JPH0649966U - Ultrasonic tide gauge - Google Patents

Ultrasonic tide gauge

Info

Publication number
JPH0649966U
JPH0649966U JP5004992U JP5004992U JPH0649966U JP H0649966 U JPH0649966 U JP H0649966U JP 5004992 U JP5004992 U JP 5004992U JP 5004992 U JP5004992 U JP 5004992U JP H0649966 U JPH0649966 U JP H0649966U
Authority
JP
Japan
Prior art keywords
circuit
tide
value
ultrasonic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5004992U
Other languages
Japanese (ja)
Inventor
聡 須崎
Original Assignee
千本電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千本電機株式会社 filed Critical 千本電機株式会社
Priority to JP5004992U priority Critical patent/JPH0649966U/en
Publication of JPH0649966U publication Critical patent/JPH0649966U/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

(57)【要約】 [目的] 取り扱い及び設置が簡便で、測定後、測定値
を補正することなく容易に潮位の絶対値を得られる。 [構成] 任意の時刻における送受波器6面から海面ま
での距離を超音波により測定するための、発振増幅回路
2、電力増幅回路3、信号受信回路5、受信増幅回路
4、及び音速補正のための温度入力回路8等、一連の回
路を備えた超音波式潮位計において、信号増幅回路4の
出力を記憶する受信メモリー回路7と、受信メモリー回
路7の内容を取り込み前記超音波による距離測定値と測
量、潮汐表等の別の手段により得た潮位値を一致させて
基準値を設定し、以後順次得られる測定データーとこの
基準値との差を算出しその変化量により潮位値を得るC
PU周辺回路1とを加設し、前記送受波器6は、下端部
を海中に挿入して鉛直に設置したハイプ15の上端部に
装設し、海面より露出させることを特徴としている。
(57) [Summary] [Purpose] It is easy to handle and install, and the absolute value of the tide level can be easily obtained after measurement without correcting the measurement value. [Structure] Oscillation amplification circuit 2, power amplification circuit 3, signal reception circuit 5, reception amplification circuit 4, and sound velocity correction for ultrasonically measuring the distance from the transducer 6 surface to the sea surface. In an ultrasonic type tide gauge equipped with a series of circuits such as a temperature input circuit 8 for receiving, a receiving memory circuit 7 for storing the output of the signal amplifying circuit 4 and a distance measurement by the ultrasonic wave by taking in the contents of the receiving memory circuit 7 Set the reference value by matching the value with the tidal value obtained by another means such as surveying or tide table, set the reference value, calculate the difference between the subsequently obtained measurement data and this reference value, and obtain the tidal value by the amount of change C
In addition to the PU peripheral circuit 1, the transducer 6 is characterized in that the lower end portion is inserted into the sea and is installed at the upper end portion of the vertically installed hype 15 to be exposed from the sea surface.

Description

【考案の詳細な説明】 [0001] [産業上の利用分野] 本考案は、岸壁等に簡単に設置し潮位を自動的に測定することができる超音波 式潮位計である。 [0002] [従来の技術] 従来から潮位観測を目的とした潮位計(検潮器)は、浮子式、圧力式、超音波 式等各種のものがあるが、その大多数が測定後のデーターの較正が必要であり、 設置方法も井戸を使用したり海底に設置するなど、土木作業が付随し、その取扱 いや使用において簡便さを欠く複雑なものが多いのが現状である。従って、潮位 値を求めるための事後のデーター較正が不必要であり、正確な潮位値が直接得ら れ、かつ使用の際の設置がきわめて簡便に行なえる潮位計は未だ数少ない。 [0003] [考案が解決しようとする課題] 従来の潮位計は、上述の通り測定データーを測定後に較正する必要があり、設 置方式も土木作業が伴う問題があった。本考案は、従来の問題点を解決し、人力 による測定後の較正をしなくても正確な潮位の位置を直接得ることができ、かつ 使用の際の設置が非常に簡便に行なえるものである。 [0004] [課題を解決するための手段」 本考案は、下端部を海中に挿入して鉛直に設置するハイプの上端部に送受波器 を装設してセンサー部を構成し、ある時刻における送受波器面から海面までの距 離を超音波により測定するための、発振増幅回路、電力増幅回路、信号受信回路 、信号増幅回路、及び音速補正のための温度入力回路等、一連の回路を備えた超 音波潮位計において、信号増幅回路の出力を記憶する受信メモリー回路と、受信 メモリー回路の内容を取り込み、前記超音波による距離測定値と測量、潮汐表等 の別の手段により得た潮位値を一致させて基準値を設定し、かつ、以後順次得ら れる測定データーとこの基準値との差を算出しその変化量により潮位値を得るC PU周辺回路とを加設したことを特徴とするものである。 [0005] [作用] 図1により本考案の作用を説明する。CPU周辺回路1で生成されたトリガー 信号が、発振増幅回路2で発振周波数及び時間幅が決定された高周波がつくられ 、その出力が増幅回路3に送られ、送受波器6により下端部が海中に挿入された センサー部14のパイプ15内に発射される。パイプ15内の海面からのエコー は再び送受波器6に返り、信号受信回路5及び信号増幅回路4を経て増幅され、 受信メモリー回路7に記憶される。 [0006] 前記のCPU周辺回路1では、受信メモリー回路7の内容を取り込み送受波器 6から海面までの距離を算出する。この際、温度入力回路8がパイプ15内の温 度を温度センサー19により取り込み、その出力がCPU周辺回路1に入力され ることにより、海面までの距離に対し音速の補正が行われ正確な距離を算出され る。CPU周辺回路1は、この距離測定プロセスを少なくとも10回以上繰り返 し、その中から異常データーを除外して算術平均し、1回の距離測定値とする。 [0007] 一方、測量、潮汐表等による別の手段により、ある任意の時刻にその現場にお いて測定した潮位値を得て、この潮位値と前述の距離測定値との差分をCPU周 辺回路1で強制的に潮位値に合致させ、その値を基準値に設定し、以後の潮位値 計算を行う。以後の潮位値計算はこの基準値に対し、順次得られる測定データー との差をCPU周辺回路1で算出して潮位値を得る。 [0008] [実施例] 以下、図面により本考案の実施例を説明する。図1は本考案の基本回路を示す 電気回路図であり、2は発振増幅回路で、CPU周辺回路1で生成されたトリガ ー信号により、超音波発射のための発振周波数と時間幅が決定された高周波が作 られ、その出力が電力増幅回路3を経て、パイプ15の上端部に装設された送受 波器6から超音波としてパイプ15内の空中に発射される。この超音波はパイプ 15内の海面に到達し、反射したエコーは再び送受波器6に入り、信号受信回路 5に送られ、信号増幅回路4で増幅され、次の受信メモリー回路7に空中音速換 算1cmでサンプリングされる。この受信メモリー回路7の信号内容はCPU周 辺回路1に取り込まれ、ここで海面までの距離を1cmの精度で算出する。更に 、この際、CPU周辺回路1は、温度センサー19により検出したパイプ15中 (超音波伝播路)の温度を温度入力回路8から取り込み、算出された海面までの 距離に対し音速の補正を実施して正確な距離を算出する。 [0009] この距雌測定プロセスを少なくとも10回以上、例えば50回繰り返し、その 中から明らかに異常と考えられるデーターを除外し、残ったデーターを算術平均 し1回の測定データーとする。このプロセスはCPU周辺回路1で行われる。こ のような方法を取ることにより、風浪、うねり等潮位観測の対象とされない短周 期の海面変動の影響をデーターから除外することができる。この段階では潮位デ ーターではなく送受波器6から海面までの距離データーである。 [0010] ここで、ある任意の時刻にその時刻のその現場において、測量、ハコ尺、潮汐 表等を使用した種々の手段により得た潮位値を較正値入力スイッチ10によりC PU周辺回路1に入力し、前述の距離データーとの差分をCPU周辺回路1で加 算又は減算し、距離データーを強制的に潮位値と合致させてしまい、その値を基 準値として設定し、以後の潮位値算出の基準とする。 [0011] 以上のようなプロセスで設定した基準値と、以後順次得られる送受波器6から 海面18までの距離の測定データーとの差を算出し、その変化量で潮位値を得る ことにより、事後の較正が不要になり、また、パイプ15と送受波器6により構 成されたセンサー部14の設置条件が非常に容易になるという利点がある。 [0012] このようにして得られた潮位値データーは、時計回路9で得られた時刻と共に データー出力部11を介しLCD等に出力され、またプリンターに印字出力され る。従って、自動記録式となり、データーの保存及び省力化が計られる。また、 電源にはバッテリー12あるいは乾電池が用いられるが、バッテリー12の容量 を大きくすることにより長時間の自動記録も可能となる。 [0013] 図2は本考案の設置例をしめすもので、図中、13は前記の電気回路が収納さ れた潮位計本体、14は前記の通り作用する送受器6をパイプ15に装設して構 成したセンサー部である。このセンサー部14を木材やロープ等の固定材16を 用いて岸壁17等に固定し、パイプ15を海面18に対し鉛直方向に設置して潮 位計本体13に接続するだけの作業で測定が可能となる。この場合、送受波器6 が水没しないことと、センサー部14の先端が海中に挿入され空中に露出しない ことが条件となる。 [0014] 上述の通り本考案による超音波潮位計の利点は、第一の利点として、一度実際 の潮位値により較正した較正値を入力して実際の潮位値(基準値)を得れば、以 後連続して実際の潮位値が得られ、また、入力する較正値も測量、ハコ尺、潮汐 表等による手段で容易に得られることにある。第二の利点として、1回の潮位値 データーを、送受波器から海面までの少なくとも10回以上の測距離データーを 算術平均して求めているために、潮位観測の対象外となる風浪、うねり等の短周 期の海面変動の影響を受けること無く、正確な潮位値もしくは、潮位変動のデー ターが得られることにある。更にパイプ内の閉空間を超音波伝播路としたために 長時間測定時の障害物等による誤作動の問題も解決される。第三の利点として、 前述のようなデーター算出方法を採用することにより、センサー部及びその設置 が極めて簡便になった点にある。即ち,図2に示すようにセンサー部をロープや 木材等の固定具16を用いて岸壁等に支持し、海面に対しハイプを鉛直方向に設 置するだけで測定が可能になることである。 [0015] [考案の効果] 本考案による超音波式潮位計は、事後の較正を必要としない他、潮位計本体及 びセンサー部の設置も極めて簡便であり、運用上省力化の効果は極めて大である 。更に、潮位値の決定が少なくとも10回以上の測定データーを処理して得てい ることと、超音波伝播路をパイプ内という閉空間としたことによる実効を有する 。即ち、風浪、うねり等の潮位観測では対象としない短周期の海面変動の影響を 除外することが可能となり、データーの精度は検潮井戸を用いた検潮所などのデ ーターと同等の潮位観測データーが得られ、性能上においても実用性の極めて高 いものである。[Detailed description of the device]       [0001]     [Industrial application]   The present invention is an ultrasonic wave that can be easily installed on the quay and automatically measure the tide level. It is a type tide gauge.       [0002]     [Conventional technology]   Conventionally, tide gauges (tide gauges) for tide level observation have been float type, pressure type, ultrasonic wave type. There are various formulas, but most of them require calibration of data after measurement, As for the installation method, such as using wells or installing it on the seabed, it is accompanied by civil engineering work and handling At present, there are many complicated things that lack convenience in use. Therefore, the tide level No post hoc calibration of the data to determine the value is needed and accurate tide level values are obtained directly. In addition, there are still few tide gauges that can be installed very easily when used.       [0003]     [Problems to be solved by the device]   Conventional tide gauges need to be calibrated after measuring the measured data, as described above. The installation method also had a problem with civil engineering work. The present invention solves the conventional problems and requires human power. It is possible to directly obtain the exact tide position without calibration after measurement by It can be installed very easily when used.       [0004]     [Means for solving problems]   The present invention is designed to insert a transducer into the upper end of a hype that is installed vertically by inserting the lower end into the sea. Is installed to configure the sensor unit, and the distance from the transducer surface to the sea surface at a certain time Oscillation amplification circuit, power amplification circuit, signal reception circuit for measuring separation by ultrasonic waves , A signal amplification circuit, a temperature input circuit for sound velocity correction, etc. In a sound wave tide gauge, a reception memory circuit that stores the output of the signal amplification circuit and a reception memory circuit Taking in the contents of the memory circuit, the distance measurement value and survey by the ultrasonic wave, the tide table, etc. Set the reference value by matching the tide level values obtained by another means of Calculate the difference between the measured data and this reference value and obtain the tide level value from the amount of change C A PU peripheral circuit is additionally provided.       [0005]     [Action]   The operation of the present invention will be described with reference to FIG. Trigger generated by CPU peripheral circuit 1 The signal is generated by the oscillation amplifier circuit 2 as a high frequency whose oscillation frequency and time width are determined. , Its output was sent to the amplifier circuit 3, and the lower end was inserted into the sea by the transducer 6. It is fired into the pipe 15 of the sensor unit 14. Echo from the sea surface inside the pipe 15 Returns to the transmitter / receiver 6 again, is amplified through the signal receiving circuit 5 and the signal amplifying circuit 4, It is stored in the reception memory circuit 7.       [0006]   In the CPU peripheral circuit 1 described above, the contents of the reception memory circuit 7 are fetched and the transceiver Calculate the distance from 6 to the sea level. At this time, the temperature input circuit 8 controls the temperature inside the pipe 15. The temperature is taken in by the temperature sensor 19, and its output is input to the CPU peripheral circuit 1. By doing so, the speed of sound is corrected for the distance to the sea surface and the accurate distance is calculated. It The CPU peripheral circuit 1 repeats this distance measurement process at least 10 times or more. Then, the abnormal data is excluded from them, and the arithmetic mean is calculated to obtain one distance measurement value.       [0007]   On the other hand, by another means such as surveying or tide table, you can get to the site at any arbitrary time. The measured tide level value is obtained and the difference between this tide level value and the above-mentioned distance measurement value is calculated by the CPU cycle. The circuit 1 is forced to match the tide level value, and that value is set as the reference value. Calculate. Subsequent tide level calculations are based on this reference value And the CPU peripheral circuit 1 calculates the difference between the value of and the value to obtain the tide level value.       [0008]     [Example]   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic circuit of the present invention. 2 is an electric circuit diagram, and 2 is an oscillation amplifier circuit, which is a trigger generated in the CPU peripheral circuit 1. -The signal produces a high frequency that determines the oscillation frequency and time width for ultrasonic emission. And its output goes through the power amplifier circuit 3 and is transmitted / received at the upper end of the pipe 15. The wave 6 is emitted as ultrasonic waves into the air inside the pipe 15. This ultrasonic wave is a pipe The echo that has reached the sea surface within 15 and is reflected enters the transmitter / receiver 6 again, and the signal receiving circuit 5 is sent to the signal amplification circuit 5, amplified by the signal amplification circuit 4, and converted to the air in the next reception memory circuit 7. It is sampled at a total of 1 cm. The signal content of this reception memory circuit 7 is the CPU frequency. It is taken into the side circuit 1 and the distance to the sea surface is calculated here with an accuracy of 1 cm. Further At this time, the CPU peripheral circuit 1 is in the pipe 15 detected by the temperature sensor 19. The temperature of the (ultrasonic wave propagation path) is taken in from the temperature input circuit 8 and calculated to the sea level. An accurate distance is calculated by correcting the sound velocity with respect to the distance.       [0009]   This distance measurement process is repeated at least 10 times, for example 50 times, Exclude data that is apparently abnormal from the inside and arithmetically average the remaining data The measurement data shall be one time. This process is performed in the CPU peripheral circuit 1. This By taking such a method, wind waves, swells, etc. The effect of seasonal sea level changes can be excluded from the data. At this stage, the tide level It is the distance data from the transmitter / receiver 6 to the surface of the sea, not the transmitter.       [0010]   Here, at any given time, at that site at that time, surveying, box measure, tide The tide level value obtained by various means using a table or the like is C by the calibration value input switch 10. It is input to the PU peripheral circuit 1 and the difference from the above distance data is added by the CPU peripheral circuit 1. Calculate or subtract, force the distance data to match the tide level value, and use that value as the basis. Set it as a quasi-value and use it as a reference for subsequent calculation of tide level values.       [0011]   From the reference value set in the above process and the transducers 6 that are sequentially obtained Calculate the difference from the measured data of the distance to the sea level 18, and obtain the tide level value by the amount of change This eliminates the need for post-calibration, and the pipe 15 and the transducer 6 make it possible to There is an advantage that the installation conditions of the formed sensor unit 14 become very easy.       [0012]   The tide level data obtained in this way, together with the time obtained by the clock circuit 9, It is output to the LCD or the like via the data output unit 11 and is also printed out to the printer. It Therefore, it becomes an automatic recording type, and data can be saved and labor can be saved. Also, The battery 12 or dry cell is used as the power source, but the capacity of the battery 12 By increasing the value, long-time automatic recording is possible.       [0013]   FIG. 2 shows an installation example of the present invention. In the figure, 13 is a housing for the electric circuit. The main body of the tide gauge, 14 is constructed by mounting the handset 6 which works as described above on the pipe 15. It is the sensor part made. Attach the sensor part 14 to the fixing material 16 such as wood or rope. It is fixed to the quay 17 etc., and the pipe 15 is installed vertically to the sea surface 18 The measurement can be performed only by connecting the scale main body 13. In this case, the transceiver 6 Is not submerged in water and the tip of the sensor part 14 is inserted into the sea and is not exposed in the air. It is a condition.       [0014]   As described above, the advantages of the ultrasonic tide gauge according to the present invention are If you input the calibration value calibrated with the tide level value of The actual tide level values can be obtained continuously, and the calibration values to be input can also be surveyed, box scales, and tides. It can be easily obtained by means such as a table. The second advantage is that one tide level value Data is measured at least 10 times from the transducer to the sea surface. Short laps such as wind waves and swells that are not covered by the tide observation because they are calculated using the arithmetic average Accurate tide level or tide level data without being affected by sea level changes during the period Is to get the tar. Furthermore, because the closed space inside the pipe is used as the ultrasonic wave propagation path, The problem of malfunction due to obstacles during long-time measurement is also solved. The third advantage is By using the data calculation method described above, the sensor unit and its installation Is that it has become extremely simple. That is, as shown in FIG. It is supported on the quay using a fixture 16 such as wood, and the hype is installed vertically to the sea surface. It means that measurement is possible just by placing it.       [0015]     [Effect of device]   The ultrasonic tide gauge according to the present invention does not require post-calibration, and the tide gauge body and The installation of sensors and sensors is extremely simple, and the effect of labor saving in operation is extremely large. . Furthermore, the determination of the tide level is obtained by processing the measurement data of at least 10 times or more. And has the effect of making the ultrasonic wave propagation path a closed space inside the pipe. . In other words, the effects of short-term sea level changes that are not included in tide level observations such as wind waves and swells It becomes possible to exclude the data, and the accuracy of the data will depend on The same tide level observation data can be obtained, which is extremely practical in terms of performance. It is a good thing.

【図面の簡単な説明】 [図1]本考案の基本回路を示すブロック図である。 [図2]本考案の設置例図である。 [符号の説明] 1 CPU周辺回路 2 発振増幅回路 3 電力増幅回路 4 信号増幅回路 5 信号受信回路 6 送受波器 7 受信メモリー回路 8 温度入力回路 9 時計回路 10 較正値入力スイッチ 11 データー出力部 12 バッテリー 13 潮位計本体 14 センサー部 15 パイプ 16 固定材 17 岸壁 18 海面 19 温度センサー[Brief description of drawings] FIG. 1 is a block diagram showing a basic circuit of the present invention. FIG. 2 is a diagram showing an installation example of the present invention. [Explanation of symbols] 1 CPU peripheral circuit 2 oscillation amplifier circuit 3 Power amplifier circuit 4 signal amplification circuit 5 Signal receiving circuit 6 Transceiver 7 Receive memory circuit 8 Temperature input circuit 9 clock circuit 10 Calibration value input switch 11 Data output section 12 batteries 13 Tidal gauge body 14 Sensor section 15 pipes 16 Fixing material 17 quay 18 sea level 19 Temperature sensor

Claims (1)

【実用新案登録請求の範囲】 [請求項1] ある任意の時刻における送受波器6面か
ら海面までの距離を超音波により測定するための、発振
増幅回路2、電力増幅回路3、信号受信回路5、信号増
幅回路4、及び音速補正のための温度入力回路8等、一
連の回路を備えた超音波式潮位計において、信号増幅回
路4の出力を記憶する受信メモリー回路7と、受信メモ
リー回路7の内容を取り込み、前記超音波による距離測
定値と測量、潮汐表等の別の手段により得た潮位値を一
致させて基準値を設定し、かつ、以後順次得られる測定
データとこの基準値との差を算出しその変化量により潮
位値を得るCPU周辺回路1とを加設したことを特徴と
する超音波式潮位計。 [請求項2] 請求項1の送受波器6は、下端部を海中
に挿入して鉛直に設置するパイプ15の上端部に装設
し、海面より露出させることを特徴とする請求項1の超
音波式潮位計。 [請求項3] 請求項1のCPU周辺回路7は、少なく
とも10回以上繰り返した測定により得たデーター群を
算術的に処理して基準値の設定及び潮位値の算出をする
ことを特徴とする請求項1の超音波式潮位計。
[Claims for utility model registration] [Claim 1] An oscillation amplification circuit 2, a power amplification circuit 3, and a signal reception circuit for ultrasonically measuring the distance from the transducer 6 surface to the sea surface at a certain arbitrary time. 5, a signal amplification circuit 4, a temperature input circuit 8 for sound velocity correction, and the like, in an ultrasonic tide gauge that includes a series of circuits, a reception memory circuit 7 that stores the output of the signal amplification circuit 4 and a reception memory circuit The contents of 7 are taken in, the reference value is set by matching the distance measurement value by the ultrasonic wave with the tide level value obtained by another means such as surveying or tide table, and the measurement data obtained subsequently and this reference value. An ultrasonic tide gauge, further comprising: a CPU peripheral circuit 1 for calculating a difference between the above and a CPU to obtain a tide level value based on the amount of change. [Claim 2] The wave transmitter / receiver 6 according to Claim 1 is installed at the upper end of a pipe 15 which is vertically inserted by inserting the lower end into the sea, and is exposed from the sea surface. Ultrasonic tide gauge. [Claim 3] The CPU peripheral circuit 7 according to claim 1 is characterized by arithmetically processing a data group obtained by measurement repeated at least 10 times or more to set a reference value and calculate a tide level value. The ultrasonic type tide gauge according to claim 1.
JP5004992U 1992-06-08 1992-06-08 Ultrasonic tide gauge Pending JPH0649966U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5004992U JPH0649966U (en) 1992-06-08 1992-06-08 Ultrasonic tide gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5004992U JPH0649966U (en) 1992-06-08 1992-06-08 Ultrasonic tide gauge

Publications (1)

Publication Number Publication Date
JPH0649966U true JPH0649966U (en) 1994-07-08

Family

ID=12848143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5004992U Pending JPH0649966U (en) 1992-06-08 1992-06-08 Ultrasonic tide gauge

Country Status (1)

Country Link
JP (1) JPH0649966U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074935A (en) * 2007-09-20 2009-04-09 Chugoku Electric Power Co Inc:The Method and device for preventing organism adhesion of seawater level measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191028A (en) * 1987-02-03 1988-08-08 Kurita Water Ind Ltd Ultrasonic level indicator
JPS63234180A (en) * 1987-03-24 1988-09-29 Toshiba Corp Ultrasonic distance measuring instrument
JPH03130624A (en) * 1989-10-16 1991-06-04 Marine Instr Co Ltd Abnormal-wave removing circuit of wave height meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191028A (en) * 1987-02-03 1988-08-08 Kurita Water Ind Ltd Ultrasonic level indicator
JPS63234180A (en) * 1987-03-24 1988-09-29 Toshiba Corp Ultrasonic distance measuring instrument
JPH03130624A (en) * 1989-10-16 1991-06-04 Marine Instr Co Ltd Abnormal-wave removing circuit of wave height meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074935A (en) * 2007-09-20 2009-04-09 Chugoku Electric Power Co Inc:The Method and device for preventing organism adhesion of seawater level measuring device

Similar Documents

Publication Publication Date Title
CN103913208B (en) External ultrasonic liquidometer and its measuring method with velocity of sound self-calibration function
CN109084864B (en) Slender straight pipe type ultrasonic liquid level measuring device and measuring method
CN108594238A (en) Underwater acoustic transducer electroacoustic performance calibrating installation based on transient signal and calibration method
CN105783885A (en) Acoustic Doppler current meter
CN201583657U (en) Ultrasonic ranging device with temperature and humidity compensation
CN201463855U (en) Ultrasonic diameter gauge
CN207499824U (en) A kind of slurry tank liquid level detection device
CN209197722U (en) The flat elevation TT&C system of bedding vibro-rammer
JPH0649966U (en) Ultrasonic tide gauge
CN205506859U (en) Acoustics doppler current meter
CN102980941B (en) A kind of ultrasonic gas relative humidity detection method and device utilizing sonic velocity change
CN206002194U (en) A kind of hydrophone sensitivity temperature response measuring device and system
TWI651517B (en) Serial ultrasonic water level detection module and water level gauge
CN204944616U (en) A kind of measuring system of Intelligent water cup
JP4266117B2 (en) Ultrasonic flow meter
JPH1123704A (en) Method and instrument for underwater measurement
CN107554717A (en) Deep ocean work fluctuating displacement measurement elements of a fix device
JP2003294502A (en) Measurement device of sewage flow rate in sewage pipe
RU53454U1 (en) UNDERWATER MEASUREMENT OF DEPTH OF A RESERVOIR AND AVERAGE VERTICAL VELOCITY OF SPEED OF SOUND IN WATER
CN206012908U (en) Deep ocean work fluctuating displacement measurement elements of a fix device
CN211452527U (en) Ultrasonic liquid level meter
JPH08166276A (en) Method and device for measuring water level in large scale
SU1737330A1 (en) Device for estimation of sea water parameters under natural conditions
CN210071018U (en) High-precision ultrasonic water meter
RU93118U1 (en) ACOUSTIC LEVEL METER