JPH0649556A - Method for dissolving and recovering zinc from metallic zinc-containing material - Google Patents

Method for dissolving and recovering zinc from metallic zinc-containing material

Info

Publication number
JPH0649556A
JPH0649556A JP5132086A JP13208693A JPH0649556A JP H0649556 A JPH0649556 A JP H0649556A JP 5132086 A JP5132086 A JP 5132086A JP 13208693 A JP13208693 A JP 13208693A JP H0649556 A JPH0649556 A JP H0649556A
Authority
JP
Japan
Prior art keywords
zinc
copper
aqueous solution
complex
ammine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5132086A
Other languages
Japanese (ja)
Inventor
Koukon Shiyuu
康根 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5132086A priority Critical patent/JPH0649556A/en
Publication of JPH0649556A publication Critical patent/JPH0649556A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To dissolve zinc at a high rate and to efficiently recover zinc by bringing a metallic zinc-contg. material into contact with aq. ammonia, etc., and blowing oxygen into the soln. in the presence of an ammine copper complex to selectively dissolve zinc which is recovered. CONSTITUTION:A zinc-contg. material is brought into contact with an aq. soln. contg. ammonia and ammonium carbonate. In this case, an oxygen-contg. gas is blown into the soln. in the presence of an ammine copper (II) complex to selectively dissolve zinc into the soln. as an ammine zinc complex. Metallic zinc is added to the soln., and the precipitate is separated to provide a refined aq. soln. The ammine zinc complex in the soln. is then decomposed to precipitate basic zinc carbonate, and high-purity zinc is recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属亜鉛含有物から亜
鉛を溶解させ、回収する方法に関する。より詳しくは、
本発明は、金属亜鉛含有物をアンモニアと炭酸アンモニ
ウムを含有する水溶液と接触させ、亜鉛をアンミン錯体
として選択的に溶解させ、次いでこの錯体を熱分解して
亜鉛を塩基性炭酸亜鉛として回収する方法において、亜
鉛の迅速な溶解が可能となる方法を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dissolving and recovering zinc from a material containing metallic zinc. For more details,
The present invention relates to a method of contacting a metal zinc-containing material with an aqueous solution containing ammonia and ammonium carbonate, selectively dissolving zinc as an ammine complex, and then thermally decomposing this complex to recover zinc as basic zinc carbonate. In the above, there is provided a method that enables rapid dissolution of zinc.

【0002】[0002]

【従来の技術】製鉄所設備、例えば、亜鉛メッキ付帯設
備やスクラップ溶解炉の集塵装置からは、金属亜鉛をか
なりの高濃度で含有する金属亜鉛含有物(以下、亜鉛含
有物という)が排出されるので、その亜鉛を分離・回収
して資源として有効利用することが望ましい。その際
に、共存するFe、Pbなどの不純物金属の含有量が可及的
に少ない高純度の亜鉛を回収することが望まれる。
2. Description of the Related Art Metal zinc-containing substances (hereinafter referred to as zinc-containing substances) containing metal zinc at a considerably high concentration are discharged from steel mill facilities, such as zinc plating-related facilities and dust collectors of scrap melting furnaces. Therefore, it is desirable to separate and recover the zinc and use it effectively as a resource. At that time, it is desired to recover high-purity zinc containing as little as possible the content of coexisting impurity metals such as Fe and Pb.

【0003】上述したような亜鉛含有物を処理する方法
として、特公平2−35693 号公報には、亜鉛含有物をア
ンモニアと炭酸アンモニウムを含む水溶液と接触させ、
亜鉛をアンミン錯体として選択的に溶解させて回収する
方法が提案されている。この時の亜鉛の溶解反応は(1)
式の通りである。
As a method for treating the zinc-containing material as described above, Japanese Patent Publication No. 2-35693 discloses that the zinc-containing material is contacted with an aqueous solution containing ammonia and ammonium carbonate,
A method has been proposed in which zinc is selectively dissolved as an ammine complex and recovered. The dissolution reaction of zinc at this time is (1)
It is as the formula says.

【0004】 Zn + (NH4)2CO3 + 2 NH3 → Zn(NH3)4CO3 + H2↑ ‥‥ (1) こうして亜鉛が溶解した水溶液に金属亜鉛 (原料の亜鉛
含有物でもよい) を添加し、金属亜鉛と水溶液中に溶解
している不純物金属との間にイオン置換反応を行わせ
て、不純物金属を沈殿させ、水溶液を精製する。沈殿を
除去した後に得られる精製された水溶液から、アンモニ
アおよび炭酸ガスを加熱および/または減圧により除去
すると、アンミン亜鉛錯体が分解し、塩基性炭酸亜鉛が
析出するので、これを回収する。この時の分解反応は
(2) 式で示される。
Zn + (NH 4 ) 2 CO 3 + 2 NH 3 → Zn (NH 3 ) 4 CO 3 + H 2 ↑ (1) In the aqueous solution in which zinc is dissolved in this way, metallic zinc (even if the raw material contains zinc) Is added, and an ion substitution reaction is performed between metallic zinc and the impurity metal dissolved in the aqueous solution to precipitate the impurity metal and purify the aqueous solution. When ammonia and carbon dioxide are removed by heating and / or reduced pressure from the purified aqueous solution obtained after removing the precipitate, the ammine zinc complex is decomposed and the basic zinc carbonate is precipitated, which is recovered. The decomposition reaction at this time is
It is expressed by equation (2).

【0005】 5 [Zn(NH3)4CO3] → [ZnCO3]2[Zn(OH)2]3↓+3 CO2↑+ 20 NH3↑ ‥‥ (2) 分解反応で発生したアンモニアおよび炭酸ガスは、亜鉛
の溶解に用いる水溶液中に吸収させると、溶解に用いる
アンモニアと炭酸アンモニウムが再生される。従って、
塩基性炭酸亜鉛の生成に要した炭酸ガスの分を補給する
だけで、溶解用の水溶液を循環使用することができ、薬
液コストおよび廃液処理コストが大幅に低減するという
特徴がある。
5 [Zn (NH 3 ) 4 CO 3 ] → [ZnCO 3 ] 2 [Zn (OH) 2 ] 3 ↓ + 3 CO 2 ↑ + 20 NH 3 ↑ ・ ・ ・ (2) Ammonia generated by decomposition reaction When carbon dioxide gas is absorbed into an aqueous solution used for dissolving zinc, ammonia and ammonium carbonate used for dissolution are regenerated. Therefore,
It is characterized in that the aqueous solution for dissolution can be circulated and used only by replenishing the carbon dioxide gas required for the production of basic zinc carbonate, and the chemical solution cost and the waste solution treatment cost can be significantly reduced.

【0006】[0006]

【発明が解決しようとする課題】上に説明したように、
亜鉛をアンミン亜鉛錯体を経て回収する方法は、コスト
が低く、しかも高純度の亜鉛を回収することができる
が、上記(1) 式による亜鉛の溶解反応の速度が遅いとい
う問題があった。そのため、溶解工程の処理時間が非常
に長く、また、粒度が1mm以上の亜鉛含有物は処理困難
であるため、予めふるい分けにより除去しておくことが
必要である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above,
The method of recovering zinc via an ammine zinc complex is low in cost and can recover high-purity zinc, but has a problem that the dissolution reaction of zinc according to the above formula (1) is slow. Therefore, the treatment time in the dissolution step is very long, and the zinc-containing material having a particle size of 1 mm or more is difficult to treat, so it is necessary to remove it beforehand by sieving.

【0007】本発明の目的は、より粒度の大きい亜鉛含
有物でも処理できるように、亜鉛をアンミン亜鉛錯体と
して溶解させる時の溶解速度を増大させた亜鉛の溶解方
法を提供することである。本発明の別の目的は、この溶
解方法を利用して、従来より効率的で経済的な亜鉛含有
物からの亜鉛の回収方法を提供することである。
It is an object of the present invention to provide a zinc dissolution method with an increased dissolution rate when zinc is dissolved as an amminezinc complex so that zinc-containing materials having a larger particle size can be treated. Another object of the present invention is to provide a method for recovering zinc from a zinc-containing material, which is more efficient and economical than before by utilizing this dissolution method.

【0008】[0008]

【課題を解決するための手段】本発明による亜鉛含有物
からの亜鉛の溶解方法は、亜鉛含有物を反応槽内でアン
モニアおよび炭酸アンモニウムを含有する水溶液に接触
させて亜鉛を水溶液中にアンミン亜鉛錯体として溶解さ
せる際に、溶解をアンミン銅(II)錯体の共存下に水溶液
中に酸素含有ガスを吹込みながら行うことを特徴とす
る。
The method for dissolving zinc from a zinc-containing material according to the present invention comprises contacting the zinc-containing material with an aqueous solution containing ammonia and ammonium carbonate in a reaction vessel so that zinc is contained in the aqueous solution. When dissolved as a complex, it is characterized in that the dissolution is carried out in the presence of an ammine copper (II) complex while blowing an oxygen-containing gas into the aqueous solution.

【0009】本発明による亜鉛含有物からの亜鉛の回収
方法は、亜鉛含有物を反応槽内でアンモニアおよび炭酸
アンモニウムを含有する水溶液中に接触させて亜鉛を水
溶液中にアンミン亜鉛錯体として溶解させる工程1、得
られた水溶液を金属亜鉛の添加により精製し、沈殿物を
分離して精製された水溶液を得る工程2、精製された水
溶液中のアンミン亜鉛錯体を分解させ、析出した塩基性
炭酸亜鉛を回収する工程3からなる、亜鉛含有物からの
亜鉛の回収方法において、溶解工程をアンミン銅(II)錯
体の共存下に水溶液中に酸素含有ガスを吹込みながら行
うことを特徴とする。
The method for recovering zinc from a zinc-containing material according to the present invention comprises a step of bringing the zinc-containing material into contact with an aqueous solution containing ammonia and ammonium carbonate in a reaction vessel to dissolve zinc as an ammine zinc complex in the aqueous solution. 1. Step 2 of purifying the obtained aqueous solution by adding metallic zinc to obtain a purified aqueous solution by separating the precipitate 2. Decomposing the ammine zinc complex in the purified aqueous solution to remove the precipitated basic zinc carbonate. The method for recovering zinc from a zinc-containing material, which comprises the step 3 of recovering, is characterized in that the dissolving step is carried out in the presence of an ammine copper (II) complex while blowing an oxygen-containing gas into the aqueous solution.

【0010】この亜鉛の回収方法の好適態様にあって
は、工程2で分離された銅を含む沈殿物と、工程3で発
生したアンモニアおよび炭酸ガスを、工程1の水溶液に
循環して、アンミン銅(II)錯体および炭酸アンモニウム
を再生すると共に、アンモニアを循環使用する。
In a preferred embodiment of this zinc recovery method, the copper-containing precipitate separated in step 2 and the ammonia and carbon dioxide gas generated in step 3 are circulated in the aqueous solution of step 1 to produce an ammine. Ammonia is recycled with regeneration of the copper (II) complex and ammonium carbonate.

【0011】また、以上の亜鉛の溶解方法および回収方
法のいずれにおいても、亜鉛の溶解を反応槽内に亜鉛含
有物を連続的に供給することにより行う場合には、その
供給速度を反応槽内の全銅に対する銅(II)イオンの比率
が40〜60%となるように調整することが、反応槽の処理
効率からみて好ましい。
Further, in any of the above-mentioned zinc dissolution method and recovery method, when the dissolution of zinc is carried out by continuously supplying the zinc-containing material into the reaction vessel, the supply rate is set to the inside of the reaction vessel. It is preferable to adjust the ratio of copper (II) ions to the total copper to be 40 to 60% from the viewpoint of the treatment efficiency of the reaction tank.

【0012】[0012]

【作用】以下、本発明の構成をその作用とともに工程ご
とに詳述する。なお、本発明による亜鉛の回収方法のフ
ローシートを図1に示す。
The function of the present invention will be described below in detail for each step along with its function. A flow sheet of the zinc recovery method according to the present invention is shown in FIG.

【0013】本発明による亜鉛の溶解および回収方法が
適用できる亜鉛含有物の例には、前述した、製鉄所内の
亜鉛メッキ付帯設備やスクラップ溶解炉の集塵装置から
得られる製鉄所副生亜鉛ダストがあるが、これに限定さ
れるものではない。金属亜鉛を10重量%以上程度の割合
で含有する任意の亜鉛含有物に対して本発明方法を適用
することができる。処理する亜鉛含有物は、必要であれ
ば、処理前に10 mm 以下程度に細分化しておくことが好
ましい。
Examples of the zinc-containing material to which the method for dissolving and recovering zinc according to the present invention can be applied: Zinc dust produced as a by-product of the steel mill obtained from the zinc plating auxiliary equipment in the steel mill and the dust collector of the scrap melting furnace. However, the present invention is not limited to this. The method of the present invention can be applied to any zinc-containing material containing metallic zinc in a proportion of about 10% by weight or more. If necessary, the zinc-containing material to be treated is preferably subdivided into about 10 mm or less before the treatment.

【0014】亜鉛の溶解工程(工程1) 溶解工程では、反応槽内でアンミン銅(II)錯体、アンモ
ニアおよび炭酸アンモニウムを含有する水溶液に亜鉛含
有物を接触させ、この水溶液中に酸素含有ガスを吹き込
むことにより、亜鉛含有物から亜鉛をアンミン亜鉛錯体
として選択的に溶解させる。即ち、この工程は亜鉛含有
物からの亜鉛の浸出であるので、この工程に使用するア
ンミン銅(II)錯体、アンモニアおよび炭酸アンモニウム
を含有する水溶液を、以下では浸出液という場合があ
る。
Zinc Dissolving Step (Step 1) In the dissolving step, the zinc-containing substance is brought into contact with an aqueous solution containing an ammine copper (II) complex, ammonia and ammonium carbonate in a reaction tank, and an oxygen-containing gas is added to the aqueous solution. By blowing, zinc is selectively dissolved as an ammine zinc complex from the zinc-containing material. That is, since this step is leaching of zinc from the zinc-containing material, the aqueous solution containing the ammine copper (II) complex, ammonia and ammonium carbonate used in this step may be referred to as a leaching solution hereinafter.

【0015】(a) 酸素吹き込みの効果 従来の溶解方法は、浸出液としてアンモニアと炭酸アン
モニウムを含む水溶液を使用し、酸素含有ガスを吹き込
まずに亜鉛含有物をこの溶液と接触させるだけであっ
た。この場合には、亜鉛は前記(1) 式のように溶解し、
水素が発生する。前述したように、この溶解反応は速度
が遅く、溶解には長時間を要する。そこで、本発明者
は、浸出液中に酸素含有ガスを吹き込むことを試みた。
この場合、亜鉛は次の(3) 式に示すように、酸素により
直接酸化され、溶解する。
(A) Effect of oxygen blowing The conventional dissolution method used an aqueous solution containing ammonia and ammonium carbonate as a leachate, and merely contacted the zinc-containing material with this solution without blowing an oxygen-containing gas. In this case, zinc dissolves as in the above formula (1),
Hydrogen is generated. As mentioned above, this dissolution reaction is slow and requires a long time for dissolution. Therefore, the present inventor tried to blow an oxygen-containing gas into the leachate.
In this case, zinc is directly oxidized by oxygen and dissolved as shown in the following formula (3).

【0016】 Zn + 2(NH4)2CO3 + 2 NH3 + 1/2 O2 → Zn(NH3)4CO3 + H2O ‥‥ (3) しかし、酸素含有ガスを吹き込んでも、酸素の金属亜鉛
への拡散が律速となり、亜鉛の溶解速度は、酸素含有ガ
スを吹き込まない場合と同程度にしかならないことが実
験により明らかとなった。
Zn + 2 (NH 4 ) 2 CO 3 + 2 NH 3 + 1/2 O 2 → Zn (NH 3 ) 4 CO 3 + H 2 O (3) However, even if an oxygen-containing gas is blown in, Experiments have revealed that the diffusion of oxygen into zinc metal is rate-determining, and the dissolution rate of zinc is only as high as when oxygen-containing gas is not blown.

【0017】ただし、酸素の存在下では、鉄などの一部
の不純物金属が不働体化するので、不純物金属の溶解が
抑えられるという効果はある。特に、亜鉛含有物が鉄を
多く含む場合には、酸素含有ガスの吹き込みにより鉄の
溶解が著しく抑制され、不純物の少ない亜鉛含有水溶液
が得られることになる。
However, in the presence of oxygen, a part of the impurity metal such as iron is passivated, so that there is an effect that the dissolution of the impurity metal can be suppressed. In particular, when the zinc-containing substance contains a large amount of iron, the dissolution of iron is significantly suppressed by the blowing of the oxygen-containing gas, and a zinc-containing aqueous solution containing few impurities can be obtained.

【0018】(b) アンミン銅(II)錯体と酸素吹き込みの
複合効果 より迅速に亜鉛を溶解させる目的で、浸出液への酸素含
有ガスの吹き込みに加えて、浸出液中にアンミン銅(II)
錯体を共存させることを試みた。その結果、亜鉛の溶解
速度を大幅に増大させることができた。この場合の亜鉛
の溶解反応について、次に示す。
(B) Combined effect of ammine copper (II) complex and oxygen blowing In order to dissolve zinc more quickly, in addition to blowing oxygen-containing gas into the leachate, ammine copper (II) complex was added to the leachate.
We tried to make the complex coexist. As a result, the dissolution rate of zinc could be significantly increased. The dissolution reaction of zinc in this case is shown below.

【0019】 Zn + Cu(II)(NH3)4CO3 → Zn(NH3)4CO3 + Cu ‥‥ (4) Cu + Cu(II)(NH3)4CO3 → [Cu(I)(NH3)2]2CO3 ‥‥ (5) [Cu(I)(NHCO+ (NHCO+ 2
NH+ 1/2 O → 2 Cu(II)(NHCO+ H
O ‥‥ (6) 即ち、浸出液中にアンミン銅(II)錯体が共存すると、亜
鉛は(4) 式に示すように、Cu(II)イオンとの置換反応に
より溶解する。この反応でCu(II)イオンは金属Cuに還元
されて消費されるが、酸素の存在下では、(5) 式および
(6) 式に示す反応を経てアンミン銅(II)錯体に再生され
る。従って、上記 (4)〜(6) 式を総合した全体の亜鉛の
溶解反応は、アンミン銅(II)錯体が存在しない場合と同
じ(3) 式に示す反応となる。
Zn + Cu (II) (NH 3 ) 4 CO 3 → Zn (NH 3 ) 4 CO 3 + Cu (4) Cu + Cu (II) (NH 3 ) 4 CO 3 → [Cu (I ) (NH 3) 2] 2 CO 3 ‥‥ (5) [Cu (I) (NH 3) 2] 2 CO 3 + (NH 4) 2 CO 3 + 2
NH 3 + 1/2 O 2 → 2 Cu (II) (NH 3 ) 4 CO 3 + H
2 O (6) That is, when an ammine copper (II) complex coexists in the leachate, zinc is dissolved by a substitution reaction with Cu (II) ions as shown in the formula (4). In this reaction, Cu (II) ions are reduced to metallic Cu and consumed, but in the presence of oxygen, the formula (5) and
It is regenerated into an ammine copper (II) complex through the reaction represented by the formula (6). Therefore, the total dissolution reaction of zinc, which is obtained by combining the above formulas (4) to (6), is the same as the reaction represented by formula (3) as in the case where the ammine copper (II) complex is not present.

【0020】このようにCu成分は全体としては変化しな
いが、反応速度は、アンミン銅(II)錯体が共存しない場
合に比べて大幅に加速される。例えば、後述する実施例
に示すように、アンミン銅(II)錯体が存在しない場合に
10時間要していた溶解時間が、わずか30分に短縮され
る。また、亜鉛含有物が1mmより大粒径でも容易に溶解
させることが可能となる。
As described above, the Cu component does not change as a whole, but the reaction rate is significantly accelerated as compared with the case where the ammine copper (II) complex does not coexist. For example, when the ammine copper (II) complex is not present, as shown in Examples described later,
The dissolution time required from 10 hours is reduced to only 30 minutes. Further, it becomes possible to easily dissolve the zinc-containing material even if the particle size is larger than 1 mm.

【0021】溶解工程は、空気や純酸素などの酸素含有
ガスを浸出液に吹き込みながら行う。溶解工程に用いる
反応槽は密閉系でも開放系でもよい。密閉系の場合に
は、ポンプを用いて反応槽上部空間と水溶液の間で酸素
含有ガスを循環させることにより酸素の吹き込みを行う
ことができる。解放系の場合には、酸素含有ガスの吹き
込みにより水溶液中のアンモニアの一部が揮発するた
め、既存の方法で回収することが好ましい。
The melting step is carried out while blowing an oxygen-containing gas such as air or pure oxygen into the leachate. The reaction tank used in the dissolution step may be a closed system or an open system. In the case of a closed system, oxygen can be blown in by circulating an oxygen-containing gas between the reaction chamber upper space and the aqueous solution using a pump. In the case of an open system, a part of ammonia in the aqueous solution is volatilized by blowing the oxygen-containing gas, and therefore it is preferable to recover the ammonia by an existing method.

【0022】浸出液として用いるアンモニア、炭酸アン
モニウム、およびアンミン銅(II)錯体を含有する水溶液
は、水にアンモニアガスと炭酸ガスを吹き込み、この吹
き込みの前後または吹き込み中に、金属銅または適当な
銅化合物 (例、酸化第二銅、水酸化第二銅) を添加して
溶解させることにより調製できる。金属銅を溶解させる
場合には、酸素も同時に吹き込む必要がある。炭酸アン
モニウムはアンモニアと炭酸ガスと水との反応で、また
アンミン銅(II)錯体は銅とアンモニアと炭酸アンモニウ
ムと酸素との反応で生成する。水溶液中のアンモニア濃
度は 0.2〜6M、炭酸アンモニウム濃度は 0.1〜3M、
アンミン銅(II)錯体濃度は 0.1〜2M程度がそれぞれ好
ましい。
An aqueous solution containing ammonia, ammonium carbonate and an ammine copper (II) complex used as a leachate is prepared by blowing ammonia gas and carbon dioxide gas into water, and before or after the blowing, metallic copper or a suitable copper compound. (Eg, cupric oxide, cupric hydroxide) can be added and dissolved. When dissolving metallic copper, it is necessary to blow oxygen at the same time. Ammonium carbonate is produced by the reaction of ammonia, carbon dioxide gas and water, and ammine copper (II) complex is produced by the reaction of copper, ammonia, ammonium carbonate and oxygen. Ammonia concentration in the aqueous solution is 0.2-6M, ammonium carbonate concentration is 0.1-3M,
The ammine copper (II) complex concentration is preferably about 0.1 to 2M.

【0023】水溶液のpHは、通常は8〜12の範囲内と
なるように調整する。水溶液の温度は、低すぎると亜鉛
の溶解速度が遅くなるし、高すぎるとアンモニアの揮発
が多くなり、アンミン亜鉛錯体の安定性が低くなるの
で、室温〜80℃の範囲内が適当である。
The pH of the aqueous solution is usually adjusted to be in the range of 8-12. If the temperature of the aqueous solution is too low, the dissolution rate of zinc will be slow, and if it is too high, the volatilization of ammonia will be large and the stability of the amminezinc complex will be low.

【0024】溶解工程は、反応槽に浸出液と亜鉛含有物
とを一度に加えて接触させる回分式操作では、亜鉛含有
物中の亜鉛がほぼ完全に溶解するまで続けることが好ま
しい。前述したように、本発明ではこの時間は従来に比
べて非常に短縮され、条件にもよるが、30分程度で亜鉛
の溶解を完了させることができる。
The dissolution step is preferably a batch operation in which the leachate and the zinc-containing material are added to the reaction vessel all at once and brought into contact with each other until the zinc in the zinc-containing material is almost completely dissolved. As described above, in the present invention, this time is much shorter than in the conventional case, and depending on the conditions, the dissolution of zinc can be completed in about 30 minutes.

【0025】浸出液と亜鉛含有物とを反応槽に連続的に
供給する連続式操作、或いは反応槽内に予め装入した浸
出液中に亜鉛含有物を連続的に供給する半連続式操作で
は、次に説明するように、亜鉛含有物の供給速度を、反
応槽内の全銅に対する銅イオンの比率が40〜60%となる
ような速度に調整すると、反応槽の処理効率が高まり、
好ましい。
In the continuous operation for continuously supplying the leachate and the zinc-containing material to the reaction tank or the semi-continuous operation for continuously supplying the zinc-containing material into the leachate previously charged in the reaction tank, As described in, when the supply rate of the zinc-containing material is adjusted to a rate such that the ratio of copper ions to the total copper in the reaction tank is 40 to 60%, the treatment efficiency of the reaction tank increases,
preferable.

【0026】 (c) 連続式または半連続式での溶解反応槽の処理効率 溶解工程を連続式または半連続式操作で行う場合、亜鉛
含有物を反応槽内に連続的に供給することになる。この
場合、反応槽の処理効率 (反応槽の単位有効容積あたり
の単位時間内の亜鉛溶解量) は、一般常識では、他の条
件が一定であれば、原料の亜鉛含有物の供給速度が高く
なるほど、亜鉛溶解量が多くなり、処理効率も高まるは
ずである。ところが、処理効率は、亜鉛含有物の供給速
度の増加により最初は増加するが、ある供給速度以上に
なるとかえって急に低下することが判明した。
(C) Treatment Efficiency of Dissolving Reaction Tank in Continuous Type or Semi-Continuous Type When the melting step is performed by a continuous type or a semi-continuous type operation, the zinc-containing material is continuously supplied into the reaction vessel. . In this case, the treatment efficiency of the reaction tank (the amount of zinc dissolved per unit effective volume of the reaction tank in a unit time) is generally considered to be that the feed rate of the zinc-containing raw material is high if other conditions are constant. The higher the zinc dissolution amount, the higher the treatment efficiency should be. However, it has been found that the treatment efficiency initially increases with an increase in the supply rate of the zinc-containing material, but rather suddenly decreases above a certain supply rate.

【0027】従って、処理効率が最大となる速度で亜鉛
含有物を供給することが望ましいが、浸出液中のアンミ
ン銅(II)錯体、炭酸アンモニウム、アンモニア、酸素の
各濃度、温度などを始めとする各種の要因が複雑に影響
するため、処理効率を最大にする条件を見出すことが困
難であった。
Therefore, it is desirable to supply the zinc-containing material at a rate that maximizes the treatment efficiency. However, the concentration of the ammine copper (II) complex, ammonium carbonate, ammonia, oxygen in the leaching solution, the temperature, etc. are included. It was difficult to find the condition that maximizes the processing efficiency because various factors have a complicated influence.

【0028】本発明者らは、この点について、半連続式
の溶解実験において検討した結果、反応槽内の全銅に対
する銅(II)イオンの比率 [Cu2+/全Cu比] で定義される
銅の溶解率が処理効率と高い相関性を持つことを見出し
た。即ち、図2に示すように、銅の溶解率が50%付近で
処理効率が最大となり、40〜60%の範囲内であれば、高
い処理効率が得られることがわかった。
The present inventors have studied this point in a semi-continuous dissolution experiment, and as a result, the ratio of copper (II) ions to total copper in the reaction tank is defined as [Cu 2+ / total Cu ratio]. It was found that the dissolution rate of copper has a high correlation with the treatment efficiency. That is, as shown in FIG. 2, it was found that the treatment efficiency was maximum when the copper dissolution rate was around 50%, and high treatment efficiency was obtained within the range of 40 to 60%.

【0029】前述したように、本発明の方法では、銅は
アンミン銅(II)錯体、即ち銅(II)イオンとして反応槽に
導入され、(4) 式に従って亜鉛との置換反応により一旦
は金属銅として析出する。この析出した銅から、(5) お
よび(6) 式に示す反応によりアンミン銅(II)錯体が再生
される。即ち、溶解処理中の反応槽内の銅は、析出した
金属銅と、溶解した銅(II)イオン、の2つの状態で存在
している。
As described above, in the method of the present invention, copper is introduced into the reaction vessel as an ammine copper (II) complex, that is, copper (II) ion, and is temporarily converted into a metal by the substitution reaction with zinc according to the formula (4). Precipitates as copper. From the deposited copper, the ammine copper (II) complex is regenerated by the reactions shown in formulas (5) and (6). That is, the copper in the reaction tank during the dissolution treatment exists in two states: precipitated metal copper and dissolved copper (II) ions.

【0030】銅の溶解率は、処理中の反応槽内の全銅
[即ち、銅(II)イオン+金属銅] 濃度に対する溶解状態
で存在する銅(II)イオン濃度の比として求めることがで
きる。全銅濃度は、反応槽に供給した浸出液中のアンミ
ン銅(II)錯体濃度に対応するので、処理中の反応槽から
水溶液を採取し、その銅(II)イオン濃度を分析すれば、
銅の溶解率を測定することができる。
The dissolution rate of copper depends on the total copper in the reaction tank during the treatment.
[That is, it can be determined as the ratio of the concentration of copper (II) ions present in the dissolved state to the concentration of copper (II) ions + metallic copper]. The total copper concentration corresponds to the concentration of the ammine copper (II) complex in the leachate supplied to the reaction tank, so if you extract the aqueous solution from the reaction tank being treated and analyze its copper (II) ion concentration,
The dissolution rate of copper can be measured.

【0031】亜鉛含有物の供給速度が遅い時には、(4)
式で析出する金属銅の量が少なく、また析出した金属銅
は (5)〜(6) 式により再生されるため、銅の溶解率は高
くなる。しかし、この場合には、溶解原料である金属亜
鉛の量が反応槽の処理容量に対して少なくなるため、処
理効率が低下する。銅の溶解率が60%を超えると処理効
率が低下するのはこの理由による。
When the supply rate of the zinc-containing material is slow, (4)
The amount of metallic copper deposited by the formula is small, and the deposited metallic copper is regenerated by the formulas (5) to (6), so the copper dissolution rate becomes high. However, in this case, the amount of metal zinc that is a melting raw material is smaller than the processing capacity of the reaction tank, so that the processing efficiency decreases. It is for this reason that the treatment efficiency decreases when the copper dissolution rate exceeds 60%.

【0032】一方、亜鉛含有物の供給速度が速すぎて
も、処理効率が低下するのは、金属亜鉛の供給が多すぎ
ると、 (5)〜(6) 式による銅(II)イオンの再生が間に合
わなくなり、反応系に導入された銅(II)イオンがほとん
ど金属亜鉛により還元された金属銅の状態で存在するよ
うになるからである。銅の溶解率が40%を下回ると処理
効率が低下するのは、このように亜鉛含有物の供給が速
すぎて、金属亜鉛の迅速な溶解に必要な銅(II)イオンの
供給が追いつかないことを意味している。
On the other hand, even if the supply rate of the zinc-containing material is too fast, the treatment efficiency is lowered because if the supply of metallic zinc is too much, the regeneration of the copper (II) ion according to the equations (5) to (6) is performed. The reason for this is that the copper (II) ions introduced into the reaction system almost remain in the state of metallic copper reduced by metallic zinc. When the dissolution rate of copper is less than 40%, the treatment efficiency decreases because the supply of zinc-containing material is too fast and the supply of copper (II) ions required for rapid dissolution of metallic zinc cannot keep up. It means that.

【0033】銅の溶解率が50%付近にある時に、(4) 式
の銅の消耗反応と (5)〜(6) 式の銅の再生反応が最もバ
ランスよく進み、反応槽の処理効率が最大となる。この
ように、連続式または半連続式で亜鉛含有物を反応槽に
連続供給する場合には、処理中の銅の溶解率が反応槽の
処理効率の指標となり、反応槽の処理効率を高めるため
には、銅溶解率が40〜60%となるような速度で亜鉛含有
物を供給することが好ましい。
When the copper dissolution rate is around 50%, the copper consumption reaction of the formula (4) and the copper regeneration reaction of the formulas (5) to (6) proceed in the most balanced manner, and the treatment efficiency of the reaction tank is improved. It will be the maximum. In this way, in the case of continuously supplying the zinc-containing material to the reaction tank in a continuous system or a semi-continuous system, the dissolution rate of copper during the process serves as an index of the reaction efficiency of the reaction tank, and the efficiency of the reaction tank is increased. In particular, it is preferable to supply the zinc-containing material at a rate such that the copper dissolution rate is 40 to 60%.

【0034】溶解工程からの排出液は、濾過、沈降、傾
斜、溢流等の適当な固液分離手段により水溶液と未溶解
残渣とに分離する。得られた水溶液は、亜鉛の溶解によ
り生成したアンミン亜鉛錯体のほかに、アンミン銅(II)
錯体および不純物に由来する少量の他金属のアンミン錯
体、ならびに消費されなかったアンモニアおよび炭酸ア
ンモニウムを含有している。この水溶液中に残留するア
ンモニアおよび炭酸アンモニウムの濃度が(3) 式による
亜鉛の溶解に十分に使用できる程度に高ければ、水溶液
を次工程にに付す前に、さらに1回または2回以上の溶
解処理に供してもよい。
The liquid discharged from the dissolution step is separated into an aqueous solution and an undissolved residue by a suitable solid-liquid separation means such as filtration, sedimentation, decantation, and overflow. The obtained aqueous solution contains ammine copper (II) in addition to the ammine zinc complex produced by dissolution of zinc.
It contains small amounts of other amine ammine complexes derived from the complex and impurities, as well as unconsumed ammonia and ammonium carbonate. If the concentration of ammonia and ammonium carbonate remaining in this aqueous solution is high enough to dissolve zinc according to formula (3), dissolve the aqueous solution once or twice or more before subjecting it to the next step. You may use for processing.

【0035】亜鉛含有水溶液の精製工程 (工程2) 溶解工程で得られた亜鉛、銅(II)および少量の不純物金
属のアンミン錯体を含有する水溶液に金属亜鉛を添加
し、銅(II)および不純物金属のイオンを金属亜鉛とのイ
オン置換反応により金属として沈殿させ、水溶液を精製
する。亜鉛は、溶解工程と同様、上記(4) 式に示すよう
にアンミン亜鉛錯体として溶解し、銅および他の不純物
金属が析出して沈殿する。
Purification Step of Zinc-Containing Aqueous Solution (Step 2) Metal zinc is added to an aqueous solution containing zinc, copper (II) and a small amount of an ammine complex of an impurity metal obtained in the dissolving step to add copper (II) and impurities. The metal ion is precipitated as a metal by an ion substitution reaction with metal zinc to purify the aqueous solution. Similar to the dissolution step, zinc dissolves as an ammine zinc complex as shown in the above formula (4), and copper and other impurity metals precipitate and precipitate.

【0036】溶解工程では、生成した金属銅が酸化によ
り再溶解し、銅(II)を迅速に再生するように、溶液中に
酸素含有ガスを吹き込むが、精製工程では金属銅はその
まま析出させて除去する。従って、析出した銅の再溶解
を防止するように、必要により系を不活性ガス雰囲気下
に保持してもよい。ただし、酸素含有ガスの吹き込みを
行わなければ、銅の酸化による再溶解は一般に遅いの
で、通常は不活性ガス雰囲気とする必要はない。
In the dissolving step, an oxygen-containing gas is blown into the solution so that the produced metallic copper is redissolved by oxidation and copper (II) is rapidly regenerated, but in the refining step, metallic copper is deposited as it is. Remove. Therefore, if necessary, the system may be kept under an inert gas atmosphere so as to prevent re-dissolution of the deposited copper. However, unless the oxygen-containing gas is blown in, redissolution by oxidation of copper is generally slow, and therefore it is not usually necessary to use an inert gas atmosphere.

【0037】精製工程で添加する金属亜鉛は純品である
必要はない。例えば、亜鉛メッキ付帯設備で発生する亜
鉛ダストのように、亜鉛含有量が高いものであれば、本
発明方法の原料である亜鉛含有物を精製工程での金属亜
鉛としても利用できる。この場合、原料の亜鉛含有物
は、溶解工程1と精製工程2の両方に使用され、いずれ
の工程においてもアンミン亜鉛錯体として水溶液中に溶
解する。金属亜鉛の添加量は、水溶液中に溶解している
銅(II)イオンおよび不純物金属イオンの置換に要する量
より過剰量とすることが好ましい。未溶解の金属亜鉛が
残っても、後で述べるように、沈殿物を溶解工程に循環
することにより、溶解用水溶液中に溶解させて回収でき
る。
The metallic zinc added in the refining step does not have to be a pure product. For example, if the zinc content is high, such as zinc dust generated in a galvanizing accessory facility, the zinc-containing material that is the raw material of the method of the present invention can be used as metallic zinc in the refining step. In this case, the raw material zinc-containing material is used in both the dissolution step 1 and the purification step 2, and is dissolved in the aqueous solution as an ammine zinc complex in both steps. The amount of zinc metal added is preferably an excess amount over the amount required to replace the copper (II) ions and the impurity metal ions dissolved in the aqueous solution. Even if the undissolved metallic zinc remains, it can be recovered by dissolving it in the dissolving aqueous solution by circulating the precipitate in the dissolving step as described later.

【0038】精製工程は、好ましくは常温〜80℃程度の
温度で攪拌下に実施する。処理時間は通常は5〜30分程
度で十分である。その後、析出した金属銅を主体とする
沈殿物を濾過などの手段により分離・除去し、精製され
たアンミン亜鉛錯体の水溶液を得る。
The purification step is preferably carried out at a temperature of room temperature to 80 ° C. under stirring. A treatment time of about 5 to 30 minutes is usually sufficient. Thereafter, the deposited metal copper-based precipitate is separated and removed by a means such as filtration to obtain a purified aqueous solution of the ammine zinc complex.

【0039】分離された金属銅を主体とする沈殿物は、
工程1(溶解工程)で亜鉛溶解用浸出液として用いる水
溶液に循環させることが好ましい。水溶液に添加された
金属銅は、溶解工程の(5) および(6) 式に示す反応を受
けて、アンミン銅(II)錯体を再生する。同時に、沈殿物
中に含まれる未溶解の金属亜鉛も水溶液中にアンミン亜
鉛錯体として溶解する。このようにして、アンミン銅(I
I)錯体は亜鉛の溶解に循環使用できるので、補給はほと
んど必要ない。
The separated metal copper-based precipitate is
It is preferable to circulate it in the aqueous solution used as the leachate for dissolving zinc in step 1 (dissolution step). The metallic copper added to the aqueous solution undergoes the reactions represented by the equations (5) and (6) in the dissolution step to regenerate the ammine copper (II) complex. At the same time, undissolved metallic zinc contained in the precipitate also dissolves in the aqueous solution as an ammine zinc complex. In this way, ammine copper (I
The I) complex can be reused for the dissolution of zinc, so replenishment is hardly necessary.

【0040】アンミン亜鉛錯体の分解工程(工程3) 精製されたアンミン亜鉛錯体の水溶液を加熱および/ま
たは減圧処理すると、前記(2) 式の反応により錯体が分
解して、水不溶性の塩基性炭酸亜鉛が析出するので、こ
れを濾過などの手段により回収する。分解は、例えば、
精製された水溶液を適当な晶析装置で90℃以上の温度に
加熱することにより実施できる。特公平2−35693 号公
報に記載のように、2段晶析法を利用してもよい。晶析
の母液を晶析工程に戻して、母液中に残留するZn分を完
全に回収するようにしてもよい。回収された塩基性炭酸
亜鉛は、通常は水洗および乾燥してから、製品とする。
Step of Decomposing Ammine Zinc Complex (Step 3) When the purified aqueous solution of ammine zinc complex is heated and / or treated under reduced pressure, the complex is decomposed by the reaction of the above formula (2), and a water-insoluble basic carbonic acid is obtained. Zinc precipitates and is recovered by means such as filtration. Decomposition, for example,
It can be carried out by heating the purified aqueous solution to a temperature of 90 ° C. or higher with an appropriate crystallizer. A two-stage crystallization method may be used as described in JP-B-2-35693. The mother liquor for crystallization may be returned to the crystallization step to completely recover the Zn content remaining in the mother liquor. The recovered basic zinc carbonate is usually washed with water and dried before being used as a product.

【0041】アンミン亜鉛錯体の分解により発生したア
ンモニアおよび炭酸ガスは回収して、そのまま或いは水
に吸収させてから、溶解に用いる水溶液中に循環させる
ことが好ましい。これにより、溶解に用いるアンモニア
と炭酸アンモニウムも再生される。即ち、亜鉛の溶解に
使用した薬剤のうち、本発明の方法で消費されるのは、
原理的には塩基性炭酸亜鉛の生成に要する炭酸ガスの分
だけであり、炭酸ガスの残りの部分とアンモニアおよび
アンミン銅(II)錯体の全量は循環使用できる。溶解工程
1や精製工程2で発生したガスがあれば、これらも同様
に溶解用の水溶液に循環使用することが好ましい。従っ
て、アンモニアおよびアンミン銅(II)錯体については、
持ち出し等により失われる僅かな量を補給するだけで操
業を続けることができ、アンミン銅(II)錯体に加えて、
アンモニアの大部分と炭酸ガスの半分以上も循環利用が
可能である。
Ammonia and carbon dioxide gas generated by the decomposition of the amminezinc complex are preferably recovered and circulated in the aqueous solution used for dissolution, either as they are or after being absorbed by water. As a result, the ammonia and ammonium carbonate used for dissolution are also regenerated. That is, of the agents used to dissolve zinc, the one consumed by the method of the present invention is
In principle, it is only the amount of carbon dioxide gas required for the formation of basic zinc carbonate, and the rest of the carbon dioxide gas and the total amount of ammonia and the ammine copper (II) complex can be recycled. If there is a gas generated in the dissolving step 1 or the refining step 2, it is preferable to similarly circulate these gases in the aqueous solution for dissolving. Therefore, for ammonia and ammine copper (II) complexes,
The operation can be continued by replenishing the slight amount lost due to taking out, etc., and in addition to the ammine copper (II) complex,
Most of ammonia and more than half of carbon dioxide can be recycled.

【0042】本発明の亜鉛の溶解および回収方法は回分
式、連続式、および半連続式のいずれの方式でも実施で
き、また、工程ごとに異なる方式とすることもできる
が、工業的に実施する場合には、各工程を連続式または
半連続式操業で実施することが有利である。
The zinc dissolution and recovery method of the present invention can be carried out in any of batch system, continuous system and semi-continuous system, and can be carried out industrially though different systems can be adopted for each process. In some cases, it may be advantageous to carry out each step in a continuous or semi-continuous operation.

【0043】[0043]

【実施例】以下、実施例により本発明をさらに説明す
る。実施例中、%は特に指定しない限り重量%である。
EXAMPLES The present invention will be further described below with reference to examples. In the examples,% is% by weight unless otherwise specified.

【0044】実施例1 亜鉛板を用いて亜鉛の溶解速度に及ぼすアンミン銅(II)
錯体濃度の影響を調べた。1.0 M濃度のアンモニア、0.
5 M濃度の炭酸アンモニウム、および各種濃度のアンミ
ン銅(II)錯体[Cu(II)(NH3)4CO3] を含有する温度40℃の
水溶液2L (リットル)に亜鉛板を浸漬して、純酸素ガスを10
L/minの流量で吹き込みながら水溶液を一定間隔でサン
プリングし、水溶液中のZn濃度の変化から亜鉛の溶解速
度を求めた。結果を次の表1に示す。この結果から、亜
鉛の溶解速度は、水溶液中のアンミン銅(II)錯体濃度の
増大につれて著しく増大することがわかる。
Example 1 Ammine copper (II) on the dissolution rate of zinc using a zinc plate
The effect of complex concentration was investigated. 1.0 M ammonia, 0.
The zinc plate was immersed in 2 L (liter) of an aqueous solution containing ammonium carbonate of 5 M concentration and an ammine copper (II) complex [Cu (II) (NH 3 ) 4 CO 3 ] of various concentrations at a temperature of 40 ° C. Pure oxygen gas 10
The aqueous solution was sampled at regular intervals while being blown at a flow rate of L / min, and the dissolution rate of zinc was determined from the change in Zn concentration in the aqueous solution. The results are shown in Table 1 below. From this result, it is found that the dissolution rate of zinc significantly increases as the concentration of the ammine copper (II) complex in the aqueous solution increases.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例2 小径管亜鉛メッキ工場から発生した亜鉛ダスト (T-Zn 9
9.0%, 金属Zn 98.5%,Fe 0.2%, Pb 0.7%, Cd 0.1%)を溶
解原料とし、これから本発明の方法により亜鉛を回収し
た。
Example 2 Zinc dust (T-Zn 9 generated from a small diameter galvanizing plant)
9.0%, metal Zn 98.5%, Fe 0.2%, Pb 0.7%, Cd 0.1%) was used as a melting raw material, and zinc was recovered therefrom by the method of the present invention.

【0047】溶解工程 アンモニア濃度2.0 M、炭酸アンモニウム濃度1.0 M、
アンミン銅(II)錯体濃度0.31Mの温度60℃の水溶液1L
に中に、水溶液温度60℃で水溶液中に純酸素ガスを6 L
/minの流量で吹き込みながら、上記亜鉛ダスト70gを徐
々に供給し、亜鉛を溶解させたところ、30分で亜鉛分が
完全に溶解した。残渣を濾過して除去し、Zn濃度69 g/L
の水溶液を得た。比較のため、アンミン銅(II)錯体を含
有しない水溶液を使用して上記と同様に処理したとこ
ろ、亜鉛分の溶解には約10時間が必要であった。
Dissolution step Ammonia concentration 2.0 M, ammonium carbonate concentration 1.0 M,
Ammine copper (II) complex concentration 0.31M temperature 60 ℃ aqueous solution 1L
6 L of pure oxygen gas in the aqueous solution at 60 ° C.
While blowing at a flow rate of / min, 70 g of the above zinc dust was gradually supplied to dissolve zinc, and the zinc content was completely dissolved in 30 minutes. The residue was filtered off and the Zn concentration was 69 g / L.
An aqueous solution of For comparison, when an aqueous solution containing no ammine copper (II) complex was used and treated in the same manner as above, it took about 10 hours to dissolve the zinc component.

【0048】精製工程 こうして本発明の溶解法により得たZn濃度69 g/Lの水溶
液に、溶解原料として使用したのと同じ亜鉛ダスト30g
を入れ、酸素の吹き込みを行わずに水溶液を温度60℃で
約15分間攪拌したところ、溶液中の銅分をほぼ完全に金
属銅として沈殿させることができた。沈殿物を濾過し、
Zn濃度89 g/Lの精製されたアンミン亜鉛錯体水溶液を得
た。この水溶液中の不純物濃度はFe 8 ppm, Pb 15 ppm,
Cu 3 ppm であった。
Purification step In the aqueous solution having a Zn concentration of 69 g / L thus obtained by the dissolution method of the present invention, 30 g of the same zinc dust used as the dissolution raw material
Was charged and the aqueous solution was stirred for about 15 minutes at a temperature of 60 ° C. without blowing oxygen, and the copper content in the solution could be almost completely precipitated as metallic copper. The precipitate is filtered,
A purified ammine zinc complex aqueous solution with a Zn concentration of 89 g / L was obtained. The impurity concentration in this aqueous solution was Fe 8 ppm, Pb 15 ppm,
It was Cu 3 ppm.

【0049】炭酸亜鉛回収工程 この精製された亜鉛溶液を用いて、多孔板塔により90〜
100 ℃においてアンモニウムと炭酸ガスを蒸発させるこ
とにより、アンミン亜鉛錯体を塩基性炭酸亜鉛に分解
し、晶析させた。晶出した結晶を濾別した後、水洗およ
び乾燥して、純度99.98 %の塩基性炭酸亜鉛 (Fe 63 pp
m, Pb 110 ppm, Cu 24 ppm) を回収した。Znの回収率
は、溶解工程および精製工程で投入したZnの合計量に基
づけば約90%であった。なお、未回収のZnの大部分は、
精製工程の沈殿物中に未溶解の金属亜鉛として含まれて
おり、この沈殿物を溶解工程に循環使用することにより
未溶解Znは回収できる。こうすればZnの回収率はほぼ10
0 %となる。
Step for recovering zinc carbonate Using this purified zinc solution, a 90-
The ammonium and carbon dioxide gas was evaporated at 100 ° C. to decompose the ammine zinc complex into basic zinc carbonate and crystallize. The crystallized crystals were separated by filtration, washed with water and dried to give 99.98% pure basic zinc carbonate (Fe 63 pp
m, Pb 110 ppm, Cu 24 ppm) were recovered. The recovery rate of Zn was about 90% based on the total amount of Zn added in the dissolution step and the purification step. Most of the uncollected Zn is
Undissolved Zn is contained in the precipitate of the purification step as undissolved metallic zinc, and by recycling this precipitate in the dissolution step, undissolved Zn can be recovered. With this, the recovery rate of Zn is about 10
It becomes 0%.

【0050】副生物の循環 溶解工程で排出されたガスおよび晶析中に発生したガス
を水に吸収させて、アンモニアおよび炭酸ガスを回収
し、得られたアンモニアおよび炭酸アンモニウムを含む
水溶液に、炭酸ガスと少量のアンモニアガスを吹き込
み、この水溶液に精製工程で分離された沈殿物を溶解さ
せることにより、上記溶解工程で使用したのとほぼ同
じ濃度の溶解用水溶液を再生することができた。
Circulation of By-Products The gas discharged in the dissolution step and the gas generated during crystallization are absorbed in water to recover ammonia and carbon dioxide gas, and the obtained aqueous solution containing ammonia and ammonium carbonate is mixed with carbon dioxide. By blowing gas and a small amount of ammonia gas and dissolving the precipitate separated in the purification step in this aqueous solution, it was possible to regenerate an aqueous solution for dissolution having substantially the same concentration as that used in the above dissolution step.

【0051】実施例3 実施例2で使用したのと同じ亜鉛ダストを溶解原料と
し、図3に示したガス吹込み・循環系と亜鉛ダスト連続
供給装置とを備えた、有効容積100 L の反応槽を用いて
半連続式で数回の溶解実験を行った。
Example 3 Reaction of an effective volume of 100 L using the same zinc dust as that used in Example 2 as a melting raw material and equipped with the gas blowing / circulation system and the zinc dust continuous feeding device shown in FIG. The dissolution experiment was performed several times in a semi-continuous manner using a tank.

【0052】アンモニア濃度4.0 M、炭酸アンモニウム
濃度2.0 M、アンミン銅(II)錯体濃度0.2 Mの水溶液を
反応槽に入れ、水溶液温度60℃で水溶液中に酸素ガスを
150L/min の流量で吹込みながら、上記亜鉛ダスト12 kg
を各回ごとに異なる一定の供給速度で添加し、亜鉛を
液中に溶解させた。亜鉛ダストの溶解が終了するまでの
処理時間から処理効率(G/L・h)を求めると共に、処理中
における水溶液中の銅(II)イオン濃度を原子吸光分析法
で分析した。この分析は2〜5分間隔で行い、銅(II)イ
オン濃度が一定値に達した時のモル濃度を処理中の銅(I
I)イオン濃度とした。通常は10分以内で銅(II)イオン濃
度は一定となった。この銅(II)イオン濃度と装入した水
溶液中の銅(II)イオン濃度 (0.2 M) との比から銅の溶
解率を算出した。銅の溶解率と処理効率の結果を次の表
2に示す。
An aqueous solution having an ammonia concentration of 4.0 M, an ammonium carbonate concentration of 2.0 M, and an ammine copper (II) complex concentration of 0.2 M was placed in a reaction tank, and oxygen gas was added to the aqueous solution at an aqueous solution temperature of 60 ° C.
12 kg of the above zinc dust while blowing at a flow rate of 150 L / min
Was added at a constant constant feed rate each time, and zinc was dissolved in the liquid. The treatment efficiency (G / L · h) was determined from the treatment time until the dissolution of zinc dust was completed, and the copper (II) ion concentration in the aqueous solution during the treatment was analyzed by atomic absorption spectrometry. This analysis is performed at intervals of 2 to 5 minutes, and the molar concentration when the copper (II) ion concentration reaches a constant value
I) The ion concentration. Usually, the copper (II) ion concentration became constant within 10 minutes. The copper dissolution rate was calculated from the ratio of this copper (II) ion concentration to the copper (II) ion concentration (0.2 M) in the charged aqueous solution. The results of copper dissolution rate and treatment efficiency are shown in Table 2 below.

【0053】[0053]

【表2】 [Table 2]

【0054】この結果をグラフで示したのが図2であ
る。この図と表2から、銅の溶解率は供給速度の増加に
つれて低下するが、処理効率は銅の溶解率が50%付近で
最大となり、銅の溶解率が40〜60%の範囲内であれば非
常に高い処理効率を得ることができることがわかる。即
ち、処理効率の向上には銅の溶解率、従って、水溶液中
の銅(II)イオン濃度の影響が大きい。これより、銅の溶
解率が40〜60%の範囲内となるように、本実施例の条件
下においては、亜鉛含有物の供給速度を約 300〜355 g/
min の範囲内で連続供給すると、反応槽の処理効率が最
適化される。
FIG. 2 graphically shows this result. From this figure and Table 2, the dissolution rate of copper decreases as the feed rate increases, but the treatment efficiency reaches the maximum when the dissolution rate of copper is around 50%, and the dissolution rate of copper is within the range of 40-60%. It can be seen that extremely high processing efficiency can be obtained. That is, the dissolution rate of copper, and hence the concentration of copper (II) ions in the aqueous solution, has a large effect on the improvement of treatment efficiency. From this, under the conditions of this example, the supply rate of the zinc-containing material is about 300 to 355 g / so that the dissolution rate of copper falls within the range of 40 to 60%.
Continuous feeding within the min range optimizes the treatment efficiency of the reaction vessel.

【0055】実施例4 アンモニア濃度4.0 M、炭酸アンモニウム濃度2.0 M、
アンミン銅(II)錯体濃度0.3 Mの水溶液を、図3に示す
反応槽に入れ、水溶液温度60℃で水溶液中に酸素ガスを
170 L/min の流量で吹込みながら、実施例2で使用した
のと同じ亜鉛ダスト12 kg を連続的に供給した。亜鉛ダ
ストの供給開始から2分ごとに銅の溶解率を測定し、銅
の溶解率が約50%付近になるように供給速度を調整し
た。その結果、亜鉛ダストを460 g/min の速度で供給す
ると、銅の溶解率が49%で一定となることがわかった。
この条件下では、28分で亜鉛ダストを完全に溶解させる
ことができ、処理効率は 430 g/L・h であった。
Example 4 Ammonia concentration 4.0 M, ammonium carbonate concentration 2.0 M,
An aqueous solution having an ammine copper (II) complex concentration of 0.3 M was placed in the reaction vessel shown in FIG. 3, and oxygen gas was added to the aqueous solution at a temperature of 60 ° C.
12 kg of the same zinc dust used in Example 2 was continuously fed while blowing at a flow rate of 170 L / min. The dissolution rate of copper was measured every 2 minutes from the start of the supply of zinc dust, and the supply rate was adjusted so that the dissolution rate of copper was around 50%. As a result, it was found that when zinc dust was supplied at a rate of 460 g / min, the copper dissolution rate became constant at 49%.
Under this condition, zinc dust could be completely dissolved in 28 minutes, and the treatment efficiency was 430 g / L · h.

【0056】[0056]

【発明の効果】本発明の方法によれば、亜鉛含有物中の
亜鉛をアンミン亜鉛錯体として高速溶解することがで
き、従来より大粒径の亜鉛含有物でも処理できるので、
亜鉛の回収が効率的となる。本発明の亜鉛の回収方法
は、原理的には、使用する薬剤のうちアンミン銅(II)錯
体およびアンモニアの全量と炭酸ガスの半分以上を回収
し、循環使用することができるので、材料コストが非常
に安価であり、強い酸や塩基も使用しないので、廃水処
理も容易であるなど、経済性にも優れている。従って、
本発明は亜鉛ダストなどの亜鉛含有物に含まれる亜鉛の
リサイクルの促進に寄与する技術である。
According to the method of the present invention, zinc in a zinc-containing material can be rapidly dissolved as an ammine zinc complex, and a zinc-containing material having a larger particle size than before can be treated.
Recovery of zinc becomes efficient. In principle, the method for recovering zinc of the present invention can recover the total amount of ammine copper (II) complex and ammonia and half or more of carbon dioxide gas among the chemicals to be used, and can recycle them, so that the material cost can be reduced. It is very inexpensive and does not use strong acids or bases, so wastewater treatment is easy and it is economical. Therefore,
The present invention is a technique that contributes to promotion of recycling of zinc contained in a zinc-containing material such as zinc dust.

【0057】また、上記方法での亜鉛の溶解における反
応槽の処理効率は、処理中の銅の溶解率 (これは亜鉛含
有物の供給速度が大きいほど低下する) によって大きく
変動し、銅の溶解率が40〜60%の範囲内、特に好ましく
は50%付近になるように亜鉛含有物の供給速度を調整す
ると、処理効率が最大になる。従って、最適の亜鉛供給
速度を、銅の溶解率を目安にして容易に決定することが
できる。
Further, the treatment efficiency of the reaction vessel in the dissolution of zinc by the above method largely varies depending on the dissolution rate of copper during the processing (this decreases as the supply rate of the zinc-containing material increases), and the dissolution of copper The treatment efficiency is maximized by adjusting the feed rate of the zinc-containing material so that the rate is within the range of 40 to 60%, particularly preferably around 50%. Therefore, the optimum zinc supply rate can be easily determined using the dissolution rate of copper as a guide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による亜鉛の回収方法のフローシートで
ある。
FIG. 1 is a flow sheet of a zinc recovery method according to the present invention.

【図2】亜鉛含有物の連続供給による亜鉛溶解における
銅の溶解率と反応槽の処理効率との関係を示すグラフで
ある。
FIG. 2 is a graph showing a relationship between a dissolution rate of copper and a treatment efficiency of a reaction tank in dissolving zinc by continuously supplying a zinc-containing material.

【図3】実施例で使用した反応槽の構成を示す概略図で
ある。
FIG. 3 is a schematic diagram showing a configuration of a reaction tank used in Examples.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属亜鉛含有物を反応槽内でアンモニア
および炭酸アンモニウムを含有する水溶液と接触させて
亜鉛を水溶液中にアンミン亜鉛錯体として溶解させる方
法において、溶解をアンミン銅(II)錯体の共存下に水溶
液中に酸素含有ガスを吹込みながら行うことを特徴とす
る方法。
1. A method of dissolving zinc as an ammine zinc complex in an aqueous solution by bringing a metal zinc-containing material into contact with an aqueous solution containing ammonia and ammonium carbonate in a reaction vessel, and dissolving zinc in the presence of an ammine copper (II) complex. A method characterized by carrying out while blowing an oxygen-containing gas into an aqueous solution below.
【請求項2】 前記接触を反応槽内に金属亜鉛含有物を
連続的に供給することにより行い、その供給速度を反応
槽内の全銅に対する銅(II)イオンの比率が40〜60%とな
るように調整する、請求項1記載の方法。
2. The contact is carried out by continuously supplying a metal-zinc-containing material into the reaction tank, and the supply rate is set such that the ratio of copper (II) ions to the total copper in the reaction tank is 40 to 60%. The method of claim 1, wherein the adjustment is
【請求項3】 金属亜鉛含有物を反応槽内でアンモニア
および炭酸アンモニウムを含有する水溶液中に接触させ
て亜鉛を水溶液中にアンミン亜鉛錯体として溶解させる
工程1、得られた水溶液を金属亜鉛の添加により精製
し、沈殿物を分離して精製された水溶液を得る工程2、
精製された水溶液中のアンミン亜鉛錯体を分解させ、析
出した塩基性炭酸亜鉛を回収する工程3からなる、金属
亜鉛含有物からの亜鉛の回収方法において、溶解工程を
アンミン銅(II)錯体の共存下に水溶液中に酸素含有ガス
を吹込みながら行うことを特徴とする、金属亜鉛含有物
からの亜鉛の回収方法。
3. A step 1 of contacting a metallic zinc-containing material with an aqueous solution containing ammonia and ammonium carbonate in a reaction vessel to dissolve zinc as an ammine zinc complex in the aqueous solution, and adding the resulting aqueous solution to metallic zinc. Purifying according to step 2 and separating the precipitate to obtain a purified aqueous solution,
In the method for recovering zinc from a metal-zinc-containing material, which comprises the step 3 of decomposing the ammine zinc complex in the purified aqueous solution and recovering the precipitated basic zinc carbonate, the dissolving step includes coexisting with an ammine copper (II) complex. A method for recovering zinc from a metal-zinc-containing material, which is performed while blowing an oxygen-containing gas into an aqueous solution below.
【請求項4】 工程2で分離された銅を主体とする沈殿
物と、工程3で発生したアンモニアおよび炭酸ガスを、
工程1の水溶液に循環して、アンミン銅(II)錯体および
炭酸アンモニウムを再生すると共に、アンモニアを循環
使用する、請求項3記載の方法。
4. The copper-based precipitate separated in step 2, the ammonia and carbon dioxide gas generated in step 3,
The method according to claim 3, wherein the ammonia is circulated while the ammine copper (II) complex and the ammonium carbonate are regenerated by circulating the aqueous solution of step 1.
【請求項5】 工程1を反応槽内に金属亜鉛含有物を連
続的に供給することにより行い、その供給速度を反応槽
内の全銅に対する銅(II)イオンの比率が40〜60%となる
ように調整する、請求項3または4記載の方法。
5. The step 1 is carried out by continuously supplying a metallic zinc-containing material into the reaction tank, and the supply rate is set such that the ratio of copper (II) ions to the total copper in the reaction tank is 40 to 60%. The method according to claim 3 or 4, wherein the method is adjusted to
JP5132086A 1992-06-03 1993-06-02 Method for dissolving and recovering zinc from metallic zinc-containing material Withdrawn JPH0649556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5132086A JPH0649556A (en) 1992-06-03 1993-06-02 Method for dissolving and recovering zinc from metallic zinc-containing material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-142808 1992-06-03
JP14280892 1992-06-03
JP5132086A JPH0649556A (en) 1992-06-03 1993-06-02 Method for dissolving and recovering zinc from metallic zinc-containing material

Publications (1)

Publication Number Publication Date
JPH0649556A true JPH0649556A (en) 1994-02-22

Family

ID=26466733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132086A Withdrawn JPH0649556A (en) 1992-06-03 1993-06-02 Method for dissolving and recovering zinc from metallic zinc-containing material

Country Status (1)

Country Link
JP (1) JPH0649556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619925A (en) * 2017-09-27 2018-01-23 南丹县南方有色金属有限责任公司 Copper, the technique of indium in a kind of efficiently concentrating zinc sulfide concentrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619925A (en) * 2017-09-27 2018-01-23 南丹县南方有色金属有限责任公司 Copper, the technique of indium in a kind of efficiently concentrating zinc sulfide concentrates

Similar Documents

Publication Publication Date Title
US5453111A (en) Method for separation of metals from waste stream
EP0013098B1 (en) Removal of manganese ions from zinc and manganese containing solutions
US4288304A (en) Hydrometallurgical process for treatment of sulphur ores
MY138668A (en) Metallurgical dust recycle process
US4084961A (en) Treatment of metal bearing mineral material
KR920002414B1 (en) Process for the treatment of hydrochloric acid pickles containing iron and zinc
US4389248A (en) Method of recovering gold from anode slimes
EA003346B1 (en) Process for refining silver bullion with gold separation
US5464596A (en) Method for treating waste streams containing zinc
US3951649A (en) Process for the recovery of copper
US4401630A (en) Process for cobalt recovery from mixed sulfides
JPH07286221A (en) Method for recovering rhenium from nonferrous metal refining process
JPH09118504A (en) Method for recovering alkali metal chloride and alkaline earth metal chloride from waste salt produced in heat treatment of billet in salt bath
JP4040136B2 (en) A method for selectively recovering salt components from waste salts containing nitrates, nitrites, and hydroxides generated when heat treating steel parts in a salt bath
US4314976A (en) Purification of nickel sulfate
JPH0649556A (en) Method for dissolving and recovering zinc from metallic zinc-containing material
US5332560A (en) Process for the removal of zinc and nickel from copper ammine sulfate solutions
US4033765A (en) Extractions of copper from solutions by reduction with anthraquinols
JP2762849B2 (en) How to process ferro scrap
Scheiner et al. Extraction and recovery of molybdenum and rhenium from molybdenite concentrates by electrooxidation: process demonstration
US6337056B1 (en) Process for refining noble metals from auriferous mines
US6495024B1 (en) Method for the removal of arsenic from sulfuric acid solution
US4030917A (en) Hydrometallurgical processing of metal sulfides
CA1125227A (en) Process for recovering cobalt electrolytically
JPH05195103A (en) Method for separating and recovering copper in ferroscrap

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905