JPH0650083B2 - Air inflow type rocket engine - Google Patents

Air inflow type rocket engine

Info

Publication number
JPH0650083B2
JPH0650083B2 JP18980384A JP18980384A JPH0650083B2 JP H0650083 B2 JPH0650083 B2 JP H0650083B2 JP 18980384 A JP18980384 A JP 18980384A JP 18980384 A JP18980384 A JP 18980384A JP H0650083 B2 JPH0650083 B2 JP H0650083B2
Authority
JP
Japan
Prior art keywords
air
rocket engine
engine
rocket
liquid hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18980384A
Other languages
Japanese (ja)
Other versions
JPS6170158A (en
Inventor
博之 平社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18980384A priority Critical patent/JPH0650083B2/en
Publication of JPS6170158A publication Critical patent/JPS6170158A/en
Publication of JPH0650083B2 publication Critical patent/JPH0650083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/74Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant
    • F02K9/78Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant with an air-breathing jet-propulsion plant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、人工衛星打上げに使用する空気吸入型ロケ
ツトエンジンに関する。
Description: TECHNICAL FIELD The present invention relates to an air intake type rocket engine used for launching a satellite.

従来の技術 人工衛星を打上げるロケツトにおいては、その打上げ能
力の向上のためにロケツトが空気中を通過する間は空気
吸入型ロケツトエンジンを利用する考え方があるが、そ
もそもロケツトに使用可能なターボエンジンはつぎに述
べる二種に大別され、そのうち一種は通常の航空機用ア
フタバーナ付ターボジエツトエンジンであり、他の一種
はターボロケツトエンジンであつて、後者のターボロケ
ツトエンジンは前者のターボジエツトエンジンの欠点で
あるマツハ3以上の高々速における作動限界を改善する
ために案出されたものである。
Conventional technology In a rocket for launching a satellite, there is a concept of using an air intake type rocket engine while the rocket passes through the air to improve its launch capability, but in the first place a turbo engine that can be used for the rocket Are roughly divided into the following two types, one of which is a conventional turbojet engine with an afterburner for aircraft, the other one is a turbo rocket engine, and the latter turbo rocket engine is the former turbo jet engine. It was devised to improve the operating limit at high speeds of Matsuha 3 or higher, which is a drawback.

いま、従来のターボロケツトエンジンについて説明すれ
ば、第3図において、通常の航空機用ターボジエツトエ
ンジンにおけると同様に軸流圧縮機1および2によつて
空気を圧縮させてこれをタービン4の駆動後の燃料過多
の排気ガスと燃焼室5内で混合して燃焼させてからノズ
ル6から噴出して推力を発生させるものであるが、通常
のターボジエツトエンジンが軸流圧縮機の動力を該圧縮
機によつて圧縮した空気および燃料(普通はケロシン)
の燃焼で作られた空気過多の燃焼ガスによつて得ている
のに対し、ターボロケツトエンジンにおいては、ロケツ
ト塔載燃料(一般には液体水素)および液体酸素をプリ
バーナ3において燃焼させて得られる燃料過多の高温、
高圧ガスによつてタービン4を作動させて得ている。
The conventional turbo rocket engine will now be described. Referring to FIG. 3, air is compressed by the axial compressors 1 and 2 and the turbine 4 is driven in the same manner as in the normal turbojet engine for aircraft. The exhaust gas with excess fuel afterwards is mixed in the combustion chamber 5 and burned, and then ejected from the nozzle 6 to generate thrust, but a normal turbojet engine uses the power of the axial compressor to generate the thrust. Air and fuel compressed by a compressor (usually kerosene)
In the turbo rocket engine, the fuel obtained by burning the rocket column fuel (generally liquid hydrogen) and the liquid oxygen in the preburner 3 is obtained by the combustion gas produced by combustion of Excessive high temperature,
It is obtained by operating the turbine 4 with high pressure gas.

しかるに、前述したターボジエツトエンジンおよびター
ボロケツトエンジンに共通な欠点があるとされている。
すなわち、(1)空気圧縮用の空気圧縮機が多大な動力を
必要とするために、高圧まで空気を圧縮することができ
ず、したがつて吸入空気量の割には大きい推力が得られ
ない上に、(2)推力対エンジン重量比が小さく、さらに
(3)ロケツトがマツハ6〜10の高々速で飛しようする
ときのラム効果による空気温度の著しい上昇に前記空気
圧縮機のブレードが耐えられないなどである。なお、タ
ーボロケツトエンジンにおいては、高々速飛しように対
する限界が前述の空気圧縮機のブレードの温度制限によ
つて定まるが、ターボジエツトエンジンにおいては、そ
の限界がタービンブレードの温度制限によつて定まるの
で、高々速飛しように対する何度がさらに高くなる。
However, it is said that the turbojet engine and the turbo rocket engine described above have common drawbacks.
That is, (1) the air compressor for air compression requires a large amount of power, so that the air cannot be compressed to a high pressure, and thus a large thrust cannot be obtained for the amount of intake air. In addition, (2) the thrust-to-engine weight ratio is small, and
(3) The blade of the air compressor cannot withstand a significant increase in the air temperature due to the ram effect when the rocket tries to fly at a high speed of Matsu 6-10. In the turbo rocket engine, the limit for high-speed flight is set by the temperature limit of the blade of the air compressor, but in the turbo jet engine, the limit is set by the temperature limit of the turbine blade. So, the number of times you try to fly at high speed becomes higher.

発明が解決しようとする問題点 この発明は、空気圧縮機の必要動力を減少させて単位空
気量当りの推力を増大させるとともに、圧縮機ブレード
をラム効果による高温空気にさらされることがないよう
にすることにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention reduces the required power of the air compressor to increase the thrust force per unit air amount, and prevents the compressor blade from being exposed to hot air due to the ram effect. To do.

問題点を解決するための手段 この発明は、ターボロケツトエンジンの上流の空気取入
口に液体水素、あるいは液体水素および液体酸素の冷熱
源を使用した空気予冷器を付設させてなるものである。
MEANS FOR SOLVING THE PROBLEMS The present invention comprises an air precooler using a cold heat source of liquid hydrogen or liquid hydrogen and liquid oxygen, which is attached to an upstream air intake port of a turbo rocket engine.

作用 したがつて、この発明の構成によれば、空気取入口から
の取入空気が予め冷却され、あるいは一部が液化されて
空気圧縮機に流入するが、該流入空気の見掛けの比体積
が減少しているので、前記圧縮機の所要動力が軽減する
とともに、圧縮比の増大となり、さらに空気温度を低温
に維持させることになる。
Therefore, according to the configuration of the present invention, the intake air from the air intake port is cooled in advance or partially liquefied and flows into the air compressor, but the apparent specific volume of the inflow air is Since it is decreasing, the required power of the compressor is reduced, the compression ratio is increased, and the air temperature is kept low.

実施例 つぎに、この発明の実施例を図面によつて説明すれば、
第1図において、軸流圧縮機1および2が圧縮する空気
を、プリバーナ3がロケツト塔載燃料および液体酸素を
燃焼して得た燃料過多の高温、高圧ガスがタービン4が
作動させて得られる動力が前記圧縮機を駆動させた後の
燃料過多の排気ガスと燃焼室5内で混合させて燃焼する
ことによつてノズル6から噴出して推力を得るターボロ
ケツトエンジンにおいて、その上流の空気取入口に液体
水素、あるいは液体水素および液体酸素の冷熱源を使用
する空気予冷器7を付設したものであり、該予冷器の一
例には平板およびチユーブで構成させ、あるいはフイン
付チユーブ等からなる熱交換器を利用し、そのチユーブ
内に液体水素入口管8から液体水素(第1図においては
液体水素導入の場合を示す)、あるいは液体水素および
液体酸素を導入させてから、液体水素出口管9から排出
させ、さらに該出口管を前記プリバーナに接続させると
ともに、該プリバーナには液体酸素入口管10を接続し
て液体酸素を供給させている。
Example Next, an example of the present invention will be described with reference to the drawings.
In FIG. 1, the air compressed by the axial compressors 1 and 2 is obtained by operating the turbine 4 with a high-fuel-temperature, high-fuel gas produced by the preburner 3 burning the rocket column fuel and liquid oxygen. In the turbo rocket engine, the power of which is ejected from the nozzle 6 to obtain thrust by being mixed with the exhaust gas having excessive fuel after driving the compressor in the combustion chamber 5 and burned, and the air intake upstream of the turbo engine. An air precooler 7 using a cold heat source of liquid hydrogen or liquid hydrogen and liquid oxygen is additionally provided at the inlet, and an example of the precooler is constituted by a flat plate and a tube, or a heat including a tube with fins or the like. Using an exchanger, liquid hydrogen (in the case of introducing liquid hydrogen is shown in FIG. 1) or liquid hydrogen and liquid oxygen is introduced from the liquid hydrogen inlet pipe 8 into the tube. After, it drained from the liquid hydrogen outlet pipe 9, and further outlet pipe causes connected to the Puribana, by connecting a liquid oxygen inlet pipe 10 to supply the liquid oxygen to the Puribana.

したがつて、空気取入口から取入空気は減速して空気予
冷器7に流入するが、該予冷器流入空気はロケツト飛し
よう高度およびマツハ数によつてその温度に異にし、地
上付近の亜音速領域では300 K温度であるが、マツハ数
の上昇に応じて空気温度が急上昇し、例えばマツハ6で
は約 1800 K、マツハ8では約 3100 Kに達し、前記空
気は空気予冷器7によつて奪熱されて徐々に温度が低下
し、ついには空気の液化温度付近にまで冷却されて軸流
圧縮機1および2に入り、そして昇圧されて燃焼器5に
導入され、一方ロケツト搭載液体水素および液体酸素
は、夫々図示しないポンプで増圧されて高圧状態の水
素、あるいは水素および酸素が空気予冷器7のチユーブ
内に導入されて空気を予冷するが、そのために該水素等
の温度が上昇し、ついでプリバーナ3に供給されて燃焼
させられる。なお、第1図に示した液体水素だけを空気
予冷器7に導入した場合には、プリバーナ3に直接供給
した液体酸素が、前記昇温水素と燃焼することになる。
前記プリバーナ内で燃焼することによつて得られる水素
過多の燃焼ガスがタービン4を駆動させてから燃焼室5
内に流入して昇圧空気およびタービン排気ガスが混合燃
焼をし、ついで高速でノズル6から噴出して推力を発生
することになる。
Therefore, the intake air from the air intake is decelerated and flows into the air precooler 7. However, the precooler inflow air varies in temperature depending on the flight altitude of the rocket and the number of Matsuha, and the air near the ground The temperature is 300 K in the sonic velocity range, but the air temperature rises sharply as the number of Matsuha rises. It is deprived of heat to gradually lower the temperature, and finally is cooled to around the liquefaction temperature of air to enter the axial flow compressors 1 and 2, and is pressurized to be introduced into the combustor 5, while the rocket-mounted liquid hydrogen and The liquid oxygen is pressurized by a pump (not shown) and hydrogen in a high pressure state, or hydrogen and oxygen are introduced into the tube of the air precooler 7 to precool the air, which raises the temperature of the hydrogen and the like. , Then pre It is supplied to the burner 3 and burned. In addition, when only the liquid hydrogen shown in FIG. 1 is introduced into the air precooler 7, the liquid oxygen directly supplied to the preburner 3 is combusted with the heated hydrogen.
Combustion gas in the preburner, which is obtained by combustion in the preburner, drives the turbine 4 and then the combustion chamber 5
The compressed air and the turbine exhaust gas flow into the inside and undergo mixed combustion, and then are ejected from the nozzle 6 at high speed to generate thrust.

発明の実施例の効果 上述したように、この発明の実施例は、軸流圧縮機に流
入する空気の温度が低下して空気の比体積を減少させる
ので、該圧縮機の動力が著しく軽減させられ、すなわ
ち、従来の1/3 〜1/30 の動力で済み、そのために流入
空気を従来場合よりも高圧に圧縮できることになつて単
位空気当りの推力を大幅に増大させられ、また圧縮機ブ
レードが空気取入口のラム効果による高温空気に直接さ
らされることがなくてロケツトのマツハ6〜10の高々
速飛しようが可能となる。
Effects of Embodiments of the Invention As described above, according to the embodiments of the present invention, the temperature of the air flowing into the axial flow compressor is lowered and the specific volume of the air is decreased, so that the power of the compressor is significantly reduced. That is, it requires only 1/3 to 1/30 the power of the conventional type, which allows the inflowing air to be compressed to a higher pressure than in the conventional case, and the thrust per unit air can be greatly increased. Is not directly exposed to the high temperature air due to the ram effect of the air intake port, and it is possible to fly at high speed of the rocket mates 6-10.

他の実施例 ついで、この発明の他の実施例を第2図について説明す
れば、前述した実施例のプリバーナ3に酸化剤を供給す
るようにしたものであり、空気予冷器7の下方に空気液
化器11を配設し、該液化器で一部の空気を液化させ、
これを液化空気配管12および13間に介設させた液化
空気ポンプ14によつてプリバーナ3に供給するように
したもので、前述実施例の液体酸素供給に代えているだ
けであり、その効果に変わることがない。
Other Embodiments Next, another embodiment of the present invention will be described with reference to FIG. 2, in which an oxidant is supplied to the preburner 3 of the above-described embodiment, and air is provided below the air precooler 7. A liquefier 11 is provided, and a part of the air is liquefied by the liquefier,
This is supplied to the preburner 3 by a liquefied air pump 14 provided between the liquefied air pipes 12 and 13, and only the liquid oxygen supply of the above-mentioned embodiment is replaced, and the effect is obtained. It never changes.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の実施例を示す縦断側面図、第2図
は、この発明の他の実施例を示す縦断側面図、第3図
は、従来の空気吸入型ロケツトエンジンの縦断側面図で
ある。 1,2……軸流圧縮機、3……プリバーナ、4……ター
ビン、5……燃焼室、6……ノズル、7……空気予冷
器、8……液体水素入口管、9……液体水素出口管、1
0……液体酸素入口管、11……空気液化器、12,13…
…液化空気配管、14……液化空気ポンプ。
FIG. 1 is a vertical sectional side view showing an embodiment of the present invention, FIG. 2 is a vertical sectional side view showing another embodiment of the present invention, and FIG. 3 is a vertical sectional side view of a conventional air intake type rocket engine. Is. 1, 2 ... Axial flow compressor, 3 ... Preburner, 4 ... Turbine, 5 ... Combustion chamber, 6 ... Nozzle, 7 ... Air precooler, 8 ... Liquid hydrogen inlet pipe, 9 ... Liquid Hydrogen outlet pipe, 1
0 ... Liquid oxygen inlet tube, 11 ... Air liquefier, 12, 13 ...
... liquefied air piping, 14 ... liquefied air pump.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】その上流の空気取入口に液体水素、あるい
は液体水素および液体酸素の冷熱源を使用した空気予冷
器を付設したことを特徴とする空気流入型ロケツトエン
ジン。
1. An air inflow type rocket engine, characterized in that an air precooler using a cold heat source of liquid hydrogen or liquid hydrogen and liquid oxygen is attached to an upstream air intake port.
JP18980384A 1984-09-12 1984-09-12 Air inflow type rocket engine Expired - Lifetime JPH0650083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18980384A JPH0650083B2 (en) 1984-09-12 1984-09-12 Air inflow type rocket engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18980384A JPH0650083B2 (en) 1984-09-12 1984-09-12 Air inflow type rocket engine

Publications (2)

Publication Number Publication Date
JPS6170158A JPS6170158A (en) 1986-04-10
JPH0650083B2 true JPH0650083B2 (en) 1994-06-29

Family

ID=16247466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18980384A Expired - Lifetime JPH0650083B2 (en) 1984-09-12 1984-09-12 Air inflow type rocket engine

Country Status (1)

Country Link
JP (1) JPH0650083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654577B2 (en) * 1991-05-23 1997-09-17 宇宙科学研究所長 Supersonic precooler for aircraft engine

Also Published As

Publication number Publication date
JPS6170158A (en) 1986-04-10

Similar Documents

Publication Publication Date Title
US2411227A (en) Power plant for airplanes
Benini et al. Design, manufacturing and operation of a small turbojet-engine for research purposes
CA1243848A (en) Gas compressor for jet engine
JP2898290B2 (en) Mechanical energy generator
US3747339A (en) Reaction propulsion engine and method of operation
US11383852B2 (en) Turbo engine with cooler for cooling inlet air and turbine for expanding cryogenic fuel
US3740949A (en) Fuel cooled ram air reaction propulsion engine
US3237401A (en) Regenerative expander engine
JPH0367026A (en) Turborocket engine-ramjet engine combined afterburning propeller
US3690102A (en) Ejector ram jet engine
US2914912A (en) Combustion system for thermal powerplant
CN108757182A (en) Air-breathing rocket engine and Hypersonic Aircraft
CN114810350B (en) Methane precooling turbine-based combined cycle engine system with interstage combustion chamber
GB2240813A (en) Hypersonic and trans atmospheric propulsion
US3040519A (en) Jet propulsion unit with cooling means for incoming air
US3733826A (en) Fuel cooled ram air reaction propulsion engine
US3561217A (en) Liquid air engine cycle with reliquefaction
US5381653A (en) Aircraft engine with pressure exchanger
RU95112367A (en) Liquid cryogenic propellant rocket engine
JPH0650083B2 (en) Air inflow type rocket engine
US3721093A (en) Reaction propulsion engine with vaporized fuel driven turbine
Bossard et al. Return of the solid fuel gas generator ATR
RU2179255C2 (en) Hypersonic cryogenic air-jet engine
Tanatsugu et al. Development Study on Air Turbo Ramjet for a Future Spaceplane
Tanatsugu Development study on air turboramjet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term