JPH0649903B2 - Iron loss improving device for grain-oriented silicon steel sheet - Google Patents

Iron loss improving device for grain-oriented silicon steel sheet

Info

Publication number
JPH0649903B2
JPH0649903B2 JP60291850A JP29185085A JPH0649903B2 JP H0649903 B2 JPH0649903 B2 JP H0649903B2 JP 60291850 A JP60291850 A JP 60291850A JP 29185085 A JP29185085 A JP 29185085A JP H0649903 B2 JPH0649903 B2 JP H0649903B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
silicon steel
oriented silicon
plasma flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291850A
Other languages
Japanese (ja)
Other versions
JPS62151519A (en
Inventor
甫朋 杉山
文二郎 福田
圭司 佐藤
厚人 本田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP60291850A priority Critical patent/JPH0649903B2/en
Priority to US06/921,523 priority patent/US4772338A/en
Priority to CA000521084A priority patent/CA1325372C/en
Priority to DE8686308239T priority patent/DE3678099D1/en
Priority to EP86308239A priority patent/EP0220940B1/en
Priority to KR1019860008936A priority patent/KR910000009B1/en
Publication of JPS62151519A publication Critical patent/JPS62151519A/en
Priority to US07/209,845 priority patent/US4846448A/en
Publication of JPH0649903B2 publication Critical patent/JPH0649903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 変圧器などに使用される方向性けい素鋼板における鉄損
の低減に関しこの明細書では、プラズマ炎放射を用いた
鉄損改善装置についての開発研究の成果を述べる。
Description: (Industrial field of application) Reducing iron loss in grain-oriented silicon steel sheets used for transformers, etc. In this specification, development of an iron loss improving device using plasma flame radiation is described. Describe the results of the research.

方向性けい素鋼板の鉄損は主に変圧器などの鉄心に使用
された際に発生する熱エネルギー損で、近年のエネルギ
ー事情を背景にして方向性けい素鋼板の鉄損低減に対す
る要求はますます高まりつつある。
The iron loss of grain-oriented silicon steel sheet is a thermal energy loss mainly generated when it is used for iron cores of transformers and the like, and there is a demand to reduce the iron loss of grain-oriented silicon steel sheet due to the recent energy situation. It is increasing.

ところで鉄損を減少させるには、鋼板の結晶方位を(11
0)<001>方位に高度に揃えること、Si含有量を増大させ
鋼板の電気抵抗を増加させること、不純物を減少させる
こと、さらに近年では鋼板の板厚を薄くすることなどが
種々試みられてきた。
By the way, in order to reduce iron loss, the crystal orientation of the steel sheet should be (11
0) <001> orientation is highly aligned, increasing the Si content to increase the electrical resistance of the steel sheet, reducing impurities, and in recent years various attempts have been made to reduce the thickness of the steel sheet, etc. It was

しかしこれらの冶金学的手法による鉄損低減は、ほぼ限
界に達している。
However, the reduction of iron loss by these metallurgical methods has almost reached the limit.

(従来の技術) そこで冶金学的手法以外に鉄損を低減する方法が種々提
案されている。
(Prior Art) Various methods for reducing iron loss have been proposed in addition to metallurgical methods.

例えば特公昭57-2252号公報にはレーザー照射による鉄
損低減法が開示されている。この方法により鉄損の大幅
減少が可能になったが、装置が高価なことおよびレーザ
ー励起用ランプの寿命が短いことによるイニシャルコス
トおよびランニングコストの増加が避けがたい。
For example, Japanese Patent Publication No. 57-2252 discloses a method of reducing iron loss by laser irradiation. Although the iron loss can be greatly reduced by this method, it is inevitable that the initial cost and the running cost are increased due to the expensive equipment and the short life of the laser excitation lamp.

(発明が解決しようとする問題点) これに対して、発明者らは、特開昭62−96617号
公報にて、仕上焼鈍済の方向性けい素鋼板にプラズマ炎
を放射することによって、上記のような欠点がなく、生
産性、作業性、安全性、コスト面で有利に鉄損を低減さ
せ得る方向性けい素鋼板の鉄損改善方法を提案した。
(Problems to be solved by the invention) On the other hand, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 62-96617, the above-mentioned method, by radiating a plasma flame to a grain-finished grain-oriented silicon steel sheet. We have proposed a method for improving iron loss of grain-oriented silicon steel sheets, which has no such drawbacks and can reduce iron loss in terms of productivity, workability, safety, and cost.

すなわち、この方法は、実操業において有利であるとこ
ろから、この方法を工業的規模での生産に適用すること
が望ましく、従ってこの方法による工業的規模での生産
を実現するのに適した装置を提供することが、この発明
の目的である。
That is, since this method is advantageous in actual operation, it is desirable to apply this method to industrial scale production, and therefore, to provide an apparatus suitable for realizing industrial scale production by this method. It is an object of the invention to provide.

(問題点を解決するための手段) さて発明者らはプラズマ炎放射につき鋭意実験を重ねた
結果、仕上焼鈍された方向性けい素鋼板の表面に鋼板の
圧延方向とほぼ直交する向きにプラズマ炎を放射するこ
とにより著しい鉄損の低減効果が得られることを新たに
知見し、このプラズマ炎放射に最適な装置を連続ライン
に組入れることにより製造コストの格別な上昇を招かず
して工業生産に適用可能であることを見い出した。
(Means for Solving the Problems) As a result of repeated experiments on the plasma flame radiation, the inventors have found that the surface of the finish-annealed grain-oriented silicon steel sheet has a plasma flame in a direction substantially orthogonal to the rolling direction of the steel sheet. It has been newly found that irradiating iron can significantly reduce iron loss, and by incorporating an optimum device for plasma flame radiation in a continuous line, industrial production can be performed without causing a significant increase in manufacturing cost. It was found to be applicable.

すなわちこの発明は、仕上焼鈍済の方向性けい素鋼板の
圧延方向における走行をガイドする回転ドラムと、該回
転ドラム上を走行する方向性けい素鋼板に同期して回転
ドラムと同心円上を移動し、かつ方向性けい素鋼板の圧
延方向を横切る向きに移動するプラズマ炎放射トーチと
を備えてなることを特徴とする方向性けい素鋼板の鉄損
改善装置である。
That is, the present invention, a rotary drum that guides the running of the finish-annealed grain-oriented silicon steel sheet in the rolling direction, and a ring-shaped drum that moves in concentric circles with the grain-oriented silicon steel sheet traveling on the drum in synchronization. And a plasma flame radiation torch that moves in a direction crossing the rolling direction of the grain-oriented silicon steel sheet.

以下この発明に従う第1図の装置について説明する。The apparatus of FIG. 1 according to the present invention will be described below.

図中1は仕上焼鈍済の方向性けい素鋼板(以下鋼板とい
う)であり、回転ドラム2に巻きかけて一定速度でその
圧延方向に走行させる。
In the figure, 1 is a grain-finished grain-oriented silicon steel sheet (hereinafter referred to as a steel sheet), which is wound around a rotary drum 2 and run in a rolling direction at a constant speed.

また回転ドラム2と同心円上に設置した円弧状のレール
3に複数のプラズマ炎放射トーチ4を移動軸受5の支持
の下にて取付け、プラズマ炎放射トーチ4を鋼板1と同
期してレール3上を走行させる。すなわち鋼板1とプラ
ズマ炎放射トーチ4との相対速度がゼロになる状態にプ
ラズマ炎放射トーチ4の移動速度を設定する。この状態
において移動軸受5を鋼板1の板幅方向に移動させれ
ば、プラズマ炎放射トーチ4は鋼板1の圧延方向を横切
る向きに移動することになり、鋼板1の表面にプラズマ
炎を放射できる。
Further, a plurality of plasma flame radiation torches 4 are mounted on a circular arc-shaped rail 3 installed concentrically with the rotating drum 2 under the support of a moving bearing 5, and the plasma flame radiation torches 4 are mounted on the rail 3 in synchronization with the steel plate 1. Run. That is, the moving speed of the plasma flame radiation torch 4 is set such that the relative speed between the steel plate 1 and the plasma flame radiation torch 4 becomes zero. If the moving bearing 5 is moved in the plate width direction of the steel plate 1 in this state, the plasma flame radiation torch 4 moves in a direction transverse to the rolling direction of the steel plate 1, and plasma flame can be radiated on the surface of the steel plate 1. .

なおプラズマ炎放射トーチ4の設置間隔はプラズマ炎の
鋼板1への放射間隔が2〜30mmとなるように設定し、該
トーチ4のノズル穴は2.0mmφ以下、出力電流は1〜300
Aの範囲が適合する。
The installation intervals of the plasma flame radiating torches 4 are set so that the radiating intervals of the plasma flames to the steel plate 1 are 2 to 30 mm, the nozzle holes of the torch 4 are 2.0 mmφ or less, and the output current is 1 to 300
The range of A is suitable.

プラズマ炎の放射は非移行型、移行型のどちらでもよい
が非移行型の方が放射が容易である。プラズマ発生のた
めのガスは、Ar,N2,H2等の不活性および非酸化性ガスな
らびにこれらの混合ガスが望ましいが、酸化性ガスおよ
びこれらの混合でもかまわない。
The plasma flame may be either non-transfer type or transfer type, but the non-transfer type is easier to radiate. The gas for plasma generation is preferably an inert gas such as Ar, N 2 or H 2 and a non-oxidizing gas and a mixed gas thereof, but an oxidizing gas and a mixture thereof may be used.

またレール3上をプラズマ炎放射トーチ4が鋼板1に同
期して移動する速度は0.1〜200m/minが好適で、一方プ
ラズマ炎放射トーチ4の鋼板1の圧延方向を横切る向き
への移動速度は1〜400cm/sの範囲が適当である。
Further, the speed at which the plasma flame radiation torch 4 moves on the rail 3 in synchronization with the steel plate 1 is preferably 0.1 to 200 m / min, while the moving speed of the plasma flame radiation torch 4 in the direction transverse to the rolling direction of the steel plate 1 is A range of 1 to 400 cm / s is suitable.

さらにプラズマ炎放射トーチ4の移動に関し、第1図の
左側面図である第2図について以下に述べる。なお、第
2図においては、トーチ4が重なるところがあるため、
重複部分の図示は省略してある。
The movement of the plasma flame radiation torch 4 will be described below with reference to FIG. 2 which is a left side view of FIG. In addition, in FIG. 2, since the torches 4 overlap each other,
Illustration of overlapping portions is omitted.

すなわちプラズマ炎放射トーチ4は、図示しない駆動用
モーターによりボールねじ10を回転させ、ボールねじ10
の回転につれて移動する移動軸受5に固定することによ
って、鋼板1の圧延方向と直交する向きへ移動させるこ
とができる。なお移動軸受5がボールねじ10の回転と同
じ動作をしないようサポート軸9を各移動軸受5に設け
てある。この場合も、第2図において、ボールねじ10と
重なるサポート軸9の図示を省略してある。
That is, the plasma flame radiation torch 4 rotates the ball screw 10 by a driving motor (not shown),
By fixing it to the moving bearing 5 that moves with the rotation, the steel sheet 1 can be moved in a direction orthogonal to the rolling direction. A support shaft 9 is provided on each moving bearing 5 so that the moving bearing 5 does not operate in the same manner as the rotation of the ball screw 10. Also in this case, the support shaft 9 overlapping the ball screw 10 is not shown in FIG.

またレール3に沿ってプラズマ炎放射トーチ4を移動さ
せるには例えばモータ7の駆動力を車輪6に伝達して、
車輪6をレール3上にて走行させればよい。すなわち、
ボールねじ10の両端部に取り付けた車輪6は、レール3
から外れないように係止され、各車輪6はモータ7から
の駆動力を伝達する機構、例えばモータ7の駆動軸7a
と連動するチェーンをレール3に沿って配置して、この
チェーンにて各車輪6を案内移動したり、またはチェー
ンに換えて歯車でモータ7の駆動力を伝達する機構を介
して、レール3上を移動することによって、トーチ4の
移動がはかられる。
To move the plasma flame radiation torch 4 along the rail 3, the driving force of the motor 7 is transmitted to the wheels 6,
The wheels 6 may run on the rails 3. That is,
The wheels 6 attached to both ends of the ball screw 10 are
The wheels 6 are locked so as not to come off, and each wheel 6 transmits a driving force from the motor 7, for example, a drive shaft 7a of the motor 7.
A chain that interlocks with the rail 3 is arranged along the rail 3, and each wheel 6 is guided and moved by this chain, or a mechanism that transmits the driving force of the motor 7 by gears instead of the chain is used on the rail 3. The torch 4 can be moved by moving the.

ところでプラズマ炎放射トーチ群の先頭のトーチ4がレ
ール3の終端に達したならば、モータ7の極性を切換え
て該プラズマ炎放射トーチ4群を速やかに開始位置まで
もどす。このもどす間は鋼板1にプラズマ炎放射を行わ
ないため、鋼板1にはプラズマ炎放射の施されない部分
ができる場合がある。またプラズマ炎放射トーチ自体の
コンパクト化には制限があるため、プラズマ炎の放射間
隔を好適な範囲(2〜30mm)に保つことが難しい場合も
ある。したがってプラズマ炎放射を実施するために、第
1図の装置を第3図に示すように複数台設置することも
できる。
When the torch 4 at the head of the plasma flame radiation torch group reaches the end of the rail 3, the polarity of the motor 7 is switched to quickly return the plasma flame radiation torch group 4 to the start position. Since plasma flame radiation is not performed on the steel plate 1 during this returning, there may be a case where the plasma flame radiation is not applied to the steel plate 1. Further, since there is a limit to downsizing the plasma flame radiation torch itself, it may be difficult to keep the radiation interval of the plasma flame within a suitable range (2 to 30 mm). Therefore, in order to carry out the plasma flame radiation, it is also possible to install a plurality of the devices shown in FIG. 1 as shown in FIG.

(作用) 最終仕上焼鈍を施した0.23mm厚の方向性けい素鋼板にノ
ズル穴径0.15mmのトーチを備える第1図の装置により出
力電流10Aにてプラズマ炎を放射した。
(Operation) Plasma flame was radiated at an output current of 10 A by the apparatus of FIG. 1 equipped with a torch having a nozzle hole diameter of 0.15 mm on a 0.23 mm thick grain-oriented silicon steel sheet subjected to final finish annealing.

ガスはアルゴンを用い、放射は鋼板の圧延方向とほぼ直
交する向きに圧延方向における間隔が8mmとなる線状に
放射した。
Argon was used as a gas, and the radiation was linearly emitted in a direction substantially orthogonal to the rolling direction of the steel sheet with an interval of 8 mm in the rolling direction.

またトーチの鋼板に同期して移動する速度は50m/min、
鋼板の圧延方向と直交する向きへの移動速度は250mm/s
とした。
Also, the speed of movement in synchronization with the steel plate of the torch is 50 m / min,
The moving speed of the steel sheet in the direction orthogonal to the rolling direction is 250 mm / s.
And

プラズマ炎放射後の鋼板のプラズマ炎放射部と該放射部
の近接位置から採取したプラズマ炎放射のされていない
部分の磁気特性を調べた。その結果を表1に示す。
The magnetic characteristics of the plasma flame radiating portion of the steel plate after the plasma flame radiating and the portion where the plasma flame radiating was not taken, which was sampled from the position near the radiating portion, were examined. The results are shown in Table 1.

表1からプラズマ炎放射を施した部分は鉄損の改善が著
しいことがわかる。
From Table 1, it can be seen that the iron loss is remarkably improved in the portion subjected to plasma flame radiation.

(発明の効果) この発明の装置を用いることにより方向性けい素鋼板表
面へのプラズマ炎放射を連続的に行え、生産能率を阻害
することなく鉄損の低い方向性けい素鋼板を得ることが
でき、従って低鉄損の方向性けい素鋼板の工業的規模で
の生産を有利に実現し得る。
(Effects of the Invention) By using the apparatus of the present invention, it is possible to continuously emit plasma flame to the surface of grain-oriented silicon steel sheet and obtain a grain-oriented silicon steel sheet with low iron loss without inhibiting production efficiency. Therefore, the production of grain-oriented silicon steel sheet with low iron loss on an industrial scale can be advantageously realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は鉄損改善装置の説明図、 第2図は第1図の左側面図、 第3図は複数台設置する場合の説明図である。 1……方向性けい素鋼板 2……回転ドラム 4……プラズマ炎放射トーチ FIG. 1 is an explanatory diagram of an iron loss improving device, FIG. 2 is a left side view of FIG. 1, and FIG. 3 is an explanatory diagram when a plurality of units are installed. 1 ... Directional silicon steel plate 2 ... Rotating drum 4 ... Plasma flame radiation torch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 厚人 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsuto Honda Atsushi Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】仕上焼鈍済の方向性けい素鋼板の圧延方向
における走行をガイドする回転ドラムと、 該回転ドラム上を走行する方向性けい素鋼板に同期して
回転ドラムと同心円上を移動し、かつ方向性けい素鋼板
の圧延方向を横切る向きに移動するプラズマ炎放射トー
チと、 を備えてなることを特徴とする方向性けい素鋼板の鉄損
改善装置。
1. A rotary drum for guiding the running of a finish-annealed grain-oriented silicon steel sheet in the rolling direction, and a rotary drum which moves on a concentric circle with the grain-oriented silicon steel sheet traveling on the rotary drum. An iron loss improving device for a grain-oriented silicon steel sheet, comprising: a plasma flame radiation torch that moves in a direction transverse to the rolling direction of the grain-oriented silicon steel sheet.
JP60291850A 1985-10-24 1985-12-26 Iron loss improving device for grain-oriented silicon steel sheet Expired - Lifetime JPH0649903B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60291850A JPH0649903B2 (en) 1985-12-26 1985-12-26 Iron loss improving device for grain-oriented silicon steel sheet
US06/921,523 US4772338A (en) 1985-10-24 1986-10-21 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
CA000521084A CA1325372C (en) 1985-10-24 1986-10-22 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
DE8686308239T DE3678099D1 (en) 1985-10-24 1986-10-23 METHOD AND DEVICE FOR IMPROVING THE IRON LOSS OF SHEETS IN ELECTROMAGNETIC STEEL OR AMORPHOUS MATERIAL.
EP86308239A EP0220940B1 (en) 1985-10-24 1986-10-23 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
KR1019860008936A KR910000009B1 (en) 1985-10-24 1986-10-24 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
US07/209,845 US4846448A (en) 1985-10-24 1988-06-22 Apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291850A JPH0649903B2 (en) 1985-12-26 1985-12-26 Iron loss improving device for grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS62151519A JPS62151519A (en) 1987-07-06
JPH0649903B2 true JPH0649903B2 (en) 1994-06-29

Family

ID=17774224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291850A Expired - Lifetime JPH0649903B2 (en) 1985-10-24 1985-12-26 Iron loss improving device for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0649903B2 (en)

Also Published As

Publication number Publication date
JPS62151519A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
JP6875530B2 (en) Compact continuous annealing solution heat treatment
EP0901867A3 (en) Method and automatic apparatus for marking by means of a plasma jet, in particular of metals
JPH0657467A (en) Method and apparatus for performing continuous surface treatment of rod-like elongated metal having metallic surface
JP2000288702A (en) Continuous casting equipment for billet, bloom and slab provided with cutting-off and deburring device
GB1492226A (en) Narrow gap welding apparatus and method
JPH08323471A (en) Automatic circumferential welding equipment
JPH0649903B2 (en) Iron loss improving device for grain-oriented silicon steel sheet
CN110839338A (en) Magnetic shielding structure for direct current induction heating device
KR910000009B1 (en) Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
JP3237423B2 (en) Single-sided welding backing robot
US3840718A (en) Drum grooving apparatus and method
WO2011071258A2 (en) Carriage for cutting torch
CA1081328A (en) Process for heating metal strips
CN103801684A (en) Steel tapping vehicle suitable for intermediate frequency furnace
EP2479144A1 (en) Silicon purification method and silicon purification apparatus
CN211240663U (en) Magnetic shielding structure for direct current induction heating device
JPH0645824B2 (en) Iron loss improving device for grain-oriented silicon steel sheet
KR20130051215A (en) Rail-less welding apparatus
GB2107265A (en) A portable tool guide
JP2019173542A (en) Cutting machine for concrete slab and method for cutting concrete slab
CN219408166U (en) Device capable of adjusting direction of steel billet on cross car
JP2000052701A (en) Wheel for traveling on magnetic surface and truck
CN215909816U (en) Transformer iron core interval process detection device
KR20110129076A (en) Heat treatment apparatus for ring flange
JPH09300071A (en) Automatic welding device for vertically welding butt-weld zone