JPH0649873B2 - Light oil desulfurization method - Google Patents

Light oil desulfurization method

Info

Publication number
JPH0649873B2
JPH0649873B2 JP2157352A JP15735290A JPH0649873B2 JP H0649873 B2 JPH0649873 B2 JP H0649873B2 JP 2157352 A JP2157352 A JP 2157352A JP 15735290 A JP15735290 A JP 15735290A JP H0649873 B2 JPH0649873 B2 JP H0649873B2
Authority
JP
Japan
Prior art keywords
desulfurization
fraction
treatment
gas oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2157352A
Other languages
Japanese (ja)
Other versions
JPH0446993A (en
Inventor
明 杉本
貞夫 近藤
政之 新妻
不二彦 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2157352A priority Critical patent/JPH0649873B2/en
Publication of JPH0446993A publication Critical patent/JPH0446993A/en
Publication of JPH0649873B2 publication Critical patent/JPH0649873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、原料軽油を脱硫してディーゼル燃料などに
利用される製品軽油を製造する方法に係わり、低硫黄分
の脱硫軽油を効率良く製造する脱硫方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a product gas oil that is used as a diesel fuel by desulfurizing a raw gas oil, and efficiently produces a desulfurized gas oil having a low sulfur content. Desulfurization method.

「従来の技術」 石油留分のうちナフサやガソリンなどの軽質石油留分の
脱硫は、これまでに大きな進歩をとげ、高いレベルに達
している。
"Prior art" Desulfurization of light petroleum fractions such as naphtha and gasoline among petroleum fractions has made great progress so far and has reached a high level.

一方、重質石油留分については、地球的な環境保護の機
運が高まる中で一層の硫黄低減化が進められている。特
に昨今では、ディーゼル車から排出される排ガス中に含
まれる硫黄酸化物が、いわゆる「酸性雨」の原因の1つと
して取り上げられ、これを低減化させるために、ディー
ゼル燃料油の一層の低硫黄分化が検討されている。
On the other hand, with regard to heavy petroleum fractions, further reduction of sulfur is being promoted as the momentum of global environmental protection increases. Particularly in recent years, sulfur oxides contained in exhaust gas emitted from diesel vehicles have been taken up as one of the causes of so-called "acid rain", and in order to reduce this, further reduction of sulfur in diesel fuel oil is required. Differentiation is being considered.

ディーゼル燃料等に利用される原料軽油は、原油の常圧
分留で得られるいわゆる直留軽油であり、沸点約200
〜370℃の留分である。
The raw gas oil used for diesel fuel is a so-called straight-run gas oil obtained by atmospheric fractionation of crude oil, and has a boiling point of about 200.
˜370 ° C. cut.

従来、この常圧分留により得られた軽油留分を脱硫する
には、ナフサ、灯油、軽油に共通の方法として、第2図
に示すように原料軽油1を補給水素および循環水素と混
合し、熱交換器および加熱炉で予熱したのち反応器2で
水素化脱硫反応させる。この反応器2内には水素化脱硫
反応を生じさせる触媒が収容されている。この触媒とし
ては、アルミナまたはシリカ-アルミナの担体に金属硫
化物を保持したものが用いられ、金属硫化物としてはC
o−Mo、Ni−MoまたはCo−Ni−Moの組み合
わせである。反応器2を出た反応生成油は、熱交換器で
冷却され、次いで高圧分離槽で気-液分離する。液体分
は低圧分離槽で再度フラッシュしてガスを分離した後、
ストリッパーに送り残存するH2Sおよび軽質炭化水素
を除去し、塔底から抜き出して製品軽油を得る。ストリ
ッピングの方法としては、加熱炉リボイラーを使用する
方法の他、スチームストリッピングと減圧脱水塔を組み
合わせた方式も一般化している。
Conventionally, as a common method for naphtha, kerosene, and light oil, desulfurization of the light oil fraction obtained by the atmospheric fractionation is carried out by mixing the feed gas oil 1 with makeup hydrogen and circulating hydrogen as shown in FIG. After preheating in a heat exchanger and a heating furnace, a hydrodesulfurization reaction is performed in the reactor 2. A catalyst that causes a hydrodesulfurization reaction is housed in the reactor 2. As the catalyst, an alumina or silica-alumina carrier holding a metal sulfide is used, and the metal sulfide is C
It is a combination of o-Mo, Ni-Mo or Co-Ni-Mo. The reaction product oil leaving the reactor 2 is cooled by a heat exchanger and then gas-liquid separated in a high pressure separation tank. After re-flushing the liquid content in the low pressure separation tank to separate the gas,
H 2 S and light hydrocarbons remaining in the stripper are removed and the product light oil is obtained by withdrawing from the bottom of the column. As a method of stripping, in addition to a method of using a heating furnace reboiler, a method of combining steam stripping and a reduced pressure dehydration tower has been generalized.

「発明が解決しようとする課題」 しかしながら、従来法により得られる製品軽油中の硫黄
濃度が往々にして0.15〜0.2wt%となる。さらに
商品軽油の硫黄濃度は実勢値として約0.4wt%であ
る。
"Problems to be solved by the invention" However, the sulfur concentration in the product gas oil obtained by the conventional method is often 0.15 to 0.2 wt%. Furthermore, the sulfur concentration of commercial gas oil is about 0.4 wt% in actual value.

軽油中の硫黄濃度を0.1wt%以下、望ましくは0.0
5wt%以下にまで低減させるためには、脱硫反応の反応
温度を高くする、反応時間を長くするなど反応条件を厳
しくする必要がある。その結果として製品軽油の着色、
触媒寿命の短期化、使用触媒量の増大等の不都合が生じ
る。これに加えて、既存の軽油脱硫設備により、如何に
して硫黄濃度の低減を図るかの具体的な操作方法は定ま
っていない。
The sulfur concentration in light oil is 0.1 wt% or less, preferably 0.0
In order to reduce the amount to 5 wt% or less, it is necessary to make the reaction conditions severe, such as increasing the reaction temperature of the desulfurization reaction and lengthening the reaction time. As a result, the product light oil coloring,
There are inconveniences such as shortening the catalyst life and increasing the amount of catalyst used. In addition to this, there is no specific operating method for how to reduce the sulfur concentration by using the existing gas oil desulfurization facility.

本発明は上記事情に鑑みてなされたもので、硫黄濃度が
0.05wt%以下の製品軽油を効率良く製造する方法の
提供を目的としている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for efficiently producing a product gas oil having a sulfur concentration of 0.05 wt% or less.

「課題を解決するための手段」 本発明は、原料軽油を分留して複数の留分に分割し、そ
れぞれの留分について脱硫処理あるいは脱硫処理と色相
の安定化処理を行い、この後に各留分を混合することに
よって上記課題を解消した。
"Means for Solving the Problem" The present invention divides a raw material gas oil into a plurality of fractions, performs desulfurization treatment or desulfurization treatment and hue stabilization treatment for each fraction, and thereafter, The above problem was solved by mixing the distillates.

また、原料軽油を、270℃〜330℃の範囲から設定
されるカット温度で分留し、沸点が上記カット温度より
低い低沸点留分と、沸点が上記カット温度より高い高沸
点留分に分割し、該低沸点留分を脱硫処理するととも
に、該高沸点留分を脱硫処理した後に必要に応じ色相安
定化処理し、この後に双方の処理油を混合することが望
ましい。
In addition, the raw gas oil is fractionated at a cut temperature set in the range of 270 ° C to 330 ° C, and divided into a low boiling fraction having a boiling point lower than the above cutting temperature and a high boiling fraction having a boiling point higher than the above cutting temperature. It is desirable that the low-boiling fraction is desulfurized, the high-boiling fraction is desulfurized, and then a hue stabilizing treatment is carried out, if necessary, and then both treated oils are mixed.

さらに、上記色相安定化処理は、白土処理または水素添
加処理であることが望ましい。
Furthermore, it is desirable that the hue stabilization treatment be a clay treatment or a hydrogenation treatment.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

軽油中の硫黄濃度を低レベルにするについては、一つに
は脱硫反応の処理温度を高くする方法がある。しかしこ
の場合、硫黄の除去効果は上がるものの色相の不安定化
を生じ着色し易くなる。着色の発生を低く抑えるために
は反応圧力を高くするなどの対策が講じられる。さらに
LHSV(液空間速度)を小さくとることによって軽油
中の硫黄濃度を低レベルにするなどが行われている。
One of the methods for reducing the sulfur concentration in light oil is to increase the treatment temperature of the desulfurization reaction. However, in this case, although the effect of removing sulfur is improved, destabilization of the hue occurs and coloring becomes easy. Measures such as increasing the reaction pressure are taken to suppress the occurrence of coloring to a low level. Further, by making LHSV (liquid space velocity) small, the sulfur concentration in light oil is made low.

このような処理条件の側について触媒の改良等も含め改
善する一方で、原料軽油側について何等かの適切な前処
理をすることにより、脱硫操作全体としての脱硫効率を
向上させることが可能となる。
It is possible to improve the desulfurization efficiency of the desulfurization operation as a whole by performing some appropriate pretreatment on the raw gas oil side while making improvements such as catalyst improvement on the side of such processing conditions. .

原料軽油の脱硫が、処理条件を厳しくすることによって
向上するということは、硫黄化合物の中に水素化脱硫に
よって容易に分解する易分解硫黄化合物から比較的分解
し難い難分解硫黄化合物までの種々の硫黄化合物が含ま
れていることを示唆している。
Desulfurization of feed gas oil is improved by tightening the treatment conditions, which means that various sulfur compounds, from easily decomposed sulfur compounds that are easily decomposed by hydrodesulfurization to relatively difficultly decomposed sulfur compounds, are used. It suggests that it contains sulfur compounds.

そこで粗軽油(原料軽油)を蒸留し各温度で分留した後、
各留分について一定の条件で水素化脱硫を行い、各留分
の脱硫の難易性について調べた。その結果、高沸点側の
留分の脱硫効果が低く、そこに含まれている硫黄化合物
が水素化分解し難いことが認められた。すなわち310
℃付近の温度を境として、それよりも高沸点の留分と低
沸点の留分とに分割した場合、難分解硫黄化合物は高沸
点側の留分に濃縮されることになる。
So after distilling crude gas oil (raw gas oil) and fractional distillation at each temperature,
Hydrodesulfurization was carried out for each fraction under certain conditions, and the difficulty of desulfurization of each fraction was investigated. As a result, it was confirmed that the desulfurization effect of the fraction on the high boiling point side was low and the sulfur compound contained therein was difficult to hydrocrack. Ie 310
When the temperature near ℃ is used as a boundary and it is divided into a fraction having a higher boiling point and a fraction having a lower boiling point than that, the refractory sulfur compound is concentrated in a fraction having a higher boiling point.

本発明は、原料軽油を分留して複数の留分に分割し、そ
れぞれの留分の脱硫難易度に合わせて脱硫処理あるいは
脱硫処理と色相安定化処理を行い、この後に各留分を混
合することによって、硫黄濃度の極めて低い製品軽油を
製造する方法である。
The present invention divides the raw gas oil into a plurality of fractions, performs desulfurization treatment or desulfurization treatment and hue stabilization treatment according to the desulfurization difficulty of each fraction, and then mixes each fraction. Is a method for producing a product gas oil having an extremely low sulfur concentration.

次に、図面を参照して本発明方法の一例を詳細に説明す
る。
Next, an example of the method of the present invention will be described in detail with reference to the drawings.

第1図は本発明方法の一例を説明するための図であっ
て、この図中符号10は原料軽油1を常圧で蒸留するた
めの蒸留器、11,12は脱硫反応器、13は色相安定
化処理装置である。
FIG. 1 is a diagram for explaining an example of the method of the present invention. In the figure, reference numeral 10 is a distiller for distilling the raw gas oil 1 at atmospheric pressure, 11 and 12 are desulfurization reactors, and 13 is a hue. It is a stabilizing device.

この例による軽油の脱硫処理では、まず石油類の常圧蒸
留により得られる沸点範囲が約200〜370℃の原料
軽油1を蒸留器10に供給し、所定のカット温度で蒸留
し、このカット温度よりも高沸点側の留分(高沸点留分
という)と、低沸点側の留分(低沸点留分という)に分留
する。
In the desulfurization treatment of light oil according to this example, first, the light oil feedstock 1 having a boiling point range of about 200 to 370 ° C. obtained by atmospheric distillation of petroleum is supplied to the distiller 10 and distilled at a predetermined cut temperature to obtain the cut temperature. It fractionates into a fraction on the higher boiling point side (referred to as a high boiling point fraction) and a fraction on the lower boiling point side (referred to as a lower boiling point fraction).

この例では原料軽油1を上記2つの留分(高沸点留分お
び低沸点留分)に分留する例を示しており、この場合の
カット温度としては、270℃〜330℃の範囲から設
定され、特に好ましくは300〜320℃付近の温度に
設定される。
In this example, the feed gas oil 1 is fractionated into the above-mentioned two fractions (high-boiling fraction and low-boiling fraction), and the cutting temperature in this case is set in the range of 270 ° C to 330 ° C. And particularly preferably set to a temperature around 300 to 320 ° C.

このカット温度が270℃より低いと、低沸点留分が少
なく、高沸点留分が多くなり、各留分にそれぞれ適宜な
脱硫処理を行った後に、両者を混合する場合の分割効果
が十分に得られなくなる。一方、カット温度を330℃
以上とすると、低沸点留分が多くなるとともに難分解硫
黄化合物が低沸点留分側に移行して低沸点留分の脱硫処
理の条件を厳しくする必要が生じ、脱硫効率が改善され
ないことになる。
If this cutting temperature is lower than 270 ° C., the amount of low-boiling fractions is small and the amount of high-boiling fractions is large, and after the respective desulfurization treatments are appropriately desulfurized, the splitting effect when mixing the two components is sufficient. You won't get it. Meanwhile, the cut temperature is 330 ° C
With the above, as the low-boiling fraction increases, the refractory sulfur compound migrates to the low-boiling fraction side, and it becomes necessary to tighten the conditions for the desulfurization treatment of the low-boiling fraction, and the desulfurization efficiency cannot be improved. .

カット温度を270℃〜330℃の範囲、特に好ましく
は300〜320℃付近の温度に設定することにより、
原料軽油1を難分解硫黄化合物(ジベンジルチオフェン
類など)に富む高沸点留分14と、易分解硫黄化合物(ベ
ンジルチオフェン類など)を含む低沸点留分15に分留
することができる。
By setting the cutting temperature in the range of 270 ° C to 330 ° C, particularly preferably in the vicinity of 300 to 320 ° C,
The raw gas oil 1 can be fractionated into a high boiling fraction 14 rich in hardly decomposed sulfur compounds (such as dibenzylthiophenes) and a low boiling fraction 15 containing easily decomposed sulfur compounds (such as benzylthiophenes).

高沸点留分14と低沸点留分15は、それぞれ脱硫反応
器11,12に送り、水素と混合して水素化脱硫処理
(以下、脱硫処理という)する。この脱硫処理は、双方の
留分ともに脱硫処理後の油の硫黄濃度が製品軽油の目標
硫黄濃度となるように設定しても良いし、或いは一方の
硫黄濃度が目標硫黄濃度以上であっても他方の硫黄濃度
を極めて低くすることによって、双方の留分を混合した
油の硫黄濃度を目標値に適合させるように設定すること
も可能である。
The high-boiling fraction 14 and the low-boiling fraction 15 are sent to desulfurization reactors 11 and 12, respectively, and mixed with hydrogen for hydrodesulfurization treatment.
(Hereinafter referred to as desulfurization treatment). This desulfurization treatment may be set so that the sulfur concentration of the oil after desulfurization treatment of both fractions becomes the target sulfur concentration of the product gas oil, or even if one sulfur concentration is equal to or higher than the target sulfur concentration. By making the other sulfur concentration extremely low, it is possible to set the sulfur concentration of the oil in which both fractions are mixed so as to meet the target value.

ジベンジルチオフェン類などの難分解硫黄化合物に富む
高沸点留分の脱硫処理は、反応時間が長いために処理油
当たりの触媒使用量が多くなるが、一方においてベンジ
ルチオフェン類などの易分解硫黄化合物を含む低沸点留
分の脱硫処理は極めて高く、その際の触媒使用量は少量
となるため、全体として見れば、原料軽油1を分留する
ことなく直接的に脱硫処理する場合に比べ、触媒使用量
を相当量減少させることができる。
In the desulfurization process of high boiling fractions rich in persistent sulfur compounds such as dibenzylthiophenes, the reaction time is long, so the amount of catalyst used per treated oil is large, but on the other hand, easily decomposable sulfur compounds such as benzylthiophenes are used. The desulfurization treatment of the low boiling point fraction containing the is extremely high, and the amount of the catalyst used at that time is small. Therefore, as a whole, compared with the case of directly desulfurizing the raw gas oil 1 without fractionating, the catalyst The amount used can be reduced considerably.

なお、上記脱硫反応器11,12に使用される脱硫触媒
としては、アルミナまたはシリカ-アルミナを担体と
し、これにCo−Mo系、Ni−Mo系またはCo−N
i−Mo系の各金属硫化物を保持させたものなどが使用
される。
As the desulfurization catalyst used in the desulfurization reactors 11 and 12, alumina or silica-alumina is used as a carrier, and Co-Mo system, Ni-Mo system or Co-N is used as the carrier.
For example, a material holding each i-Mo-based metal sulfide is used.

脱硫処理を終えたそれぞれの油16,17のうち、高沸
点留分側の油16は、脱硫反応の結果、色相が不安定に
なる傾向があるために、冷却後色相安定化処理装置13
に送り色相安定化処理を行う。この色相安定化処理とし
ては、活性白土などの吸着材を充填した吸着器に油16
を通す方法や、水素を混合して好ましくは200℃程度
の温度で水素化脱色反応を行う水添脱色法などが使用さ
れる。
Of the oils 16 and 17 that have been desulfurized, the oil 16 on the high boiling point fraction side tends to have an unstable hue as a result of the desulfurization reaction.
Then, the color stabilization process is performed. For this hue stabilization treatment, oil 16 is applied to an adsorber filled with an adsorbent such as activated clay.
And a hydrogenation decolorization method in which hydrogen is mixed and the hydrogenation decolorization reaction is preferably carried out at a temperature of about 200 ° C.

次いで、脱硫、色相安定化処理を終えた高沸点留分側の
油18と、脱硫処理を終えた低沸点留分側の油17を混
合し、これを高圧分離器(図示略)に導入する。この高圧
分離器で発生する水素に富むガスは循環、再利用する。
一方、高圧分離器からの液体部分は、冷却したのち低圧
分離器(図示略)へ導き硫化水素やその他の低級炭化水素
ガスを分離する。この低圧分離の後、液体部分として製
品軽油19が得られる。
Next, the oil 18 on the high boiling point fraction side that has undergone desulfurization and hue stabilization processing and the oil 17 on the low boiling point fraction side that has completed desulfurization processing are mixed and introduced into a high pressure separator (not shown). . The hydrogen-rich gas generated in this high-pressure separator is circulated and reused.
On the other hand, the liquid portion from the high pressure separator is cooled and then introduced into a low pressure separator (not shown) to separate hydrogen sulfide and other lower hydrocarbon gas. After this low-pressure separation, the product gas oil 19 is obtained as the liquid part.

なお、上記脱硫処理や色相安定化処理あるいは混合した
油の最終処理(上記の例では高圧分離の後に低圧分離を
行う。)の各条件ならびに反応形式は特に制限的な事項
はなく、この種の脱硫処理において用いられる通常の反
応条件および反応形式を採用することができる。
There are no particular restrictions on the conditions and reaction mode of the desulfurization treatment, the hue stabilization treatment, or the final treatment of the mixed oil (in the above example, high-pressure separation is followed by low-pressure separation). Usual reaction conditions and reaction formats used in the desulfurization treatment can be adopted.

以下、実施例により本発明の効果を一層明確にする。Hereinafter, the effects of the present invention will be further clarified by examples.

「実施例」 (比較例) 従来法により原料軽油の脱硫処理を行った。"Example" (Comparative example) A desulfurization treatment of a light oil feedstock was performed by a conventional method.

硫黄濃度が0.83wt%の粗軽油(原料軽油)を第2図に
示すように直接脱硫処理した。
Crude gas oil (raw gas oil) having a sulfur concentration of 0.83 wt% was directly desulfurized as shown in FIG.

脱硫条件は、 原料流量……100m3/Hr(=1500BPSD) 反応温度……340℃ 反応圧力……50Kg/cm2G 触媒……アルミナ担体/Co-Mo系硫化物 とし、目標硫黄濃度0.05wt%の製品軽油を得るため
の滞留時間および所要の触媒量を求めた。その結果、滞
留時間……0.51Hr、触媒量……51.0m3であっ
た。
The desulfurization conditions were as follows: raw material flow rate: 100 m 3 / Hr (= 1500 BPSD) Reaction temperature: 340 ° C. Reaction pressure: 50 Kg / cm 2 G catalyst: Alumina carrier / Co-Mo sulfide, target sulfur concentration of 0. The residence time and the amount of catalyst required to obtain 05 wt% product gas oil were determined. As a result, the residence time was 0.51 hr and the catalyst amount was 51.0 m 3 .

(実施例) 先の比較例と同じ粗軽油を用い、カット温度310℃で
蒸留して高沸点留分と低沸点留分の2つの留分に分割し
た。このときの各留分の割合は、高沸点留分が約35vo
l%、低沸点留分が約65vol%であった。またこれら各
留分の硫黄濃度は、高沸点留分が1.41wt%、低沸点
留分が0.52wt%であった。
(Example) Using the same crude gas oil as in the above-mentioned comparative example, it was distilled at a cut temperature of 310 ° C to be divided into two fractions, a high-boiling fraction and a low-boiling fraction. The ratio of each fraction at this time is about 35 vo
1% and the low boiling fraction was about 65 vol%. The sulfur concentration of each of these fractions was 1.41 wt% for the high boiling fraction and 0.52 wt% for the low boiling fraction.

次に、これら2つの留分を、脱硫後の各留分の油を混合
して得られた油中の硫黄濃度が0.05wt%となるよう
に脱硫した。なお脱硫条件は、 [高沸点留分] 原料流量……35m3/Hr 反応温度……340℃ 反応圧力……50Kg/cm2G 触媒……アルミナ担体/Co-Mo系硫化物 [低沸点留分] 原料流量……65m3/Hr 反応温度……340℃ 反応圧力……50Kg/cm2G 触媒……アルミナ担体/Co-Mo系硫化物 とした。
Next, these two fractions were desulfurized so that the sulfur concentration in the oil obtained by mixing the oil of each fraction after desulfurization was 0.05 wt%. The desulfurization conditions are as follows: [High boiling point fraction] Raw material flow rate …… 35 m 3 / Hr Reaction temperature …… 340 ° C. Reaction pressure …… 50 kg / cm 2 G catalyst …… Alumina carrier / Co-Mo sulfide [Low boiling point fraction Minute] Raw material flow rate ... 65 m 3 / Hr Reaction temperature ... 340 ° C. Reaction pressure ... 50 Kg / cm 2 G catalyst ... Alumina carrier / Co-Mo sulfide.

これら各留分の脱硫処理後の硫黄濃度を第1表に示すよ
うに適宜に設定し、各々の滞留時間および総触媒量を求
めた。
The sulfur concentration of each of these fractions after desulfurization treatment was appropriately set as shown in Table 1, and the residence time and total amount of each catalyst were determined.

この結果を第1表に示した。The results are shown in Table 1.

第1表より、高沸点留分の脱硫後の硫黄濃度および低沸
点留分の脱硫後の硫黄濃度をそれぞれ目標硫黄濃度であ
る0.05%として処理した場合の所要触媒量は34.
2m3であり、上述した比較例での所要触媒量51m3に比
べ格段に少ない触媒量で硫黄濃度0.05wt%の製品軽
油を得ることができた。
From Table 1, the required catalyst amount when the sulfur concentration after desulfurization of the high-boiling fraction and the sulfur concentration after desulfurization of the low-boiling fraction were treated as the target sulfur concentration of 0.05% was 34.
A 2m 3, it was possible to obtain a sulfur concentration 0.05 wt% of the product gas oil with much smaller amount of catalyst than the required amount of catalyst 51m 3 of the comparative example described above.

さらに使用触媒量が最も少なくなる条件(ミニマムポイ
ント)は、高沸点留分の脱硫処理後の硫黄濃度を0.1w
t%とし、低沸点留分の脱硫処理後の硫黄濃度を約0.023
wt%としたときであった。
Furthermore, the condition (minimum point) where the amount of catalyst used is the smallest is that the sulfur concentration after desulfurization of the high boiling fraction is 0.1 w
t%, and the sulfur concentration after desulfurization of the low boiling fraction is about 0.023
It was when it was wt%.

次に、カット温度を270℃、290℃、310℃、3
30℃、350℃として原料軽油を分留し、それぞれ高
沸点留分と低沸点留分の2つの留分に分割し、各留分の
硫黄濃度および留分収率を調べた。また脱硫処理した2
つの留分を混合した時に最小の触媒量で硫黄濃度が0.
05wt%になるための各々の留分の処理条件並びに処理
油の硫黄濃度と必要触媒量を求めた。この結果を第2表
に示した。
Next, the cutting temperature is 270 ° C, 290 ° C, 310 ° C, 3
The feed gas oil was fractionally distilled at 30 ° C. and 350 ° C. and divided into two fractions, a high-boiling fraction and a low-boiling fraction, and the sulfur concentration and fraction yield of each fraction were investigated. Also desulfurized 2
When the two fractions were mixed, the sulfur content was 0.
The treatment conditions of each fraction to obtain the amount of 05 wt%, the sulfur concentration of the treated oil, and the required catalyst amount were determined. The results are shown in Table 2.

第2表から明らかなように、原料軽油を高沸点留分と低
沸点留分の2つの留分に分割する場合のカット温度とし
ては330℃以下に設定すれば、必要触媒量の低減効果
が高くなり、特にカット温度を310℃とした場合に良
好であった。
As is clear from Table 2, when the feed gas oil is divided into two fractions, a high-boiling fraction and a low-boiling fraction, if the cut temperature is set to 330 ° C. or lower, the effect of reducing the amount of the required catalyst is reduced. It became higher, and was particularly good when the cutting temperature was 310 ° C.

「発明の効果」 以上説明したように、本発明は、原料軽油を分留して複
数の留分に分割し、それぞれの留分の脱硫難易度に合わ
せて脱硫処理あるいは脱硫処理と色相安定化処理を行
い、この後に各留分を混合することによって、硫黄濃度
の極めて低い色相の安定した製品軽油を効率良く製造す
ることができる。
"Effects of the Invention" As described above, the present invention is to fractionate raw gas oil and divide it into a plurality of fractions. By carrying out the treatment and then mixing the respective fractions, it is possible to efficiently produce a stable product gas oil having a hue with an extremely low sulfur concentration.

またそれぞれの留分の脱硫難易度に合わせて脱硫処理あ
るいは脱硫処理と色相安定化処理を行うことにより、全
体としての触媒使用量を、原料軽油を直接脱硫する場合
に比べて少なくすることができる。
Also, by performing desulfurization treatment or desulfurization treatment and hue stabilization treatment according to the desulfurization difficulty of each fraction, the amount of catalyst used as a whole can be reduced as compared to the case of directly desulfurizing raw gas oil. .

さらに原料軽油を分留して脱硫条件を厳しくする部分と
脱硫が容易な部分に分けてそれぞれの留分の脱硫難易度
に合わせて脱硫処理を行うことにより、色相の不安定要
因の発生を少なくすることができる。
Furthermore, by dividing the raw gas oil into a part where the desulfurization conditions are severe and a part where desulfurization is easy, and by performing desulfurization treatment according to the degree of difficulty of desulfurization of each fraction, the occurrence of unstable factors of hue is reduced. can do.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の軽油脱硫方法の一例を説明するため
のフローシート、第2図は従来の軽油脱硫法を示すフロ
ーシートである。 1……原料軽油、10……蒸留器、11,12……脱硫
反応器、13……色相安定化処理装置、14……高沸点
留分、15……低沸点留分、19……製品軽油。
FIG. 1 is a flow sheet for explaining an example of the gas oil desulfurization method of the present invention, and FIG. 2 is a flow sheet showing a conventional gas oil desulfurization method. 1 ... Raw gas oil, 10 ... Distiller, 11, 12 ... Desulfurization reactor, 13 ... Hue stabilization treatment device, 14 ... High boiling fraction, 15 ... Low boiling fraction, 19 ... Product Light oil.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原料軽油を分留して複数の留分に分割し、
それぞれの留分について脱硫処理あるいは脱硫処理と脱
色処理を行い、この後に各留分を混合することを特徴と
する軽油の脱硫方法。
1. A raw gas oil is fractionally fractionated into a plurality of fractions,
A desulfurization method for light oil, characterized by performing desulfurization treatment or desulfurization treatment and decolorization treatment on each fraction, and then mixing each fraction.
【請求項2】原料軽油を、270℃〜330℃の範囲か
ら設定されるカット温度で分留し、沸点が上記カット温
度より低い低沸点留分と、沸点が上記カット温度より高
い高沸点留分に分割し、該低沸点留分を脱硫処理すると
ともに、該高沸点留分を脱硫処理した後に色相安定化処
理し、この後に双方の処理油を混合することを特徴とす
る軽油の脱硫方法。
2. A raw gas oil is fractionally distilled at a cutting temperature set in the range of 270 ° C. to 330 ° C., a low boiling fraction having a boiling point lower than the above cutting temperature and a high boiling fraction having a boiling point higher than the above cutting temperature. A desulfurization method for light oil, characterized in that the low-boiling fraction is desulfurized, and the high-boiling fraction is desulfurized, followed by a hue stabilization treatment, and then both treated oils are mixed. .
【請求項3】上記色相安定化処理が、白土処理または水
素添加処理であることを特徴とする請求項2に記載の軽
油の脱硫方法。
3. The desulfurization method of gas oil according to claim 2, wherein the hue stabilization treatment is a clay treatment or a hydrogenation treatment.
JP2157352A 1990-06-15 1990-06-15 Light oil desulfurization method Expired - Fee Related JPH0649873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157352A JPH0649873B2 (en) 1990-06-15 1990-06-15 Light oil desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157352A JPH0649873B2 (en) 1990-06-15 1990-06-15 Light oil desulfurization method

Publications (2)

Publication Number Publication Date
JPH0446993A JPH0446993A (en) 1992-02-17
JPH0649873B2 true JPH0649873B2 (en) 1994-06-29

Family

ID=15647802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157352A Expired - Fee Related JPH0649873B2 (en) 1990-06-15 1990-06-15 Light oil desulfurization method

Country Status (1)

Country Link
JP (1) JPH0649873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046693A (en) * 2000-11-17 2009-03-05 Jgc Corp Desulfurization process for light gas oil fraction, and desulfurization apparatus for light gas oil fraction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156370B1 (en) * 2005-02-17 2012-06-13 에스케이에너지 주식회사 Process for producing ultra low sulfur and low aromatic diesel fuel
CN108144318B (en) * 2018-02-01 2023-12-19 南京佳华科技股份有限公司 Associated gas desulfurization system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340183A (en) * 1965-08-05 1967-09-05 Chevron Res Process for decolorizing oils

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340183A (en) * 1965-08-05 1967-09-05 Chevron Res Process for decolorizing oils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046693A (en) * 2000-11-17 2009-03-05 Jgc Corp Desulfurization process for light gas oil fraction, and desulfurization apparatus for light gas oil fraction

Also Published As

Publication number Publication date
JPH0446993A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US6454934B2 (en) Petroleum processing method
US4116816A (en) Parallel hydrodesulfurization of naphtha and distillate streams with passage of distillate overhead as reflux to the naphtha distillation zone
US4424117A (en) Hydrostripping process of crude oil
US5312543A (en) Resid hydrotreating using solvent extraction and deep vacuum reduction
US4673485A (en) Process for increasing deasphalted oil production from upgraded residua
US2983669A (en) Hydrodesulfurization of selected gasoline fractions
KR100980324B1 (en) A process for reducing sulfur and olefin contents in gasoline
US2880164A (en) Manufacture of anti-knock gasoline
US4973396A (en) Method of producing sweet feed in low pressure hydrotreaters
JPH0649873B2 (en) Light oil desulfurization method
US4761222A (en) Method for separating normally liquid organic compounds
US20050011811A1 (en) Desulfurization of a naphtha gasoline stream derived from a fluid catalytic cracking unit
US4170544A (en) Hydrocracking process including upgrading of bottoms fraction of the product
US3926785A (en) Integrated distillation and hydrodesulfurization process for jet fuel production
CN113166655B (en) Multi-stage fractionation of FCC naphtha and post-processing and recovery of aromatics and gasoline fractions
US3025230A (en) Hydrogenation of shale oil
JP2863326B2 (en) Crude oil refining method
US2749282A (en) Catalytic desulphurisation of petroleum hydrocarbons
JP3411998B2 (en) Method for producing low sulfur gas oil
US2064842A (en) Treatment of hydrocarbon oil
KR100813777B1 (en) Method for producing low-sulphur petrol
JPH0734073A (en) Hydrogenation of petroleum and hydrogenation apparatus
SU1142500A1 (en) Method of hydrofining petroleum fractions
US2749283A (en) Hydro-desulphurisation of cracked petroleum naphtha and straight run naphtha
RU2047649C1 (en) Method of diesel fuel producing from sulfurous oils

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees