JPH0649641A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPH0649641A
JPH0649641A JP20230692A JP20230692A JPH0649641A JP H0649641 A JPH0649641 A JP H0649641A JP 20230692 A JP20230692 A JP 20230692A JP 20230692 A JP20230692 A JP 20230692A JP H0649641 A JPH0649641 A JP H0649641A
Authority
JP
Japan
Prior art keywords
vapor deposition
sample
vacuum chamber
monitor substrate
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20230692A
Other languages
Japanese (ja)
Inventor
Yutaka Ido
豊 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP20230692A priority Critical patent/JPH0649641A/en
Publication of JPH0649641A publication Critical patent/JPH0649641A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a vacuum deposition device capable of accurately controlling the optical film thickness of plural vapor-deposition samples at the same time. CONSTITUTION:Each of the plural sample holders 3 in the chamber 1 is provided with a part 6 for mounting a monitor substrate M, a laser beam source for irradiating the substrate M with a laser beam set in a vacuum chamber, an optical system for conducting a reflected light from the substrate obtained by the irradiation with the laser beam source to a light receiving sensor 13 outside the chamber through a window 1a of the vacuum chamber 1 and a shutter 4 to stop the vapor deposition on a vapor-deposition sample on a sample holder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抵抗加熱、電子ビーム
蒸着装置をはじめとする真空蒸着装置に関し、更に詳し
くは、真空チャンバ内に複数個のサンプルホルダを備え
た真空蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum evaporation apparatus such as a resistance heating apparatus and an electron beam evaporation apparatus, and more particularly to a vacuum evaporation apparatus having a plurality of sample holders in a vacuum chamber.

【0002】[0002]

【従来の技術】電子ビーム蒸着をはじめとする真空蒸着
における蒸着膜厚をモニタする方式として、従来、クリ
スタル振動子センサが多用されていた。この方式では、
薄膜の幾何学的厚さを力学的方法で測定するため、多層
膜反射鏡やARコート等の光学的薄膜を形成する場合に
は不正確さを伴うとともに、センサ自体の大きさ、冷却
水の配管、あるいは電気系統の配線の問題上、蒸着サン
プルのごく近傍にセンサを設置することが困難であっ
た。
2. Description of the Related Art Conventionally, a crystal oscillator sensor has been widely used as a method for monitoring a vapor deposition film thickness in vacuum vapor deposition such as electron beam vapor deposition. With this method,
Since the geometrical thickness of the thin film is measured by a mechanical method, inaccuracies are involved when forming an optical thin film such as a multi-layered film mirror or AR coat, and the size of the sensor itself and the cooling water It was difficult to install the sensor in the immediate vicinity of the vapor deposition sample due to the problem of piping or wiring of the electric system.

【0003】このような問題を解決する方式として光学
式モニタ方式がある。この方式は、光学的薄膜による単
波長の光に対する反射率または透過率が、膜の光学的厚
さがその波長の1/4になった時点で極値を採ることを
利用したもので、この光学式モニタ方式を採用した従来
の真空蒸着装置の構成例を図4に示す。
There is an optical monitor system as a system for solving such a problem. This method utilizes the fact that the reflectance or transmittance of a single wavelength light by an optical thin film takes an extreme value when the optical thickness of the film becomes ¼ of that wavelength. FIG. 4 shows an example of the configuration of a conventional vacuum vapor deposition apparatus that employs an optical monitor system.

【0004】この例においては、シャッタ400を介し
て選択的に分子線を発生する蒸着源40a,40bを収
容した真空チャンバ41内の回転ドーム42に複数個の
サンプルホルダ43が設けられ、回転ドーム42の中央
部分にモニタ用基板44が配設されている。モニタ用基
板44には、真空チャンバ41に形成された窓45およ
び反射ミラー46を介してプローブ光発生部47からの
単波長光が照射されるようになっているとともに、その
反射光が同じく窓45および反射ミラー46を介して光
検出回路48に導入され、反射光強度がレコーダ49に
記録されるようになっている。そして、レコーダ49に
よる光強度をモニタしておき、その値が極値になったと
きを見計らって、次の膜の蒸着を開始するようになって
いる。この方式によると、光学的膜厚がコントロールで
きるという利点がある。
In this example, a plurality of sample holders 43 are provided in a rotary dome 42 inside a vacuum chamber 41 accommodating vapor deposition sources 40a and 40b which selectively generate a molecular beam via a shutter 400, and a plurality of sample holders 43 are provided. A monitor substrate 44 is disposed in the central portion of 42. The monitor substrate 44 is adapted to be irradiated with the single wavelength light from the probe light generator 47 through the window 45 formed in the vacuum chamber 41 and the reflection mirror 46, and the reflected light is also emitted from the window. The reflected light intensity is introduced into the photodetection circuit 48 through the reflection mirror 45 and the reflection mirror 46, and the reflected light intensity is recorded in the recorder 49. Then, the light intensity by the recorder 49 is monitored, and when the value reaches the extreme value, the vapor deposition of the next film is started. According to this method, there is an advantage that the optical film thickness can be controlled.

【0005】なお、図においてSは蒸着サンプルで、5
0および51は、前記したクリスタル振動子センサ方式
のためのクリスタル振動子およびその発進周波数を用い
た膜厚モニタ装置である。
In the figure, S is a vapor deposition sample and 5
Reference numerals 0 and 51 are crystal oscillators for the above-described crystal oscillator sensor system and film thickness monitor devices using the starting frequency thereof.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記した従
来の光学式モニタ方式では、プローブ光発生部47が真
空チャンバ41の外部にあることから、真空チャンバ4
1内に配置できるモニタ用基板の数が限定され、多数の
蒸着サンプルSをセットした場合は、適当と思われる場
所に置かれた1個ないし数個のモニタ用基板44による
反射光または透過光強度から、全ての蒸着サンプルSの
膜厚を推定することになる。このような方式では、蒸着
源40からの分子線強度に空間的なムラがある場合、肝
心の各蒸着サンプルSの膜厚制御が困難となり、また、
複数個のモニタ用基板44を設けてそれらの反射光ない
し透過光強度から分子線強度の空間的ムラを校正するに
しても、例えば蒸着材料の減少に伴って分子線の空間分
布が変化することから、再現性が悪いという欠点があっ
た。
By the way, in the above-mentioned conventional optical monitor system, since the probe light generator 47 is located outside the vacuum chamber 41, the vacuum chamber 4 is not provided.
The number of monitor substrates that can be arranged in one is limited, and when a large number of vapor deposition samples S are set, the reflected light or transmitted light by one or several monitor substrates 44 placed at an appropriate place. The film thickness of all vapor deposition samples S will be estimated from the intensity. In such a method, when there is spatial unevenness in the molecular beam intensity from the vapor deposition source 40, it becomes difficult to control the film thickness of each vapor deposition sample S, which is essential.
Even if a plurality of monitor substrates 44 are provided and the spatial unevenness of the molecular beam intensity is calibrated from their reflected or transmitted light intensities, for example, the spatial distribution of the molecular beam may change as the vapor deposition material decreases. Therefore, there is a drawback that the reproducibility is poor.

【0007】本発明はこのような点に鑑みてなされたも
ので、同時に複数個の蒸着サンプルの光学的膜厚制御を
正確に行うことのできる真空蒸着装置の提供を目的とし
ている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a vacuum vapor deposition apparatus capable of accurately controlling the optical film thickness of a plurality of vapor deposition samples at the same time.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の真空蒸着装置は、真空チャンバ内に設けら
れた複数のサンプルホルダごとに、モニタ用基板を各ホ
ルダ近傍の真空チャンバ内に装着するためのモニタ用基
板装着部と、真空チャンバ内に配設されて上記モニタ用
基板にレーザ光を照射するレーザ光源と、そのレーザ光
の照射により得られるモニタ用基板からの反射光を真空
チャンバに形成された窓を介して当該チャンバ外に設け
られた受光センサに導く光学系と、サンプルホルダ上の
蒸着サンプルへの蒸着を停止させるためのシャッタとを
設けたことによって特徴づけられる。
In order to achieve the above object, the vacuum evaporation apparatus of the present invention has a monitor substrate in a vacuum chamber near each holder for each of a plurality of sample holders provided in the vacuum chamber. A monitor substrate mounting portion for mounting on a monitor substrate, a laser light source disposed in a vacuum chamber for irradiating the monitor substrate with a laser beam, and a reflected light from the monitor substrate obtained by the laser beam irradiation. It is characterized in that an optical system for guiding a light receiving sensor provided outside the chamber through a window formed in the vacuum chamber and a shutter for stopping deposition on the deposition sample on the sample holder are provided.

【0009】[0009]

【作用】各蒸着サンプルに近接して配置された各モニタ
用基板に、真空チャンバ内に設けられた個別のレーザ光
源からの光が照射され、その反射光が真空チャンバ外部
の受光センサに導かれる。各モニタ用基板は各蒸着サン
プルに対応してその近傍に置かれているので、分子線に
空間分布があっても、各モニタ用基板にはそれぞれに対
応する蒸着サンプルの成膜速度と同等の速度で成膜され
る。従って、受光センサによる各モニタ用基板からの反
射光強度が極値に達した時点で、各サンプルホルダごと
に設けられたシャッタを閉じることにより、所期の目的
を達成できる。
The light from the individual laser light source provided in the vacuum chamber is irradiated to each monitor substrate arranged in the vicinity of each vapor deposition sample, and the reflected light is guided to the light receiving sensor outside the vacuum chamber. . Since each monitor substrate is placed in the vicinity corresponding to each vapor deposition sample, even if the molecular beam has a spatial distribution, each monitor substrate has a film formation rate equivalent to that of the vapor deposition sample corresponding to each monitor substrate. It is deposited at a speed. Therefore, the intended purpose can be achieved by closing the shutter provided for each sample holder when the intensity of the reflected light from each monitor substrate by the light receiving sensor reaches the extreme value.

【0010】[0010]

【実施例】図1は本発明実施例の構成を示す断面図で、
図2はその各サンプルホルダ3の近傍の詳細構成を示す
拡大図である。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention.
FIG. 2 is an enlarged view showing a detailed configuration in the vicinity of each sample holder 3.

【0011】真空ポンプに連通する真空チャンバ1内に
は、例えば2個の蒸着源2aおよび2bが配設されてお
り、これらの各蒸着源2aおよび2bにはいずれか一方
を開放するためのシャッタ20が設けられている。各蒸
着源2aおよび2bは電子ビーム照射または抵抗加熱に
よって昇温させることにより蒸発するが、シャッタ20
によって選択された側の分子線のみが真空チャンバ1内
で発生する。
In the vacuum chamber 1 communicating with the vacuum pump, for example, two vapor deposition sources 2a and 2b are arranged, and a shutter for opening one of these vapor deposition sources 2a and 2b. 20 are provided. Each of the vapor deposition sources 2a and 2b evaporates when the temperature is raised by electron beam irradiation or resistance heating.
Only the molecular beam on the side selected by is generated in the vacuum chamber 1.

【0012】真空チャンバ1内には、蒸着サンプルSを
それぞれ装着するための複数個のサンプルホルダ3・・3
が蒸着源2a,2bに対向配置されており、分子線は1
-7Torr台に保たれた真空チャンバ1内で直線的に蒸着
サンプルS・・Sに入射し、堆積する。
In the vacuum chamber 1, a plurality of sample holders 3, ...
Are arranged opposite to the vapor deposition sources 2a and 2b, and the molecular beam is 1
In the vacuum chamber 1 kept at 0 -7 Torr, the vapor deposition samples S ... S are linearly incident and deposited.

【0013】各サンプルホルダ3・・3には、それぞれ分
子線を遮るためのシャッタ4・・4が設けられており、こ
れらは外部からの操作によって個別に開閉し得るように
なっている。
Each sample holder 3, ... Is provided with a shutter 4, .4 for blocking the molecular beam, and these can be individually opened and closed by an operation from the outside.

【0014】各サンプルホルダ3・・3はそれぞれ基台5
に支承されており、この各基台5には、それぞれ、蒸着
サンプルSに近接してモニタ用基板Mを装着するための
モニタ用基板ホルダ6と、半導体レーザ7およびその電
源回路8、半導体レーザ7からのレーザ光を所定の断面
を有する平行光とするコリメータ部9、このコリメータ
部9を経たレーザ光を通過させてモニタ用基板Mに導
き、かつ、その反射光を反射させるビームスプリッタ1
0、および、ビームスプリッタ10により反射されたモ
ニタ用基板Mからの反射光を光ファイバ11内に導く光
ファイバ結合部12が設けられている。
Each sample holder 3 ...
On each of the bases 5, a monitor substrate holder 6 for mounting the monitor substrate M in proximity to the vapor deposition sample S, a semiconductor laser 7 and its power supply circuit 8, and a semiconductor laser. Collimator unit 9 for converting the laser light from 7 into parallel light having a predetermined cross section, and the beam splitter 1 for passing the laser light passing through the collimator unit 9 to guide it to the monitor substrate M and reflecting the reflected light.
An optical fiber coupling portion 12 that guides the reflected light from the substrate M for monitoring reflected by the beam splitter 10 into the optical fiber 11 is provided.

【0015】そして、この各光ファイバ結合部12に装
着された光ファイバ11・・11の先端は、それぞれ真空
チャンバ1に形成された窓1aに導かれている。窓1a
の外方には受光センサ13が配設されており、各光ファ
イバ11・・11により導かれた各モニタ用基板M・・Mか
らの反射光はこの受光センサ13に入射するように構成
されている。
The tips of the optical fibers 11, ..., 11 mounted on the respective optical fiber coupling portions 12 are guided to the windows 1a formed in the vacuum chamber 1, respectively. Window 1a
A light-receiving sensor 13 is disposed outside of the light-receiving sensor 13, and the reflected light from the respective monitor substrates M, ... M guided by the respective optical fibers 11 ,. ing.

【0016】受光センサ13の出力は、光検出回路14
によって変換増幅された後、レコーダ15に導入されて
いる。各サンプルホルダ3・・3に対応して設けられた半
導体レーザ7は、所定のタイミングで順次駆動され、レ
コーダ15には各サンプルホルダ3・・3ごとに装着され
たモニタ用基板M・・Mの反射光強度が順次記録されてい
く。
The output of the light receiving sensor 13 is the light detecting circuit 14
After being converted and amplified by, it is introduced into the recorder 15. The semiconductor lasers 7 provided corresponding to the respective sample holders 3 ... 3 are sequentially driven at a predetermined timing, and the recorder substrates 15 mounted on the sample holders 3 ... The reflected light intensity of is recorded sequentially.

【0017】以上の構成において、分子線は各蒸着サン
プルS・・Sとともに各モニタ用基板M・・Mにも入射して
堆積するが、各モニタ用基板M・・Mはそれぞれに対応す
る蒸着サンプルS・・Sに近接配置されているから、分子
線に多少の空間分布が存在していても互いに対応する蒸
着サンプルSとモニタ用基板Mの成膜速度の差は無視で
きる程度である。
In the above structure, the molecular beam is incident on and deposited on each monitor substrate M ... M together with each vapor deposition sample S ... S, but each monitor substrate M. Since they are arranged close to the samples S..S, even if there is some spatial distribution in the molecular beam, the difference in film forming rate between the vapor deposition sample S and the monitor substrate M corresponding to each other is negligible.

【0018】蒸着により成膜されつつある膜に対して所
定の波長を持つ光を照射したときの反射率と膜厚との関
係は、図3に例示するように、膜厚が1/4波長に達す
るごとに極大および極小が生じる。各モニタ用基板M・・
Mごとの反射光強度を順次記録するレコーダ15にも、
その各モニタ用基板M・・Mに堆積した膜厚に応じて経時
的に変化する曲線が描かれる。従って、このレコーダ1
5上における各モニタ用基板M・・Mごとの曲線を監視し
つつ、極大または極小に達した時点で該当するシャッタ
4・・4を閉じることにより、各蒸着サンプルS・・Sに1
/4波長の膜厚を持つ薄膜が形成される。全ての蒸着サ
ンプルS・・Sにこのような膜が形成された後、蒸着源2
a,2bに装着されているシャッタ20を駆動して次の
蒸着作業に移行することを繰り返すことにより、全ての
蒸着サンプルS・・Sに高精度の多層膜が形成される。
As shown in FIG. 3, the relationship between the reflectance and the film thickness when the film being formed by vapor deposition is irradiated with light having a predetermined wavelength, the film thickness is 1/4 wavelength. The maximum and the minimum occur each time. Each monitor board M ...
Also for the recorder 15 that sequentially records the reflected light intensity for each M,
A curve that changes with time according to the film thickness deposited on each of the monitor substrates M ... M is drawn. Therefore, this recorder 1
While monitoring the curve for each monitor substrate M ... M on 5 and closing the corresponding shutters 4 ... 4 at the time when the maximum or the minimum is reached, 1 for each vapor deposition sample S.
A thin film having a thickness of / 4 wavelength is formed. After such a film is formed on all the vapor deposition samples S.
By driving the shutters 20 mounted on a and 2b and shifting to the next vapor deposition operation repeatedly, a highly accurate multilayer film is formed on all the vapor deposition samples S.

【0019】以上の実施例において注目すべき点は、プ
ローブ用光源として半導体レーザ7を用いている点であ
り、これによりプローブ光の発生部は非常にコンパクト
にすることができ、真空チャンバ1に内蔵する方式を採
用可能となり、また、半導体レーザはバッテリで駆動可
能であるため、電源回路8を真空チャンバ1内に内蔵し
て、外部から電流を導入する等の煩わしさがないという
利点がある。
A point to be noted in the above-mentioned embodiments is that the semiconductor laser 7 is used as a light source for the probe, whereby the probe light generating portion can be made very compact and the vacuum chamber 1 can be provided. Since the built-in method can be adopted, and the semiconductor laser can be driven by a battery, there is an advantage that the power supply circuit 8 is built in the vacuum chamber 1 and there is no trouble such as introducing an electric current from the outside. .

【0020】なお、本発明は、各サンプルホルダ3を含
む基台4・・4は固定されたもののほか、これらを支承す
るドームを回転させるもの、および、この公転に加えて
自転する方式のものにも適用することができる。また、
以上の実施例において、クリスタル振動子センサ方式の
膜厚モニタを併用し得ることは勿論である。
According to the present invention, in addition to the fixed bases 4 and 4 including the respective sample holders 3, the dome which supports these is rotated, and the system which rotates in addition to this revolution. Can also be applied to. Also,
In the above embodiments, it is needless to say that a crystal oscillator sensor type film thickness monitor can be used together.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
真空チャンバ内に配置された複数個のサンプルホルダご
とに、モニタ用基板の装着と、そのモニタ用基板に対し
てレーザ光を照射するレーザ光源と、そのレーザ光の照
射により得られるモニタ用基板からの反射光を真空チャ
ンバに形成された窓を介して当該チャンバ外に設けられ
た受光センサに導く光学系を設けるとともに、サンプル
ホルダ上のサンプルへの蒸着を停止させるためのシャッ
タを設けているので、真空チャンバ内に多数個の蒸着サ
ンプルをセットして蒸着させる場合でも、全ての蒸着サ
ンプルごとの膜厚を個別にモニタすることが可能とな
り、多数のサンプルに対して正確な光学的膜厚制御が可
能となる。また、多数のサンプルを同時に処理できるた
め、成膜のコストダウンを図ることもできる。
As described above, according to the present invention,
For each of a plurality of sample holders arranged in the vacuum chamber, a monitor substrate is mounted, a laser light source for irradiating the monitor substrate with laser light, and a monitor substrate obtained by irradiating the laser light Since an optical system for guiding the reflected light of the above through a window formed in the vacuum chamber to a light receiving sensor provided outside the chamber is provided, and a shutter for stopping deposition on the sample on the sample holder is provided. Even when multiple evaporation samples are set in the vacuum chamber for evaporation, the film thickness of each evaporation sample can be individually monitored, and accurate optical film thickness control for many samples is possible. Is possible. Further, since many samples can be processed at the same time, the cost of film formation can be reduced.

【0022】更に、レーザ光源の波長を掃引もしくは各
レーザ光源の選択により照射光波長を変化させると、各
サンプルに対して種々の膜厚の蒸着を同時に進行させる
こともできる。
Further, when the wavelength of the irradiation light is changed by sweeping the wavelength of the laser light source or selecting each laser light source, vapor deposition of various film thicknesses can be simultaneously advanced for each sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の構成を示す断面図FIG. 1 is a sectional view showing a configuration of an embodiment of the present invention

【図2】その各サンプルホルダ3の近傍の詳細構成を示
す拡大図
FIG. 2 is an enlarged view showing a detailed configuration in the vicinity of each sample holder 3.

【図3】蒸着により成膜されつつある膜に対して所定の
波長を持つ光を照射したときの反射率と膜厚との関係を
示すグラフ
FIG. 3 is a graph showing a relationship between reflectance and film thickness when a film being formed by vapor deposition is irradiated with light having a predetermined wavelength.

【図4】光学式モニタ方式を採用した従来の真空蒸着装
置の構成例を示す断面図
FIG. 4 is a cross-sectional view showing a configuration example of a conventional vacuum vapor deposition apparatus adopting an optical monitor system.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 1a 窓 2a,2b 蒸着源 20 シャッタ 3 サンプルホルダ 4 シャッタ 5 基台 6 モニタ用基板ホルダ 7 レーザ光源 8 電源回路 9 コリメータ部 10 ビームスプリッタ 11 光ファイバ 12 光ファイバ結合部 13 受光センサ 14 光検出回路 15 レコーダ S 蒸着サンプル M モニタ用基板 1 vacuum chamber 1a windows 2a, 2b vapor deposition source 20 shutter 3 sample holder 4 shutter 5 base 6 monitor substrate holder 7 laser light source 8 power supply circuit 9 collimator section 10 beam splitter 11 optical fiber 12 optical fiber coupling section 13 light receiving sensor 14 light Detection circuit 15 Recorder S Deposition sample M Monitor substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバ内に複数個のサンプルホル
ダを備えた真空蒸着装置において、 上記各サンプルホルダごとに、 モニタ用基板を各ホルダ近傍の真空チャンバ内に装着す
るためのモニタ用基板装着部と、真空チャンバ内に配設
され、上記モニタ用基板にレーザ光を照射するレーザ光
源と、そのレーザ光の照射により得られるモニタ用基板
からの反射光を真空チャンバに形成された窓を介して当
該チャンバ外に設けられた受光センサに導く光学系と、
サンプルホルダ上のサンプルへの蒸着を停止させるため
のシャッタと、 が設けられていることを特徴とする真空蒸着装置。
1. A vacuum vapor deposition apparatus having a plurality of sample holders in a vacuum chamber, wherein a monitor substrate mounting portion for mounting a monitor substrate in the vacuum chamber near each holder for each sample holder. And a laser light source disposed in the vacuum chamber for irradiating the monitor substrate with a laser beam, and reflected light from the monitor substrate obtained by the laser beam irradiation through a window formed in the vacuum chamber. An optical system that guides a light receiving sensor provided outside the chamber,
A vacuum vapor deposition apparatus comprising: a shutter for stopping vapor deposition on a sample on a sample holder;
JP20230692A 1992-07-29 1992-07-29 Vacuum deposition device Pending JPH0649641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20230692A JPH0649641A (en) 1992-07-29 1992-07-29 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20230692A JPH0649641A (en) 1992-07-29 1992-07-29 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPH0649641A true JPH0649641A (en) 1994-02-22

Family

ID=16455365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20230692A Pending JPH0649641A (en) 1992-07-29 1992-07-29 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPH0649641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784445B2 (en) 1999-06-28 2004-08-31 Raunhofer-Gesellschaft Zur Foederung Der Angewandten Forschung E.V. Apparatus for monitoring intentional or unavoidable layer depositions and method
WO2006017782A1 (en) * 2004-08-05 2006-02-16 Acton Reserch Corporation A self-referencing instrument and method thereof for measuring electromagnetic properties
WO2019063061A1 (en) * 2017-09-26 2019-04-04 Applied Materials, Inc. Material deposition arrangement, vacuum deposition system and methods therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784445B2 (en) 1999-06-28 2004-08-31 Raunhofer-Gesellschaft Zur Foederung Der Angewandten Forschung E.V. Apparatus for monitoring intentional or unavoidable layer depositions and method
WO2006017782A1 (en) * 2004-08-05 2006-02-16 Acton Reserch Corporation A self-referencing instrument and method thereof for measuring electromagnetic properties
US7321424B2 (en) 2004-08-05 2008-01-22 Acton Research Corp. Self-referencing instrument and method thereof for measuring electromagnetic properties
WO2019063061A1 (en) * 2017-09-26 2019-04-04 Applied Materials, Inc. Material deposition arrangement, vacuum deposition system and methods therefor
CN109844169A (en) * 2017-09-26 2019-06-04 应用材料公司 Material deposition arrangement, vacuum deposition system and its method

Similar Documents

Publication Publication Date Title
US5880823A (en) Method and apparatus for measuring atomic vapor density in deposition systems
US5156461A (en) Multi-point pyrometry with real-time surface emissivity compensation
US5508934A (en) Multi-point semiconductor wafer fabrication process temperature control system
US5317656A (en) Fiber optic network for multi-point emissivity-compensated semiconductor wafer pyrometry
US6970532B2 (en) Method and apparatus for measuring thin film, and thin film deposition system
US5588995A (en) System for monitoring the growth of crystalline films on stationary substrates
US20040253824A1 (en) Arrangement for monitoring a thickness of a layer depositing on a sidewall of a processing chamber
CN103026191A (en) Temperature-adjusted spectrometer
KR20020082127A (en) Controlling the thickness of an organic layer in an organic light-emitting device
JPH0746077B2 (en) Spectrophotometer
KR101279066B1 (en) Measuring arrangement for the optical monitoring of coating processes
JP3308135B2 (en) In-process film thickness monitoring apparatus and method
KR101279067B1 (en) Optical monitoring system for coating processes
US4429999A (en) Method for calorimetric absorption spectroscopy and device for working the method
JPH0649641A (en) Vacuum deposition device
TWI749226B (en) A thermal processing chamber
US20070171420A1 (en) Pulsed ellipsometer device
US5151295A (en) Process for manufacturing an optical recording medium
US20020068126A1 (en) Method and apparatus for depositing thin layers
JPH09236539A (en) Infrared gas analyzer
JP4049458B2 (en) Thin film thickness measuring apparatus and thin film thickness measuring method
US7244937B1 (en) Optical measurement apparatus with laser light source
JPH0790593A (en) Film forming method and system therefor
CN116121051B (en) Optical detection device
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface