要な吸入弁・吐出弁を具備している。また第3段圧縮
機構13と第4段圧縮機構14の間には海水により冷却する
インターガスクーラ20が設けられている。
An example of the prior art is shown in FIG. In the figure, the gas 21 boiled off from the liquefied natural gas tank 1 is introduced into the compressor 10 through a pipe 22, and the pressure is increased by the compressor 10.
It is cooled to normal temperature by seawater in the heat exchanger 5 and supplied to the diesel engine 6 as fuel. The compressor 10 is 1
As an example, it has a reciprocating type four-stage compression mechanism 11, 12, 13, and 14 and is driven by an electric motor 15. Each compression mechanism is a connecting pipe
It is connected by 23, and is equipped with an intake valve and a discharge valve, which are not shown in the drawing, but are required for gas suction and compression. An intergas cooler 20 for cooling with seawater is provided between the third-stage compression mechanism 13 and the fourth-stage compression mechanism 14.

なお、この種の従来技術は、例えば、日本舶用機関学会
誌第19巻第10号(昭和59年10月)“ガスインジエクシヨ
ンデイーゼル機関とそのLNG船への応用”に記載され
ている。
Incidentally, this type of conventional technology is described in, for example, Journal of the Japan Society for Marine Engines, Vol. 19, No. 10 (October 1984), "Gas Induction Diesel Engine and Its Application to LNG Ships".

〔発明が解決しようとする問題点〕 ボイルオフガスを加圧するには動力を必要とする。到達
すべき圧力が高いほどより多くの動力が必要になる。
[Problems to be Solved by the Invention] Power is required to pressurize the boil-off gas. The higher the pressure to reach, the more power is needed.

一つの試算例を示すと、液化天然ガスタンクの容量125,
000m3から1日当りその0.1%がボイルオフする時、これ
をエンジンの燃料として供給するため250barに加圧する
に必要な圧縮機動力は約700kWとなる。
As an example of one calculation, the capacity of a liquefied natural gas tank is 125,
When 0.1% of 000 m 3 is boiled off per day, the compressor power required to pressurize it to 250 bar to supply it as engine fuel is about 700 kW.

〔問題点を解決するための手段〕[Means for solving problems]

(1) 圧縮機に、圧縮過程にあるボイルオフガスに液化
天然ガスを添加するための噴射口を設け、圧縮過程にあ
るボイルオフガスに液化天然ガスを添加する。
(1) The compressor is provided with an injection port for adding liquefied natural gas to the boil-off gas being compressed, and the liquefied natural gas is added to the boil-off gas being compressed.

(2) 上記圧縮機に於て、液化天然ガスの添加は、ボイ
ルオフガスがT−S線図(第2図参照)の飽和蒸気線に
沿つて変化するように制御する。
(2) In the compressor, the addition of liquefied natural gas is controlled so that the boil-off gas changes along the saturated vapor line of the TS diagram (see FIG. 2).

〔作 用〕[Work]

(1) ボイルオフガスの圧縮機入口温度が低下すると共
に圧縮過程に於けるガス温度上昇が最少に押えられる。
(1) The temperature at the inlet of the boil-off gas to the compressor is lowered, and the rise in gas temperature during the compression process is suppressed to a minimum.

(2) 加圧されるボイルオフガスの気相と添加した液化
ガスの液相とからなる混相流の状態が殆んど存在しな
い。
(2) There is almost no mixed-phase flow state consisting of the vapor phase of the boil-off gas to be pressurized and the liquid phase of the added liquefied gas.

〔実施例〕〔Example〕

第1図は液化天然ガスタンク1からのボイルオフガス21
を加圧してデイーゼルエンジン6に供給する系統図を示
す。第2図はボイルオフガスの加圧工程における状態な
どを説明するためのメタンのT−S線図である。
Figure 1 shows boil-off gas 21 from liquefied natural gas tank 1.
A system diagram for pressurizing and supplying the diesel engine 6 is shown. FIG. 2 is a T-S diagram of methane for explaining the state in the pressurizing step of the boil-off gas.

第1図に於て、1は液化天然ガスタンク、2は液化天然
ガス移送ポンプ、3はサービスタンク、4は液化天然ガ
ス加圧ポンプ、5は熱交換器、6はデイーゼルエンジ
ン、10は圧縮機を示す。さらに11,12,13,14は圧縮機
構、15は電動機、16,17,18,19は液化天然ガス噴射
口、21はボイルオフガス、22は管、23は連結管を示す。
In FIG. 1, 1 is a liquefied natural gas tank, 2 is a liquefied natural gas transfer pump, 3 is a service tank, 4 is a liquefied natural gas pressurizing pump, 5 is a heat exchanger, 6 is a diesel engine, and 10 is a compressor. Indicates. Further, 11, 12, 13, 14 are compression mechanisms, 15 is an electric motor, 16, 17, 18, 19 are liquefied natural gas injection ports, 21 is boil-off gas, 22 is a pipe, and 23 is a connecting pipe.

タンク1内の液化天然ガスは常時外界よりの熱侵入によ
り蒸発して、ボイルオフガス21が発生している。ボイル
オフガス21は圧縮機10に於て加圧されるが、圧縮機10に
於て、ボイルオフガス21に液化ガスを添加する。添加さ
れる液化天然ガスはタンク1より液化ガス移送ポンプ2
により移送管26を経てサービスタンク3に移送され、こ
ゝより液化天然ガス加圧ポンプ4にて液化天然ガス管27
を経て圧縮機10の各圧縮機構11,12,13,14のシリンダ
ー部に設けられている液化ガス噴射口16,17,18,19よ
りシリンダー内に噴射される。
The liquefied natural gas in the tank 1 is always evaporated by heat invasion from the outside, and boil-off gas 21 is generated. The boil-off gas 21 is pressurized in the compressor 10, and the liquefied gas is added to the boil-off gas 21 in the compressor 10. Liquefied natural gas to be added is liquefied gas transfer pump 2 from tank 1.
Is transferred to the service tank 3 through the transfer pipe 26, and the liquefied natural gas pressure pump 4 is used to liquefy the liquefied natural gas pipe 27.
After that, the liquid is injected into the cylinders from the liquefied gas injection ports 16, 17, 18, 19 provided in the cylinders of the compression mechanisms 11, 12, 13, 14 of the compressor 10.

加圧されたボイルオフガスは熱交換器5に於て海水によ
り冷却又は加温された後デイーゼルエンジンに燃料とし
て供給される。ボイルオフガスの各過程の状態変化を第
2図のT−S線図で説明するために、次の様に条件を仮
定する。即ち、液化天然ガスの成分は純メタンとし、連
結管22を通つて供給される圧縮機入口のボイルオフガス
温度は130゜K、圧力は1barとし、これより常温(約300
゜K)、圧力250barの加圧ガスを得るものとする。噴射
口16,17,18,19から噴射された液化天然ガスの液滴は
理想的に微少であり、ボイルオフガス中に均質に混合す
るものと仮定する、さらに外界からの熱侵入及び機械摩
擦等は無視するものとする。
The pressurized boil-off gas is cooled or heated by seawater in the heat exchanger 5 and then supplied as fuel to the diesel engine. In order to explain the state change of each process of boil-off gas with the TS diagram of FIG. 2, the following conditions are assumed. That is, the liquefied natural gas component is pure methane, the temperature of the boil-off gas at the compressor inlet supplied through the connecting pipe 22 is 130 ° K, and the pressure is 1 bar.
° K), a pressurized gas with a pressure of 250 bar shall be obtained. It is assumed that the liquefied natural gas droplets injected from the injection ports 16, 17, 18, 19 are ideally minute, and are mixed homogeneously in the boil-off gas. In addition, heat penetration from the outside and mechanical friction, etc. Shall be ignored.

第2図に於て、縦軸は温度、横軸はエントロピーを示
し、A−Bは飽和液線、I−J−K−Fは飽和蒸気線、
M−Hは250bar等圧線、A−I−Lは1barの等圧線を
示す。
In FIG. 2, the vertical axis represents temperature, the horizontal axis represents entropy, AB is a saturated liquid line, I-J-K-F is a saturated vapor line,
MH indicates a 250 bar isobar and AIL indicates a 1 bar isobar.

圧縮機入口のボイルオフガスの状態はL点で示される。
これをそのまゝ単純に4段圧縮して250barに加圧すると
M点に到る。これを250barの定圧のまゝ海水により常温
(約300゜K)まで冷却することによりH点に到る。これ
がデイーゼルエンジンに供給される状態である。L−M
間のエンタルピー差は約170Kcal/kgであり、M−H間
のエンタルビー差は約−130Kcalである。ボイルオフガ
ス1kg当り約170Kcalに相当する動力エネルギーを要
し、大部分の約130Kcalを海水に熱エネルギーとして廃
却していることを意味している。
The state of the boil-off gas at the compressor inlet is indicated by point L.
If this is simply compressed in 4 stages and pressurized to 250 bar, it will reach point M. The point is reached by cooling this to room temperature (approximately 300 ° K) with 250 bar of constant pressure seawater. This is the condition that is supplied to the diesel engine. LM
The enthalpy difference between the two is about 170 Kcal / kg, and the enthalpy difference between M and H is about -130 Kcal. It requires kinetic energy equivalent to about 170 Kcal per kg of boil-off gas, which means that most of about 130 Kcal is wasted into seawater as heat energy.

次いで、ボイルオフガスに液化ガスを噴射して添加した
場合を説明する。L点のボイルオフガス1kgに対しA点
の液化ガス0.5kgを圧縮する始点に於て、液化ガスの全
量を1時に噴射した場合の例を述べれば噴射後の状態は
C点で示される二相流体となる。これを250barまで4段
圧縮するとH点となる。H点の温度は約300゜Kである。
O−H間のエンタルピー差は約85Kcal/kgである。L
点のボイルオフガス1kgに対しA点の液化ガス0.5kgを
添加してC点の二相流体1.5kgとなる。これを圧縮して
H点の加圧ガス1.5kgにするに要する動力エネルギーは8
5Kcal/kg×1.5kg≒130Kcalに相当する。L点のボイ
ルオフガスをそのまゝ圧縮する場合に比し必要とする動
力エネルギーは少なく、得られるH点のガス量は1.5倍
である。ボイルオフガス1kgに対して添加する液化ガス
量が0.5kgより多ければ得られる二相流の状態はC点よ
りA点側になる例えばC′となり逆に少なければC″と
なり、これを250barにまで圧縮するとそれぞれH′,
H″となり得られる加圧ガスの温度が変る。この温度が
デイーゼルエンジン6に供給するに許容される範囲を越
えるようであれば熱交換器5に於て海水により加温又は
冷却する。予めボイルオフガスに対し添加する液化ガス
の比率をある限られた範囲に設定出来れば、即ち圧縮機
10出口のガス温度が許容範囲に設定出来れば熱交換器5
は省略出来る。
Next, a case where the liquefied gas is injected and added to the boil-off gas will be described. At the starting point of compressing 0.5 kg of liquefied gas at A point to 1 kg of boil-off gas at L point, if an example is given in which the entire amount of liquefied gas is injected at 1 o'clock, the state after injection is a two-phase indicated by C point. Become a fluid. When this is compressed to 250 bar in four stages, it becomes the H point. The temperature at point H is about 300 ° K.
The enthalpy difference between O and H is about 85 Kcal / kg. L
0.5 kg of liquefied gas at point A is added to 1 kg of boil-off gas at point to make 1.5 kg of two-phase fluid at point C. The power energy required to compress this into 1.5 kg of pressurized gas at point H is 8
This is equivalent to 5 Kcal / kg × 1.5 kg ≈ 130 Kcal. Compared to the case of compressing the boil-off gas at point L, the power energy required is less, and the amount of gas at point H obtained is 1.5 times. If the amount of liquefied gas added to 1 kg of boil-off gas is more than 0.5 kg, the obtained two-phase flow state will be at the point A side from point C, for example C ', and if it is less, it will be C ″, up to 250 bar. When compressed, H ',
The temperature of the pressurized gas that can become H ″ changes. If this temperature exceeds the range allowed for supplying to the diesel engine 6, it is heated or cooled by seawater in the heat exchanger 5. Boil-off beforehand If the ratio of the liquefied gas to be added to the gas can be set within a certain limited range, that is, the compressor
10 If the gas temperature at the outlet can be set within the allowable range, heat exchanger 5
Can be omitted.

C点で示される状態は、A点で示される液相とI点で示
される気相との混合物である二相流であり、C点からH
点までの圧縮過程の内C点からF点までは二相流の圧縮
である。圧縮機10の各圧縮機構について説明すれば、第
1の圧縮機構11にてC点よりD点まで二相流の圧縮を行
い、第2の圧縮機構12にてD点よりE点までの二相流の
圧縮を行い、第3の圧縮機構13にてE点の二相流の圧縮
を始め、圧縮過程の途中のF点にて液相分が全量蒸発し
終ることにより液相分がなくなり、F点からG点までは
気相分のみの圧縮となる。
The state indicated by the point C is a two-phase flow which is a mixture of the liquid phase indicated by the point A and the gas phase indicated by the point I.
In the compression process up to the point, the compression from the point C to the point F is a two-phase flow. Explaining each compression mechanism of the compressor 10, the first compression mechanism 11 compresses the two-phase flow from point C to point D, and the second compression mechanism 12 compresses the two-phase flow from point D to point E. The phase flow is compressed, and the third compression mechanism 13 starts compressing the two-phase flow at point E. At point F in the middle of the compression process, the liquid phase is completely evaporated and the liquid phase is lost. , From point F to point G, only the gas phase is compressed.

以上の説明は、添加すべき液化ガスの全量を最初に一時
に添加し液相分と気相分は理想的に均質に混合している
という仮定をしている。現実の二相流の取扱いには、例
えば液相分が機器の表面に付着し、機器の作動の円滑さ
を阻害したり、二相間の熱の授受や、状態変換が理想通
り進まないという問題がある。二相流の範囲を離れて圧
縮を行えば、それだけ扱うガス温度が高くなり所要動力
が増加する。このため本発明に於ける液化ガスの添加
は、圧縮過程のボイルオフガスがT−S線図の飽和蒸気
線に沿つて変化するように行う。ボイルオフガス1kgに
対して合計として0.5kgの液化ガスを添加する場合の説
明をすると、圧縮機10の第1圧縮機構11に於て、先ずホ
イルオフガスのシリンダーへの吸入過程にて液化ガスの
一部を噴射口16より噴射して、ボイルオフガスの状態を
L点よりI点に変える。さらに続いてその圧縮過程に対
応して適量の液化ガスを噴射すると、ガスの状態はI点
よりJ点に至る。第2圧縮機構12に於ても同様にその圧
縮過程に対応して適量の液化ガスを噴射口17より噴射し
て、ガスの状態はJ点よりK点に至る。第3圧縮機構13
に於ても、その圧縮過程に対応して液化ガスが噴射口18
から噴射されるが、その量が少ないので、ガスの状態は
K点よりF点に変化し、こゝで飽和蒸気より離れてG点
に至る。第4圧縮機14に於ては、液化ガスの噴射はな
く、G点よりH点へと加圧される。ボイルオフガス1kg
に対し液化ガスを0.5kg添加するこの例に於ては、噴射
口19は使用せず、又熱交換器5も不用である。
The above explanation is based on the assumption that the entire amount of the liquefied gas to be added is first added at one time and that the liquid phase component and the gas phase component are ideally and homogeneously mixed. In the actual handling of two-phase flow, for example, the liquid phase component adheres to the surface of the device, impedes the smooth operation of the device, exchanges heat between the two phases, and the state conversion does not proceed ideally. There is. If the compression is performed outside the range of the two-phase flow, the gas temperature to be handled increases and the required power increases. Therefore, the addition of the liquefied gas in the present invention is performed so that the boil-off gas in the compression process changes along the saturated vapor line in the TS diagram. In the case of adding 0.5 kg of liquefied gas in total to 1 kg of boil-off gas, in the first compression mechanism 11 of the compressor 10, first, in the process of sucking the wheel-off gas into the cylinder, The part is injected from the injection port 16 to change the state of the boil-off gas from the L point to the I point. Then, when an appropriate amount of liquefied gas is injected corresponding to the compression process, the state of the gas reaches from point I to point J. Similarly, in the second compression mechanism 12, an appropriate amount of liquefied gas is injected from the injection port 17 corresponding to the compression process, and the state of the gas reaches the point K from the point J. Third compression mechanism 13
At this time, the liquefied gas corresponding to the compression process
However, since the amount of gas is small, the state of the gas changes from point K to point F, where it reaches point G apart from the saturated steam. In the fourth compressor 14, there is no injection of liquefied gas, and pressure is applied from point G to point H. Boil-off gas 1kg
On the other hand, in this example in which 0.5 kg of liquefied gas is added, the injection port 19 is not used and the heat exchanger 5 is unnecessary.

各圧縮過程に於ける液化ガスの噴射添加は、ガスが飽和
蒸気線沿つて変化するように行なわれるが、噴射された
液化ガスが混合し蒸発するには僅かながら時間が掛るの
で、これを考慮してT−S線上の理論値よりも、早く噴
射を行う。
The injection addition of liquefied gas in each compression process is performed so that the gas changes along the saturated vapor line, but it takes a little time for the injected liquefied gas to mix and vaporize, so this should be taken into consideration. Then, the injection is performed earlier than the theoretical value on the T-S line.

〔発明の効果〕〔The invention's effect〕

(1) ボイルオフガスの加圧前の温度を下げる事が出来
るばかりでなく、圧縮過程での温度上昇を最も低く押え
る事が出来、これによつてボイルオフガスの加圧動力を
少なくする事が出来る。
(1) Not only can the temperature before pressurizing the boil-off gas be lowered, but also the temperature rise during the compression process can be suppressed to the lowest level, which can reduce the pressurizing power of the boil-off gas. .

(2) 圧縮機構に添加した液化ガスの分量だけ高圧ガス
の量が増加する。
(2) The amount of high-pressure gas increases by the amount of liquefied gas added to the compression mechanism.

(3) 液化ガスの添加を適正に制御しているので、二相
流を取扱う際に発生する問題を生じない。
(3) Since the addition of liquefied gas is properly controlled, the problems that occur when handling a two-phase flow do not occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例としてのボイルオフガス圧縮
機およびその前後の系統図、第2図は第1図に於けるガ
スの状態を説明するT−S線図、第3図は従来のボイル
オフガス圧縮機およびその前後の系統図である。 1……液化天然ガスタンク 5……熱交換器 6……デイーゼルエンジン 10……圧縮機 11,12,13,14……圧縮機構 16,17,18,19……液化天然ガス噴射口 21……ボイルオフガス 27……液化天然ガス管
FIG. 1 is a system diagram of a boil-off gas compressor and its front and rear as one embodiment of the present invention, FIG. 2 is a T-S diagram for explaining the state of gas in FIG. 1, and FIG. 2 is a system diagram of the boil-off gas compressor of FIG. 1 liquefied natural gas tank 5 ...... heat exchanger 6 …… Diesel engine 10 …… compressor 11, 12, 13, 14 …… compression mechanism 16, 17, 18, 19 …… liquefied natural gas injection port 21 …… Boil-off gas 27 …… Liquefied natural gas pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液化天然ガスタンクよりボイルオフしたガ
スを圧縮機に導き、加圧後熱交換器を介して原動機に供
給するボイルオフガス圧縮装置において、液化天然ガス
を前記圧縮機内に噴射する液化天然ガス供給手段と、前
記液化天然ガスの噴射量をボイルオフガスがT−S線図
の飽和蒸気線に沿つて変化するように調節する制御手段
とを具えたことを特徴とするボイルオフガス圧縮装置。
1. A liquefied natural gas for injecting liquefied natural gas into the compressor in a boil-off gas compression device that guides the gas boiled off from a liquefied natural gas tank to a compressor and supplies it to a prime mover via a heat exchanger after pressurization. A boil-off gas compressor comprising: a supply means; and a control means for adjusting the injection amount of the liquefied natural gas so that the boil-off gas changes along the saturated vapor line of the TS diagram.
JP2284386A 1986-02-06 1986-02-06 Boil-off gas compressor Expired - Lifetime JPH0650086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284386A JPH0650086B2 (en) 1986-02-06 1986-02-06 Boil-off gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284386A JPH0650086B2 (en) 1986-02-06 1986-02-06 Boil-off gas compressor

Publications (2)

Publication Number Publication Date
JPS62182468A JPS62182468A (en) 1987-08-10
JPH0650086B2 true JPH0650086B2 (en) 1994-06-29

Family

ID=12093988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284386A Expired - Lifetime JPH0650086B2 (en) 1986-02-06 1986-02-06 Boil-off gas compressor

Country Status (1)

Country Link
JP (1) JPH0650086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155786B1 (en) * 2003-12-18 2012-06-12 바르실라 핀랜드 오이 Gas supply arrangement of a marine vessel and method of controlling gas pressure in a gas supply arrangement of a marine vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654101B2 (en) * 1987-06-02 1994-07-20 三菱重工業株式会社 Gas-fired diesel engine gas supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155786B1 (en) * 2003-12-18 2012-06-12 바르실라 핀랜드 오이 Gas supply arrangement of a marine vessel and method of controlling gas pressure in a gas supply arrangement of a marine vessel

Also Published As

Publication number Publication date
JPS62182468A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
KR910009725B1 (en) Gas feed system for a gas-field diesel engine
EP0069717B1 (en) Method for utilizing boil-off gas from cryogenic liquids as fuel in a dual gas/oil-burning diesel engine, and a system for utilizing the method
KR101851745B1 (en) A fuel gas supply system for an internal combustion engine
KR101441242B1 (en) A Fuel Gas Supply System of Liquefied Natural Gas
CN104214012A (en) Liquefied gas treatment system
EP2307694A1 (en) Gas supply systems for gas engines
KR20140054258A (en) Direct fuel injection diesel engine apparatus
JPH0246786B2 (en)
KR20170134213A (en) Fuel supply system for a large two-stroke compression-ignited high-pressure gas injection internal combustion engine
KR102155589B1 (en) Gas supply system
KR101441244B1 (en) A Treatment System of Liquefied Natural Gas
JPH0650086B2 (en) Boil-off gas compressor
KR20140143035A (en) A Treatment System of Liquefied Natural Gas
KR101528977B1 (en) A Treatment System of Liquefied Natural Gas
KR102049477B1 (en) A Treatment System of Liquefied Natural Gas
JP5778849B1 (en) Power equipment
KR20200048095A (en) Driving System And Method For Regasification Ship
JPH0588376B2 (en)
JPH0552426B2 (en)
KR102183949B1 (en) Boil-Off Gas Treatment System and Method for Ship
KR101643038B1 (en) A Treatment System of Liquefied Gas
KR20240045427A (en) Fuel Supply System and Method for Vessel
JP2015121274A (en) Bog treatment method of low temperature liquified gas storage tank
JP3572711B2 (en) Low-temperature liquefied gas storage tank vaporization method and storage equipment
KR20230174303A (en) Treating system of liquefied gas