JPH0649538A - Method for testing hydrogen embrittlement sensitivity of metallic material - Google Patents

Method for testing hydrogen embrittlement sensitivity of metallic material

Info

Publication number
JPH0649538A
JPH0649538A JP20231792A JP20231792A JPH0649538A JP H0649538 A JPH0649538 A JP H0649538A JP 20231792 A JP20231792 A JP 20231792A JP 20231792 A JP20231792 A JP 20231792A JP H0649538 A JPH0649538 A JP H0649538A
Authority
JP
Japan
Prior art keywords
hydrogen
stainless steel
austenitic stainless
ratio
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20231792A
Other languages
Japanese (ja)
Inventor
Junichiro Morisawa
潤一郎 森沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP20231792A priority Critical patent/JPH0649538A/en
Publication of JPH0649538A publication Critical patent/JPH0649538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To accurately evaluate and judge the hydrogen embrittlement sensitivity of austenitic stainless steel with high sensitivity by repeating the charging and discharging of hydrogen in the austenitic stainless steel by an electrochemical method and thereafter observing its fractured face. CONSTITUTION:The austenitic stainless steel 3 to be judged with hydrogen embrittlement sensitivity is immersed, as the cathode, into a normal soln. 1 of sulfuric acid added with a small amt. of NaAsO2 as a surfactant. As the counter electrode, the anode 4 made of Pt is used, and a constant current is allowed to flow and hydrogen charging is executed. After that, by a tension test, the ratio of the intercrystalline cracking area in the fractured face is recorded. Next, it is held in a vacuum heat treating furnace of 100 deg.C, and hydrogen discharging is executed. After that, by a tension test, the ratio of the intercrystalline cracking area in the fractured face is measured and is compared with the intercrystalline cracking area ratio in the fractured face after the hydrogen charging, by which the hydrogen embrittlement sensitivity of the austenitic stainless steel is evaluated and judged with high sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高感度な水素脆化感受性
試験法を提供するものである。
FIELD OF THE INVENTION The present invention provides a highly sensitive hydrogen embrittlement susceptibility test method.

【0002】[0002]

【従来の技術】従来よりオーステナイト系ステンレス鋼
の水素脆化は、石油化学工業等の水素を含む雰囲気中で
使用される容器の内張りである肉盛溶接部に水素割れが
生じたり、冷間加工を行ったSUS304鋼の溶接熱影
響部に水素割れが発生したなどの報告があり水素脆化は
重要な問題となっている。これに関して多数の研究がな
されており、特に、水素脆化感受性の確認方法は重要で
ある。
2. Description of the Related Art Hydrogen embrittlement of austenitic stainless steel has hitherto been caused by hydrogen cracking or cold working in a weld overlay which is the lining of a container used in an atmosphere containing hydrogen in the petrochemical industry. It has been reported that hydrogen cracking occurred in the weld heat affected zone of SUS304 steel, which has undergone the heat treatment, and hydrogen embrittlement has become an important issue. Many studies have been conducted on this, and in particular, a method for confirming hydrogen embrittlement susceptibility is important.

【0003】こうしたものとして日本金属学会誌第46
巻,第9号、第877〜886頁(1982年)に記載
されているようにステンレス鋼鋭敏化材に陰極水素チャ
ージすると延性低下することが知られているが、室温で
はその量は極めて僅かである。
As such, the 46th journal of the Japan Institute of Metals
Vol. 9, No. 7, pp. 877-886 (1982), it is known that cathode hydrogen charging of a stainless steel sensitizer reduces the ductility, but at room temperature the amount is very small. Is.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記の方法で
は延性の低下は少なく、粒界破面も認められていない。
これは陰極水素チャージのみでは、室温での引張試験で
粒界破面を得るためには、後述するように長時間の水素
チャージが必要なことが分かった。即ち、従来の水素チ
ャージ法では水素脆化感受性を検出するには十分な脆化
を与えることができないことが分かった。
However, in the above method, the decrease in ductility is small and no grain boundary fracture surface is observed.
It was found that the cathode hydrogen charge alone required a long time hydrogen charge to obtain a grain boundary fracture surface in a tensile test at room temperature, as described later. That is, it was found that the conventional hydrogen charging method cannot give sufficient embrittlement to detect hydrogen embrittlement susceptibility.

【0005】本発明の目的は、観測する金属試料の室温
での水素脆化効果が大きく、高感度でその感受性を検出
できる水素脆化感受性試験法を提供することにある。
An object of the present invention is to provide a hydrogen embrittlement susceptibility test method which has a large effect of hydrogen embrittlement of a metal sample to be observed at room temperature and can detect the sensitivity with high sensitivity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の要旨は、金属試験片を電気化学的手法により水素を
チャージする工程と、水素チャージした前記金属試験片
を熱処理することにより水素のディスチャージを行う工
程を繰り返し、該金属試験片の破壊面の粒界割れ面の比
率を観測することを特徴とする金属材料の水素脆化感受
性試験法にある。
Means for Solving the Problems The gist of the present invention to achieve the above object is to charge a metal test piece with hydrogen by an electrochemical method, and to heat the metal test piece charged with hydrogen by hydrogen treatment. A hydrogen embrittlement susceptibility test method for a metal material is characterized in that a step of discharging is repeated to observe a ratio of a grain boundary crack surface of a fracture surface of the metal test piece.

【0007】上記水素のチャージ⇔ディスチャージを繰
り返すことによって金属試料の粒界脆化を促進し、次い
で該金属材料を低速で引張って破壊し、その破断面を観
測することにより粒界割れ面の比率を測定するものであ
る。
Grain boundary embrittlement of a metal sample is promoted by repeating charging and discharging of hydrogen as described above, and then the metal material is pulled at a low speed to break, and the fracture surface is observed to determine the ratio of intergranular crack surface. Is measured.

【0008】なお、前記ディスチャージは、例えば、真
空加熱炉中において100℃程度で熱処理することによ
り目的を達成することができる。
The discharge can achieve the object by, for example, heat treatment at about 100 ° C. in a vacuum heating furnace.

【0009】[0009]

【作用】オーステナイト系ステンレス鋼、例えば、SU
S304鋼は鋭敏化されることにより粒界にクロム炭化
物が析出し、それに伴って粒界近傍部にはクロム欠乏層
が形成される。一方オーステナイト鋼において水素の拡
散速度におよぼすクロム量の影響は、クロム量の増加に
伴って水素の拡散がしにくゝなることが知られている。
従って、クロム量の少ないクロム欠乏層では水素の拡散
が容易になると考えられる。
Function: Austenitic stainless steel, eg SU
When the S304 steel is sensitized, chromium carbide is precipitated at the grain boundaries, and along with that, a chromium deficient layer is formed near the grain boundaries. On the other hand, in the austenitic steel, it is known that the influence of the amount of chromium on the diffusion rate of hydrogen makes it difficult for the diffusion of hydrogen as the amount of chromium increases.
Therefore, it is considered that the diffusion of hydrogen is facilitated in the chromium-deficient layer having a small amount of chromium.

【0010】鋭敏化材に水素チャージしたときの水素
は、粒界近傍のクロム欠乏層に優先的に浸入し、水素誘
起マルテンサイト変態を起して、粒界を脆化させる。し
かし、オーステナイト系ステンレス鋼の水素拡散速度は
フェライト鋼に比べて小さく、内部への浸入深さも小さ
い。
When the sensitizer is charged with hydrogen, hydrogen preferentially penetrates into the chromium deficient layer in the vicinity of the grain boundary to cause hydrogen-induced martensite transformation and embrittle the grain boundary. However, the hydrogen diffusion rate of austenitic stainless steel is smaller than that of ferritic steel, and the depth of penetration into the interior is also small.

【0011】次に、侵入している水素をディスチャージ
すると、水素は浸入経路を逆に通って放出されるが、そ
の際、水素誘起マルテンサイト変態を更に促進する。2
回目の水素チャージの際には、1回目のチャージ→ディ
スチャージにより水素誘起マルテンサイト変態を起した
領域では、水素の拡散速度が大きいため水素が容易に進
入し、更にその奥のクロム欠乏層へと浸入して、新たな
水素誘起マルテンサイト変態を起し、脆化が内部へと進
行する。従って、水素のチャージ⇔ディスチャージの繰
り返し回数が多いほど脆化を促進することができる。
Next, when the invading hydrogen is discharged, the hydrogen is released through the invasion route in reverse, at which time hydrogen-induced martensitic transformation is further promoted. Two
At the time of the second hydrogen charge, in the region where the hydrogen-induced martensite transformation is caused by the first charge → discharge, hydrogen easily enters due to the large diffusion rate of hydrogen, and further into the chromium-deficient layer in the back. Upon infiltration, new hydrogen-induced martensitic transformation occurs, causing embrittlement to proceed inside. Therefore, embrittlement can be promoted as the number of times of hydrogen charge ⇔ discharge is repeated.

【0012】上記のとおり水素はチャージのみよりも、
チャージ⇔ディスチャージを繰り返した方が粒界脆化が
進むため、水素脆化感受性が同じ金属材料でも、粒界脆
化の割合が多くなる。
As mentioned above, hydrogen is more
Grain boundary embrittlement progresses as charge ⇔ discharge is repeated. Therefore, even in a metal material having the same hydrogen embrittlement susceptibility, the ratio of grain boundary embrittlement increases.

【0013】結晶粒界が脆化した金属材料は低速で引張
られると粒界破断を起す。粒界脆化の割合が多い材料ほ
ど粒界破断を起す割合が高く、結果として水素脆化感受
性を高感度に検出することができるのである。
A metal material whose crystal grain boundaries are brittle causes grain boundary fracture when pulled at a low speed. A material having a higher rate of grain boundary embrittlement has a higher rate of causing grain boundary fracture, and as a result, hydrogen embrittlement susceptibility can be detected with high sensitivity.

【0014】[0014]

【実施例】本発明を実施例に基づき説明する。図1は定
電流法による陰極水素チャージ法の原理を示す説明図で
ある。
EXAMPLES The present invention will be described based on examples. FIG. 1 is an explanatory diagram showing the principle of the cathode hydrogen charging method based on the constant current method.

【0015】表面活性剤として亜ヒ酸ナトリウム(Na
ASO2)を少量添加した1規定の硫酸溶液1をマント
ルヒータ2により50℃に保ち、その中で厚さ1mmの
引張試験片形状に加工した鋭敏化ステンレス鋼(650
℃×3h熱処理済)を試料極(陰極)3とし、対極とし
て白金電極(陽極)4を対極として、ポテンショスタッ
ト5により定電流(4.2mA/cm2)を流して水素
チャージを行う。その時の電位変化を参照電極6とポテ
ンショスタット5を用いて測定し、記録計7に記録す
る。
Sodium arsenite (Na
A 1 N sulfuric acid solution 1 containing a small amount of ASO 2 ) was kept at 50 ° C. by a mantle heater 2, and a sensitized stainless steel (650 mm) was formed into a tensile test piece having a thickness of 1 mm therein.
The sample electrode (cathode) 3 is used as the sample electrode (cathode) and the platinum electrode (anode) 4 is used as the counter electrode, and a constant current (4.2 mA / cm 2 ) is supplied by the potentiostat 5 to charge hydrogen. The potential change at that time is measured using the reference electrode 6 and the potentiostat 5 and recorded in the recorder 7.

【0016】まず、水素チャージのみ所定時間行った試
料極3は、低速で引張り試験を行い破断面をSEM観察
した。図2に破断面全体の面積に対する粒界割れ面積の
比率(%)を求めた値を○印8、8'、8''で示した。
First, the sample electrode 3, which was charged with hydrogen only for a predetermined time, was subjected to a tensile test at a low speed and the fracture surface was observed by SEM. In FIG. 2, the values obtained by calculating the ratio (%) of the intergranular crack area to the area of the entire fracture surface are shown by ◯ marks 8, 8 ′ and 8 ″.

【0017】水素チャージ時間が長くなるに従い粒界割
れ面の比率が高くなることが分かる。但し、時間と共に
粒界割れ面の帆率は飽和する傾向がある。
It can be seen that the ratio of intergranular cracked surfaces increases as the hydrogen charging time increases. However, the sail ratio of the intergranular cracked surface tends to be saturated with time.

【0018】一方、本実施例においては、前記条件で水
素チャージ24h後、次いで100℃の真空熱処理炉内
で24h保持して水素ディスチャージを行う。これを4
回繰り返した後、前記と同様に低速引張り試験を行っ
た。その結果を図2●印9に示した。
On the other hand, in this embodiment, after hydrogen charging for 24 hours under the above conditions, hydrogen discharge is carried out by holding in a vacuum heat treatment furnace at 100 ° C. for 24 hours. This 4
After repeating the number of times, a low speed tensile test was conducted in the same manner as above. The result is shown in FIG.

【0019】上記の水素チャージの合計時間は96hで
あり、水素チャージのみ96h行ったものと比較して粒
界割れ面の比率は高く、かつ、所要トータル時間(水素
チャージ時間+ディスチャージ時間)で比較しても19
2hで、水素チャージのみ192hの結果8''と比較し
ても粒界割れ面の比率が約1.5倍高い。このことか
ら、本実施例の方法によれば、金属材料の水素脆化感受
性を効率的、かつ、高感度で検出することができる。
The above total time of hydrogen charging is 96 hours, the ratio of the intergranular crack surface is higher than that of the case where only hydrogen charging is performed for 96 hours, and the total time required (hydrogen charging time + discharge time) is compared. Even 19
At 2 h, the ratio of intergranular cracked surfaces is about 1.5 times higher than the result of 8 ″ when only hydrogen charge is 192 h. From this, according to the method of the present embodiment, the hydrogen embrittlement susceptibility of the metal material can be detected efficiently and with high sensitivity.

【0020】[0020]

【発明の効果】本発明によれば、水素脆化感受性が低い
材料に対しても、効率的に水素脆化を起すことができ、
こうした金属材料の水素脆化の感受性の評価判定を高感
度で行うことができる。
EFFECTS OF THE INVENTION According to the present invention, hydrogen embrittlement can be efficiently generated even for a material having low susceptibility to hydrogen embrittlement.
It is possible to evaluate with high sensitivity the susceptibility to hydrogen embrittlement of such metal materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の定電流による陰極水素チャージ法の
原理を示す説明図である。
FIG. 1 is an explanatory diagram showing the principle of a cathode hydrogen charging method using a constant current according to this embodiment.

【図2】水素チャージ時間と引張り試験後の全破断面に
対する粒界割れ面の比率との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a hydrogen charging time and a ratio of an intergranular crack surface to a total fracture surface after a tensile test.

【符号の説明】[Explanation of symbols]

1…硫酸溶液、2…マントルヒータ、3…試料極(陰
極)、4…白金電極(陽極)、5…ポテンショスタッ
ト、6…参照電極、7…記録計、8…水素チャージのみ
の場合の粒界割れ面の比率、9…(水素チャージとディ
スチャージ)×4回行った場合の粒界割れ面の比率。
1 ... Sulfuric acid solution, 2 ... Mantle heater, 3 ... Sample electrode (cathode), 4 ... Platinum electrode (anode), 5 ... Potentiostat, 6 ... Reference electrode, 7 ... Recorder, 8 ... Particles for hydrogen charging only Ratio of intergranular crack surfaces, 9 ... (Hydrogen charge and discharge) x ratio of intergranular crack surfaces when performed 4 times.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属試験片に電気化学的手法により水素
をチャージする工程と、水素チャージした前記金属試験
片を熱処理することにより水素のディスチャージを行う
工程を繰り返し、該金属試験片の破壊面の粒界割れ面の
比率を観測することを特徴とする金属材料の水素脆化感
受性試験法。
1. A step of charging a metal test piece with hydrogen by an electrochemical method and a step of discharging hydrogen by heat-treating the hydrogen-charged metal test piece are repeated to obtain a fracture surface of the metal test piece. A hydrogen embrittlement susceptibility test method for metallic materials, characterized by observing the ratio of intergranular crack surfaces.
【請求項2】 前記金属試験片がオーステナイト系ステ
ンレス鋼である請求項1に記載の金属材料の水素脆化感
受性試験法。
2. The hydrogen embrittlement susceptibility test method for a metal material according to claim 1, wherein the metal test piece is austenitic stainless steel.
JP20231792A 1992-07-29 1992-07-29 Method for testing hydrogen embrittlement sensitivity of metallic material Pending JPH0649538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20231792A JPH0649538A (en) 1992-07-29 1992-07-29 Method for testing hydrogen embrittlement sensitivity of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20231792A JPH0649538A (en) 1992-07-29 1992-07-29 Method for testing hydrogen embrittlement sensitivity of metallic material

Publications (1)

Publication Number Publication Date
JPH0649538A true JPH0649538A (en) 1994-02-22

Family

ID=16455547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20231792A Pending JPH0649538A (en) 1992-07-29 1992-07-29 Method for testing hydrogen embrittlement sensitivity of metallic material

Country Status (1)

Country Link
JP (1) JPH0649538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337311A (en) * 2005-06-06 2006-12-14 Global Nuclear Fuel-Japan Co Ltd Hydrogenation method and hydrogenation test piece
WO2008093453A1 (en) * 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology Austenite based stainless steel and method of dehydrogenating the same
WO2010016378A1 (en) * 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Austenitic stainless steel and process for hydrogenation of same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337311A (en) * 2005-06-06 2006-12-14 Global Nuclear Fuel-Japan Co Ltd Hydrogenation method and hydrogenation test piece
JP4628875B2 (en) * 2005-06-06 2011-02-09 株式会社グローバル・ニュークリア・フュエル・ジャパン Hydrogenation method and hydrogenation test piece
WO2008093453A1 (en) * 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology Austenite based stainless steel and method of dehydrogenating the same
WO2010016378A1 (en) * 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Austenitic stainless steel and process for hydrogenation of same
JP2010037606A (en) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology Austenitic stainless steel and method for adding hydrogen

Similar Documents

Publication Publication Date Title
Ghosh et al. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations
Haq et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels
Shibaeva et al. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions
Zafra et al. Hydrogen diffusion and trapping in 42CrMo4 quenched and tempered steel: Influence of quenching temperature and plastic deformation
Gong et al. Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr–1Mo ferritic–martensitic steel embrittled by liquid lead–bismuth under low cycle fatigue
Qiao et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater
Sun et al. Studies on the degree of sensitization of hyper-duplex stainless steel 2707 at 900℃ using a modified DL-EPR test
Bellezze et al. Electrochemical characterization of three corrosion-resistant alloys after processing for heating-element sheathing
Rieck et al. The role of crack tip strain rate in the stress corrosion cracking of high strength steels in water
Singh et al. Role of prior austenite grain boundaries in short fatigue crack growth in hydrogen charged RPV steel
Persaud et al. Nanoscale precursor sites and their importance in the prediction of stress corrosion cracking failure
Ozdirik et al. Study of the hydrogen uptake in deformed steel using the microcapillary cell technique
Okayasu et al. Effects of microstructural characteristics on the hydrogen embrittlement characteristics of austenitic, ferritic, and γ–α duplex stainless steels
Lakshminarayanan et al. Sensitization resistance of friction stir welded AISI 409 M grade ferritic stainless steel joints
Parkins et al. Stress corrosion cracking of 70/30 brass in acetate, formate, tartrate, and hydroxide solutions
JPH0649538A (en) Method for testing hydrogen embrittlement sensitivity of metallic material
Angus Hydrogen induced damage in pipeline steels
JP2000329726A (en) Evaluation method for hydrogen embrittlement susceptibility of steel product
JP3486315B2 (en) High temperature damage evaluation method for tempered martensitic steel
Buzzard Hydrogen Embrittlement of Steel: Review of the Literature
Al-Negheimish et al. Pitting Susceptibility of Concrete Reinforcing Steel Bars Having Manganese Sulfide Inclusions.
RU2584275C1 (en) Method for prediction of wear resistance of hard alloy cutting tools
Vucko et al. Wet corrosion of incinerators under chloride deposits: insights from experimental study on stainless steels and nickel-based alloy weldments
Parvathavarthini et al. Influence of prior deformation on the sensitisation of AISI type 304 stainless steel and applicability of EPR technique
JPH1183707A (en) Method and apparatus for developing intergranular fracture of metal material