JPH0649461B2 - Hydraulic reaction force type power steering device - Google Patents
Hydraulic reaction force type power steering deviceInfo
- Publication number
- JPH0649461B2 JPH0649461B2 JP60052442A JP5244285A JPH0649461B2 JP H0649461 B2 JPH0649461 B2 JP H0649461B2 JP 60052442 A JP60052442 A JP 60052442A JP 5244285 A JP5244285 A JP 5244285A JP H0649461 B2 JPH0649461 B2 JP H0649461B2
- Authority
- JP
- Japan
- Prior art keywords
- input shaft
- valve
- reaction force
- groove
- hydraulic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/02—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Steering Mechanism (AREA)
Description
【発明の詳細な説明】 (技術分野) 本願発明は、ポンプからの圧油を車速により制御しこの
圧油を油圧反力室に供給することにより、操舵時の抵抗
を車速に応じ変化させるパワーステアリング装置の油圧
反力装置においてバルブ中立位置と油圧反力部の反力の
中立位置(バルブの相対変位に対して油圧反力の作用し
ない位置)とを一致させるセンンターリング機構を有す
る油圧反力装置に関するものである。TECHNICAL FIELD The present invention controls the pressure oil from a pump according to the vehicle speed and supplies the pressure oil to a hydraulic reaction chamber to change the resistance during steering according to the vehicle speed. In the hydraulic reaction force device of the steering device, a hydraulic reaction force having a centering mechanism that matches the neutral position of the valve with the neutral position of the reaction force of the hydraulic reaction force portion (the position where the hydraulic reaction force does not act on the relative displacement of the valve) It relates to the device.
(従来技術) 一般に、パワーステアリング装置の油圧補助装置に用い
られているロータリーバルブにおいて、バルブの中立位
置は第7図、第8図に示す如く、バルブボデイ51の8
ケ所の溝51Aの芯X−Xと入力軸52の8ケ所の溝5
2A間凸部の芯Y−Yを合致させること、即ち8ケ所の
各溝51Aと各溝52A間の絞りa,a′をa=a′と
することが望ましいが、1つの溝51Aでa=a′とす
ることが出来ても8ケ所全ての溝で芯を合致させること
は機械加工精度上極めて困難であり、バルブボデイ51
と入力軸52の総合した累積誤差は第9図の様に偏った
状態になる。第9図は第7図においてバルブがK点から
J点、さらにK点へと回転したときの各溝51Aと52
Aの加工累積誤差を表したグラフである。(Prior Art) Generally, in a rotary valve used in a hydraulic auxiliary device of a power steering device, the neutral position of the valve is 8 in the valve body 51 as shown in FIGS.
Core XX of groove 51A at 8 places and groove 5 at 8 places of input shaft 52
It is desirable to match the cores Y-Y of the convex portions between 2A, that is, it is preferable that the diaphragms a and a'between the eight grooves 51A and the respective grooves 52A are a = a '. = A'can be achieved, it is extremely difficult to match the cores in all eight grooves in terms of machining accuracy.
And the total accumulated error of the input shaft 52 is biased as shown in FIG. FIG. 9 shows the grooves 51A and 52 when the valve is rotated from the K point to the J point to the K point in FIG.
It is a graph showing the processing cumulative error of A.
ところで第5図及び第6図の如く、従来のパワーステア
リング装置の油圧反力部は入力軸52の外周縦方向にV
溝60を形成し、バルブボデイ51外周より該V溝60
に向けて複数個の反力室58を形成してボールであるピ
ストン59を該V溝60に圧油で押圧するようになって
いたが、全ての反力部の芯をバルブの各芯と合せること
は機械加工精度及び組立て工程での調整等不可能に近
く、実車に於いてはバルブボデイ51と入力軸52がバ
ルブの中立位置に位置した場合でも、反力部の芯とバル
ブの芯とは第10図の如くには一致せず、第11図の如
くV溝60の右斜面とピストン59との間に僅かな隙間
Δlを生ずる。そしてこの時、車速の増加と共に圧油が
ピストン59に作用するピストン59は半径方向内方に
押され入力軸52を左回転し第10図の状態になろうと
する。この時、トーションバー53はバルブ中立位置か
らの捩りのため殆ど第11図の状態を保持する力が弱
く、圧油の押圧力に負けピストン59は第10図の状態
になる。即ちバルブは相対変位を発生し、第12図のよ
うにO→O′へバルブの中立位置(最低回路圧)が右へ
ズレ元のバルブ中立位置に於いてはP′の圧力差を生じ
る。このP′はパワーステアリング装置の油圧補助用の
左右シリンダーCYL1,CYL2の差圧として発生
し、シリンダーを作動させ、操向輪を左へ回し斜め走行
の危険を生じさせ常に運転者は操向輪を直進状態に保つ
ために、ハンドルを直進状態に保たなければ、ハンドル
は油圧反力部のV溝の作用を受け、常に斜め走行状態に
なろうとする危険を生ずるという問題点があった。By the way, as shown in FIG. 5 and FIG. 6, the hydraulic reaction portion of the conventional power steering device is V
A groove 60 is formed, and the V groove 60 is formed from the outer circumference of the valve body 51.
A plurality of reaction force chambers 58 were formed toward each other to press the piston 59, which is a ball, against the V groove 60 with pressure oil. However, the cores of all the reaction force parts correspond to the cores of the valve. It is almost impossible to match the machining accuracy and adjustment in the assembling process, so even if the valve body 51 and the input shaft 52 are located at the neutral position of the valve in the actual vehicle, the core of the reaction force part and the core of the valve Does not match as shown in FIG. 10, and as shown in FIG. 11, a slight gap Δl is formed between the right slope of the V groove 60 and the piston 59. At this time, as the vehicle speed increases, the pressure oil acts on the piston 59, and the piston 59 is pushed inward in the radial direction to rotate the input shaft 52 counterclockwise and try to reach the state shown in FIG. At this time, since the torsion bar 53 is twisted from the valve neutral position, the force for holding the state shown in FIG. 11 is weak, and the piston 59 loses the pressing force of the pressure oil to the state shown in FIG. That is, the valve causes a relative displacement, and as shown in FIG. 12, the neutral position (minimum circuit pressure) of the valve from O to O'causes a pressure difference of P'at the neutral position of the valve which is displaced to the right. This P'is generated as a pressure difference between the left and right cylinders CYL1 and CYL2 for hydraulic assistance of the power steering device, actuates the cylinders, turns the steering wheel to the left, and causes a danger of diagonal traveling, and the driver always operates the steering wheel. If the handle is not kept in the straight traveling state in order to keep the vehicle in the straight traveling state, there is a problem that the handle is affected by the V groove of the hydraulic reaction force portion, and there is a danger that the handle always tries to be in the oblique traveling state.
(目 的) 本願発明は、バルブの加工精度及び組立て調整に関係な
くバルブの中立位置で油圧反力部の中立位置を容易にセ
ンターリング及び保持させ直進走行時に斜め走行の危険
を生ずるという欠点を確実に防止することを目的として
いる。(Objective) The present invention has a drawback in that the neutral position of the hydraulic reaction portion is easily centered and held at the neutral position of the valve regardless of the machining accuracy and assembly adjustment of the valve, which may cause a risk of diagonal traveling during straight traveling. The purpose is to ensure prevention.
(構 成) 本願発明は上記目的を達成するため、ハウジングと、ハ
ウジング内に配置された出力軸と、ハウジング内に出力
軸と同一軸線上に配置された入力軸と、出力軸と入力軸
との間に設けられたトーションバーと、出力軸とドライ
ブピンで回転方向に一体化されると共に、入力軸を内嵌
するバルブボデイと、入力軸の周りに設けられ、かつト
ーションバーの捩れに応じて油圧ポンプからパワーシリ
ンダに送られる圧油の量を、バルブボデイとの間で制御
するコントロールバルブと、バルブボデイの外周に設け
られた外周溝より軸直角方向に形成された圧油室に摺動
自在に嵌め入れられたプランジャーとを備えており、車
速に応じた油圧によって、プランジャー先端の球状頭部
が、入力軸外周で軸方向にのびる凹溝に押し付けられて
反力が得られるようになされている油圧反力式パワース
テアリング装置に於て、前記凹溝はバルブ軸芯と同芯の
円弧面又は該円弧面の接線を含む平面状の底部と、その
両側にあって周方向に向かって中心から離れる向きに傾
斜する側面とを有し、トーションバーの非捩れ位置にお
いて、前記プランジャーの球状頭部が前記入力軸の凹溝
底部に当接したとき、球状頭部と凹溝両側面との間に周
方向に対し隙間を有することを特徴とする油圧反力式パ
ワーステアリング装置に関するものである。(Structure) In order to achieve the above object, the present invention includes a housing, an output shaft arranged in the housing, an input shaft arranged in the housing on the same axis as the output shaft, an output shaft and an input shaft. A torsion bar provided between the output shaft and a drive pin, which is integrated in the rotational direction, and a valve body into which the input shaft is fitted, and a torsion bar provided around the input shaft and depending on the torsion of the torsion bar. A control valve that controls the amount of pressure oil sent from the hydraulic pump to the power cylinder with the valve body, and a pressure oil chamber that is formed in the direction perpendicular to the axis through the outer peripheral groove provided on the outer periphery of the valve body. With a plunger that is fitted in, the spherical head at the tip of the plunger is pressed into a groove that extends in the axial direction on the outer circumference of the input shaft due to the hydraulic pressure according to the vehicle speed, and the reaction force In the hydraulic reaction type power steering device configured as described above, the recessed groove has a flat bottom including an arc surface concentric with the valve shaft core or a tangent line of the arc surface, and a circumferential bottom surface on both sides thereof. And a side surface inclined in a direction away from the center toward the direction, when the spherical head of the plunger abuts the bottom of the groove of the input shaft in the non-twisted position of the torsion bar, The present invention relates to a hydraulic reaction force type power steering device having a gap in the circumferential direction between both side surfaces of a groove.
以下実施例に基づいて具体的に説明する。A specific description will be given below based on Examples.
入力軸1と、ラック2と噛合っている出力軸であるピニ
オン3とをトーションバー4で各々の端部において固定
一体化し、ピニオン3の大端部にはドライブピン5を圧
入固定し、ロータリーバルブの外側部材であるバルブボ
デイ6に形成した溝7にドライブピン5を係合しピニオ
ン3とバルブボデイ6を一体化している。バルブボデイ
6の内側は入力軸1の外径部と僅かな隙間で嵌合し、公
知のロータリーバルブを形成しており、トーションバー
4の捩り作用により入力軸1とピニオン3との間で相対
角変位を生じさせ、バルブを作動させてエンジンの回転
で駆動されるポンプ24からの圧油を油路29を通じて
インポート9からバルブへ供給し、右シリンダーポート
10、左シリンダーポート11へ選択的に供給、油圧補
助を行うようになっている。このようなパワーステアリ
ング装置は周知である。The input shaft 1 and the pinion 3, which is an output shaft meshing with the rack 2, are fixed and integrated at each end by a torsion bar 4, and a drive pin 5 is press-fitted and fixed to the large end of the pinion 3 to form a rotary. A drive pin 5 is engaged with a groove 7 formed in a valve body 6 which is an outer member of the valve to integrate the pinion 3 and the valve body 6. The inside of the valve body 6 is fitted to the outer diameter portion of the input shaft 1 with a slight clearance to form a known rotary valve. The torsional action of the torsion bar 4 causes a relative angle between the input shaft 1 and the pinion 3. Displacement is generated and the valve is actuated to supply pressure oil from the pump 24 driven by the rotation of the engine from the import 9 to the valve through the oil passage 29, and selectively supplied to the right cylinder port 10 and the left cylinder port 11. , Hydraulic assistance is provided. Such a power steering device is well known.
一方、バルブボデイ6の外周には周溝が設けられ、その
周溝の円周4個所に軸直角方向に圧油室15が設けら
れ、該各圧油室15には各々ピストン16が僅かな隙間
で摺動可能に嵌合されている。ピストン16の先端は球
状部17を有し、入力軸1の一端外周軸方向には前記球
状部17に対応して凹溝18が形成されている。該凹溝
18の底部18aはバルブ中心より半径Rの円弧面と
し、両側面18b,18cと球状部17との間にはバル
ブ中立位置と反力部中立位置(バルブの相対変位に対し
て油圧反力の作用しない位置をいう)の機械加工精度上
考えられるズレ量に相当した隙間S1,S2を形成してあ
る。On the other hand, a circumferential groove is provided on the outer circumference of the valve body 6, and pressure oil chambers 15 are provided at four circumferential positions of the circumferential groove in a direction perpendicular to the axis. It is slidably fitted in. The tip of the piston 16 has a spherical portion 17, and a concave groove 18 is formed in the axial direction of one end of the input shaft 1 so as to correspond to the spherical portion 17. The bottom portion 18a of the groove 18 is an arcuate surface having a radius R from the center of the valve, and the valve neutral position and the reaction force neutral position are provided between both side surfaces 18b and 18c and the spherical portion 17 (hydraulic pressure relative to relative displacement of the valve The gaps S 1 and S 2 are formed corresponding to the amount of misalignment that is considered in terms of machining accuracy of the position where the reaction force does not act).
また圧油室15には導管30を連通し、さらに導管30
に、車速センサー23から入力されるソレノイドを含む
電子制御部22によって開度を制御される油圧反力制御
バルブ21を設けている。Further, a conduit 30 is connected to the pressure oil chamber 15, and the conduit 30
Further, a hydraulic reaction force control valve 21 whose opening is controlled by an electronic control unit 22 including a solenoid input from a vehicle speed sensor 23 is provided.
これにより圧油室15へは車速により制御された圧油が
INポート19を通じて供給される。As a result, the pressure oil controlled by the vehicle speed is supplied to the pressure oil chamber 15 through the IN port 19.
今、第1図にて、右操舵した時、入力軸1の回転に対し
ピニオン3は操舵輪の操向抵抗により動かないラック2
と噛合っている為に容易に回転しない。Referring now to FIG. 1, when the steering wheel is steered to the right, the pinion 3 does not move with respect to the rotation of the input shaft 1 due to the steering resistance of the steered wheels.
It does not rotate easily because it meshes with.
そのため、トーションバー4に捩り変位を生じて入力軸
1とバルブボデイ6との間に変位が発生し、ポンプ24
からの圧油がINポート8→シリンダーポート10→動
力補助モータ25の右シリンダー26へ供給され、油圧
補助される。Therefore, the torsion bar 4 is twisted and displaced between the input shaft 1 and the valve body 6, and the pump 24
The pressure oil is supplied from the IN port 8 to the cylinder port 10 to the right cylinder 26 of the power assisting motor 25 to assist the hydraulic pressure.
一方、動力補助モータ25の左シリンダー27の戻り油
は、左シリンダー27からシリンダーポート11、戻り
油路、戻りポート、タンクへと戻される。On the other hand, the return oil of the left cylinder 27 of the power auxiliary motor 25 is returned from the left cylinder 27 to the cylinder port 11, the return oil passage, the return port, and the tank.
車の走行時、車速センサーから検出された車速が入力さ
れる電子制御部により油圧反力制御バルブが制御されて
いるため、圧油室15には圧油が車速に応じて供給さ
れ、第4図に示すように圧油室15内のピストン16は
圧油により半径方向内方に押圧され、ピストン16の球
状部17が入力軸1の凹溝18の底部18aに押し付け
られる。When the vehicle is traveling, since the hydraulic reaction force control valve is controlled by the electronic control unit to which the vehicle speed detected by the vehicle speed sensor is input, the pressure oil is supplied to the pressure oil chamber 15 according to the vehicle speed. As shown in the figure, the piston 16 in the pressure oil chamber 15 is pressed radially inward by the pressure oil, and the spherical portion 17 of the piston 16 is pressed against the bottom portion 18a of the concave groove 18 of the input shaft 1.
次に本願発明の作用について説明する。バルブ中立位置
と油圧反力部中立位置がバルブの回転方向にズレを生じ
た状態で、圧油室15に圧油が作用しても入力軸1とピ
ニオン3と一体のバルブボデイ6は隙間S1,S2の範囲内
で遊びを生じているためバルブの相対変位は起らない。
したがって左右シリンダー26、27に差圧が生じない
ので、車が斜め走行する危険は全くない。Next, the operation of the present invention will be described. Even if pressure oil acts on the pressure oil chamber 15 with the valve neutral position and the hydraulic reaction force neutral position displaced in the valve rotation direction, the valve body 6 integrated with the input shaft 1 and the pinion 3 has a gap S 1 , the relative displacement of the valve for occurring play within the S 2 is not occur.
Therefore, no differential pressure is generated between the left and right cylinders 26, 27, and there is no danger of the vehicle traveling diagonally.
バルブ及び油圧反力部のそれぞれの中立位置間にズレが
発生しても、バルブの相対変位を起させないためには、
上述の隙間S1,S2を設けることに加えて凹溝18の底面
形状を考慮する必要がある。Even if a deviation occurs between the neutral positions of the valve and the hydraulic reaction force part, in order to prevent relative displacement of the valve,
In addition to providing the above-mentioned gaps S 1 and S 2 , it is necessary to consider the bottom surface shape of the concave groove 18.
望ましい凹溝18の底面形状は、例えば第3図のように
バルブ軸芯と同芯の円弧面18aであるか、あるいは凹
溝の加工の容易さ、加工精度維持のため第4図の如く円
弧面の接線を含む平面18a′としてもよい。The desirable bottom shape of the groove 18 is, for example, an arc surface 18a concentric with the valve shaft core as shown in FIG. 3, or an arc surface as shown in FIG. 4 for facilitating machining of the groove and maintaining machining accuracy. It may be a flat surface 18a 'including a tangent to the surface.
第13図のOCは通常のパワーステアリング特性(トー
ションバーのみ)でトーションバーの捩りに比例して一
次的に入力トルクとバルブの相対変位量との関係が表示
される。OC in FIG. 13 is a normal power steering characteristic (only the torsion bar), in which the relationship between the input torque and the relative displacement of the valve is displayed in proportion to the torsion of the torsion bar.
OBEは第5図及び第6図の従来装置でOB間は油圧反
力により完全にバルブ相対運動がロックされるためバル
ブ変位として表われない。BE間は油圧反力のロックの
力より入力トルクが大になった時からバルブ相対運動が
開始される。The OBE is not represented as a valve displacement in the conventional device shown in FIGS. 5 and 6 because the valve relative motion is completely locked by the hydraulic reaction force between the OBs. Between BE, the valve relative movement is started when the input torque becomes larger than the locking force of the hydraulic reaction force.
これに反し、本願発明のOADのOA間は第3図の隙間
S1,S2の分に相当する油圧反力が作用しない範囲で通常
のトーションバーのみの作用となる。AD間はピストン
16の球状部17が入力軸1の凹溝18の底面18aと
側面18cに同時に接触した時から油圧反力が作用し一
次的に表われる。On the contrary, the space between the OAs of the OAD of the present invention is the gap shown in FIG.
Only the normal torsion bar acts as long as the hydraulic reaction force corresponding to S 1 and S 2 does not act. During AD, the hydraulic reaction force acts firstly when the spherical portion 17 of the piston 16 comes into contact with the bottom surface 18a and the side surface 18c of the concave groove 18 of the input shaft 1 at the same time.
第14図は本願発明のバルブの中立位置と油圧反力の中
立位置がほぼ一致して、しかも油圧反力の作用しない範
囲が明確に出ている。FIG. 14 clearly shows a range in which the neutral position of the valve of the present invention and the neutral position of the hydraulic reaction force substantially coincide with each other and the hydraulic reaction force does not act.
即ち、Cはトーションバーのみが作用した時の捩れ角と
入力トルクとの関係を示す。Bはバルブの入力軸捩れ角
と油圧との関係でほぼ左右対称である。特性線Aは本願
発明における入力軸捩れ角−入力トルク特性を示したも
のである。That is, C indicates the relationship between the twist angle and the input torque when only the torsion bar acts. B is substantially symmetrical with respect to the relationship between the input shaft twist angle of the valve and the hydraulic pressure. Characteristic line A represents the input shaft twist angle-input torque characteristic in the present invention.
1) A0,A1の範囲はピストン16の球状部17が入力軸
1の凹溝18の底面18a上を移動するとき特性を表わ
す。1) The range of A 0 , A 1 represents characteristics when the spherical portion 17 of the piston 16 moves on the bottom surface 18a of the concave groove 18 of the input shaft 1.
2) A1,A2の範囲はピストン16の球状部17が入力軸
1の凹溝18の側面18b,18cに当接したときの特
性を表わす。2) The range of A 1 and A 2 represents the characteristics when the spherical portion 17 of the piston 16 contacts the side surfaces 18b and 18c of the concave groove 18 of the input shaft 1.
3) A2,A3の範囲はピストン16の球状部17が入力軸
1の凹溝18の側面18b,18c上に乗りり上げたと
きの特性を表わす。3) The range of A 2 and A 3 represents the characteristics when the spherical portion 17 of the piston 16 rides on the side surfaces 18b and 18c of the concave groove 18 of the input shaft 1.
つまり、 入力軸1の凹溝18の底面18a(円弧面)を平面状底
面18a′代えても、ピストン16が持ち上げられる量
はわずかであるので、A0,A1の特性の変化もわずかであ
り(入力トルクの増加もわずかであり)全体の特性から
みれば目的を逸脱することはない。That is, even if the bottom surface 18a (arc surface) of the concave groove 18 of the input shaft 1 is replaced with the flat bottom surface 18a ', the amount of lifting of the piston 16 is small, so that the characteristic changes of A 0 and A 1 are also small. Yes (the increase in input torque is also small) From the overall characteristics, it does not deviate from the purpose.
第15図は油圧反力の作用しない範囲を極端に少なくし
た場合、バルブの中立位置と油圧反力の中立位置は第7
図と同様にほぼ一致している。そしてトーションバー特
性CとS部において勾配が極端に異なってる。しかしト
ーションバー捩れ角と入力トルクとの関係を示す特性
は、油圧反力の作用をしているR部においてもP点を通
過する特性にはなっておらずある勾配でもって変化して
いる。このことは第5図及び第6図の従来装置のバルブ
のロック(P点を通過する特性)のようになっていない
ことを示している。又、トーションバー4に隙間S1,S2
分の弾性的捩れ効果を常に備えておくことができ、常に
バルブを油圧補助の働いた状態にしておける。従って直
進走行から操舵時に反力が滑らかに作用し、ハンドル操
作の手応えの急変がない。FIG. 15 shows that the neutral position of the valve and the neutral position of the hydraulic reaction force are 7th when the range where the hydraulic reaction force does not act is extremely reduced.
Similar to the figure, they are almost the same. The gradients in the torsion bar characteristics C and S are extremely different. However, the characteristic indicating the relationship between the torsion angle of the torsion bar and the input torque is not the characteristic of passing through the point P even in the R portion where the hydraulic reaction force acts, and changes with a certain gradient. This indicates that the valve of the conventional device shown in FIGS. 5 and 6 is not locked (characteristic of passing through point P). Also, the gaps S 1 and S 2 in the torsion bar 4
A minute elastic twisting effect can always be provided, and the valve can always be kept hydraulically assisted. Therefore, the reaction force smoothly acts from straight running to steering, and there is no sudden change in the feel of the steering wheel operation.
前記実施例は、エンジンに依り駆動されるポンプよりの
圧油をバルブと圧油室に分岐供給し、圧油室への圧油を
車速に依り制御する構造であるが、本願発明はこれに限
定されず別にもう1つのエンジンにより駆動される補助
ポンプからの圧油を圧油室へ供給してもよく、また、2
つのポンプが1つのポンプケース内にユニット化された
いわゆる2連ポンプからの圧油を夫々バルブおよび圧油
室へ供給する方法でもよい。In the embodiment, the pressure oil from the pump driven by the engine is branched and supplied to the valve and the pressure oil chamber, and the pressure oil to the pressure oil chamber is controlled depending on the vehicle speed. The pressure oil from an auxiliary pump driven by another engine is not limited to this, and may be supplied to the pressure oil chamber.
A method of supplying pressure oil from a so-called double pump in which one pump is unitized in one pump case to the valve and the pressure oil chamber, respectively, may be used.
更にエンジン以外の駆動源、例えばプロペラシャフト等
に依り駆動されるポンプよりの圧油を、圧油室に供給す
る構造のものにも適用できることは、云うまでもない。Further, it goes without saying that the present invention can be applied to a structure in which pressure oil from a drive source other than the engine, for example, a pump driven by a propeller shaft or the like is supplied to the pressure oil chamber.
又、ピストンは前記実施例の如くプランジャーであって
も、第5図の様にボールであってもよい。The piston may be a plunger as in the above embodiment or a ball as shown in FIG.
(効 果) 本願発明は、ハウジングと、ハウジング内に配置された
出力軸と、ハウジング内に出力軸と同一軸線上に配置さ
れた入力軸と、出力軸と入力軸との間に設けられたトー
ションバーと、出力軸とドライブピンで回転方向に一体
化されると共に、入力軸を内嵌するバルブボデイと、入
力軸の周りに設けられ、かつトーションバーの捩れに応
じて油圧ポンプからパワーシリンダに送られる圧油の量
を、バルブボデイとの間で制御するコントロールバルブ
と、バルブボデイの外周に設けられた外周溝より軸直角
方向に形成された圧油室に摺動自在に嵌め入れられたプ
ランジャーとを備えており、車速に応じた油圧によっ
て、プランジャー先端の球状頭部が、入力軸外周で軸方
向にのびる凹溝に押し付けられて反力が得られるように
なされている油圧反力式パワーステアリング装置に於
て、前記凹溝はバルブ軸芯と同芯の円弧面又は該円弧面
の接線を含む平面状の底部と、その両側にあって周方向
に向かって中心から離れる向きに傾斜する側面とを有
し、トーションバーの非捩れ位置において、前記プラン
ジャーの球状頭部が前記入力軸の凹溝底部に当接したと
き、球状頭部と凹溝両側面との間に周方向に対し隙間を
有する如くなっているので、バルブの中立位置で油圧反
力部の中立位置を加工精度及び組立て調整に関係なく保
持させ直進走行時に斜め走行の危険を生させないパワー
ステアリング装置に対するセンターリング機構を有する
油圧反力装置を提供するものである。(Effect) The present invention is provided between a housing, an output shaft arranged in the housing, an input shaft arranged on the same axis as the output shaft in the housing, and between the output shaft and the input shaft. The torsion bar is integrated with the output shaft and the drive pin in the rotational direction, and the valve body that fits the input shaft inside is provided around the input shaft, and the hydraulic pump changes from the power cylinder to the power cylinder according to the torsion of the torsion bar. A control valve that controls the amount of pressure oil sent to and from the valve body, and a plunger that is slidably fitted into a pressure oil chamber that is formed in a direction perpendicular to the axis by an outer peripheral groove provided on the outer periphery of the valve body. With a hydraulic pressure according to the vehicle speed, the spherical head at the tip of the plunger is pressed against a groove extending in the axial direction on the outer circumference of the input shaft to obtain a reaction force. In the hydraulic reaction force type power steering device, the concave groove is a circular arc surface concentric with the valve shaft core or a flat bottom including a tangent to the circular arc surface, and a center on both sides in the circumferential direction. And a side surface sloping in a direction away from, and at the non-twisted position of the torsion bar, when the spherical head of the plunger abuts the groove bottom of the input shaft, the spherical head and both side surfaces of the groove. Since there is a gap in the circumferential direction between the valves, the neutral position of the hydraulic reaction force part is maintained at the neutral position of the valve regardless of processing accuracy and assembly adjustment. Provided is a hydraulic reaction device having a centering mechanism for a steering device.
また、プランジャーが第16図の如く、前記凹溝の底部
に当接している間は入力軸が回転しても反力は作用しな
い。つまり、入力軸が更に回転してプランジャーが第1
7図如く、前記凹溝の側面乗り上げるまで反力作用を防
止できるという効果がある。Further, as shown in FIG. 16, while the plunger is in contact with the bottom of the concave groove, the reaction force does not act even if the input shaft rotates. That is, the input shaft rotates further and the plunger moves to the first position.
As shown in FIG. 7, there is an effect that the reaction force action can be prevented until the side surface of the groove is run up.
第1図は本発明の一実施例正断面図と油路系を示す図、
第2図は第1図のA−A側断面図、第3図は第2図の圧
油室部の拡大図、第4図は第3図の変形例、第5図は従
来装置の正断面図、第6図は第5図のB−B側断面図、
第7図は従来のバルブの側断面図、第8図は第7図のS
部の拡大図、第9図は従来のバルブの軸芯の累積誤差を
示すグラフ、第10図は従来の油圧反力部の中立位置を
示す図、第11図は第10図の中立位置がズレた状態を
示す図、第12図はバルブの相対変位による入力トルク
とシリンダへ作用する圧力を示すグラフ、第13図は従
来装置と本発明の入力トルク−バルブ相対変位量の比較
図、第14図は本発明の入力軸捩れ角−入力トルクの特
性を示す図、第15図は第14図の油圧反力の影響しな
い範囲を極端に少なくした場合の図、第16図は入力回
転軸が反作用を生じない位置に回転している説明図、第
17図は入力回転軸が反作用を生じる位置に回転してい
る説明図である。 1……入力軸、2……ラック、3……ピニオン 4……トーションバー、15……圧油室、16……ピス
トン 17……ピストン球状部、18……入力軸凹溝、18a
……凹溝底面 18b,18c……凹溝両側面、S1,S2……凹溝両側面
と球状部間の隙間FIG. 1 is a front sectional view showing an embodiment of the present invention and a diagram showing an oil passage system,
2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is an enlarged view of the pressure oil chamber portion of FIG. 2, FIG. 4 is a modification of FIG. 3, and FIG. Sectional view, FIG. 6 is a sectional view taken along the line BB of FIG. 5,
FIG. 7 is a side sectional view of a conventional valve, and FIG. 8 is S of FIG.
FIG. 9 is an enlarged view of a portion, FIG. 9 is a graph showing accumulated error of the shaft center of a conventional valve, FIG. 10 is a view showing a neutral position of a conventional hydraulic reaction force portion, and FIG. 11 is a neutral position of FIG. Fig. 12 is a diagram showing a shifted state, Fig. 12 is a graph showing the input torque and the pressure acting on the cylinder due to the relative displacement of the valve, and Fig. 13 is a comparison diagram of the input torque-valve relative displacement amount of the conventional device and the present invention, FIG. 14 is a diagram showing the characteristics of the input shaft torsion angle-input torque of the present invention, FIG. 15 is a diagram in the case where the range where the hydraulic reaction force of FIG. 14 does not affect is extremely reduced, and FIG. 16 is an input rotary shaft. Is rotating to a position where no reaction occurs, and FIG. 17 is an explanatory diagram where the input rotary shaft is rotating to a position where reaction occurs. 1 ... Input shaft, 2 ... Rack, 3 ... Pinion 4 ... Torsion bar, 15 ... Pressure oil chamber, 16 ... Piston 17 ... Piston spherical portion, 18 ... Input shaft concave groove, 18a
...... groove bottom surface 18b, 18c ...... groove sides, the gap between the S 1, S 2 ...... groove side surfaces and the spherical portion
Claims (1)
出力軸と、ハウジング内に出力軸と同一軸線上に配置さ
れた入力軸と、出力軸と入力軸との間に設けられたトー
ションバーと、出力軸とドライブピンで回転方向に一体
化されると共に、入力軸を内嵌するバルブボデイと、入
力軸の周りに設けられ、かつトーションバーの捩れに応
じて油圧ポンプからパワーシリンダに送られる圧油の量
を、バルブボデイとの間で制御するコントロールバルブ
と、バルブボデイの外周に設けられた外周溝より軸直角
方向に形成された圧油室に摺動自在に嵌め入れられたプ
ランジャーとを備えており、 車速に応じた油圧によって、プランジャー先端の球状頭
部が、入力軸外周で軸方向にのびる凹溝に押し付けられ
て反力が得られるようになされている油圧反力式パワー
ステアリング装置に於て、前記凹溝はバルブ軸芯と同芯
の円弧面又は該円弧面の接線を含む平面状の底部と、そ
の両側にあって周方向に向かって中心から離れる向きに
傾斜する側面とを有し、トーションバーの非捩れ位置に
おいて、前記プランジャーの球状頭部が前記入力軸の凹
溝底部に当接したとき、球状頭部と凹溝両側面との間に
周方向に対し隙間を有することを特徴とする油圧反力式
パワーステアリング装置。1. A housing, an output shaft arranged in the housing, an input shaft arranged on the same axis as the output shaft in the housing, and a torsion bar provided between the output shaft and the input shaft. , The output shaft and the drive pin are integrated in the direction of rotation, the valve body that fits the input shaft inside, and the pressure that is provided around the input shaft and is sent from the hydraulic pump to the power cylinder according to the torsion of the torsion bar Equipped with a control valve that controls the amount of oil between it and the valve body, and a plunger that is slidably fitted in a pressure oil chamber that is formed in a direction perpendicular to the axis by an outer peripheral groove provided on the outer periphery of the valve body. The spherical head at the tip of the plunger is pressed against a groove that extends in the axial direction on the outer circumference of the input shaft, and a reaction force is obtained by the hydraulic pressure according to the vehicle speed. In the force type power steering device, the groove is a flat bottom including an arcuate surface concentric with the valve shaft core or a tangent to the arcuate surface, and a direction on both sides thereof away from the center in the circumferential direction. When the spherical head of the plunger abuts the bottom of the concave groove of the input shaft at a non-twisted position of the torsion bar, the side surface is inclined between the spherical head and both side surfaces of the concave groove. A hydraulic reaction force type power steering device having a gap in the circumferential direction.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052442A JPH0649461B2 (en) | 1985-03-18 | 1985-03-18 | Hydraulic reaction force type power steering device |
GB8625137A GB2183573B (en) | 1985-03-01 | 1986-02-28 | Hydraulic pressure reaction device in a power steering device |
US06/932,734 US4796715A (en) | 1985-03-01 | 1986-02-28 | Hydraulic pressure reaction device in a power steering device |
DE3690102A DE3690102C2 (en) | 1985-03-01 | 1986-02-28 | |
DE19863690102 DE3690102T (en) | 1985-03-01 | 1986-02-28 | |
PCT/JP1986/000105 WO1986005152A1 (en) | 1985-03-01 | 1986-02-28 | Hydraulic reaction force apparatus for vehicle speed-responsive power steering systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052442A JPH0649461B2 (en) | 1985-03-18 | 1985-03-18 | Hydraulic reaction force type power steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61211169A JPS61211169A (en) | 1986-09-19 |
JPH0649461B2 true JPH0649461B2 (en) | 1994-06-29 |
Family
ID=12914845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60052442A Expired - Lifetime JPH0649461B2 (en) | 1985-03-01 | 1985-03-18 | Hydraulic reaction force type power steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649461B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5823090A (en) * | 1996-07-09 | 1998-10-20 | Toyota Jidosha Kabushiki Kaisha | Power steering apparatus having an easily adjustable counter force mechanism |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190119A (en) * | 1990-04-16 | 1993-03-02 | Koyo Seiko Co., Ltd. | Hydraulic power steering device responsive to speed of vehicle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49102092A (en) * | 1973-02-02 | 1974-09-26 | ||
JPS538086B2 (en) * | 1973-02-19 | 1978-03-25 | ||
JPS538087B2 (en) * | 1973-02-19 | 1978-03-25 | ||
JPS54104129A (en) * | 1978-02-02 | 1979-08-16 | Kayaba Ind Co Ltd | Power steering device |
JPH0696387B2 (en) * | 1983-06-10 | 1994-11-30 | 三菱自動車工業株式会社 | Power steering device |
-
1985
- 1985-03-18 JP JP60052442A patent/JPH0649461B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5823090A (en) * | 1996-07-09 | 1998-10-20 | Toyota Jidosha Kabushiki Kaisha | Power steering apparatus having an easily adjustable counter force mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPS61211169A (en) | 1986-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1986005152A1 (en) | Hydraulic reaction force apparatus for vehicle speed-responsive power steering systems | |
US8534414B2 (en) | Steering apparatus for a vehicle having front and rear steerable wheels | |
US4759420A (en) | Steering gear with speed sensitive detent switch | |
EP1695893B1 (en) | Electric preload for variable effort steering system | |
US4458580A (en) | Power steering apparatus | |
JPH0649461B2 (en) | Hydraulic reaction force type power steering device | |
EP0709276B1 (en) | Power steering device | |
JPH0657532B2 (en) | Automatic rectilinear return device for hydraulic power assist steering device | |
JPH0649460B2 (en) | Hydraulic reaction force type power steering device | |
US20090000855A1 (en) | Power steering device | |
JP2535083Y2 (en) | Steering device | |
EP0903281A1 (en) | Power steering control valve balancing | |
US6170599B1 (en) | Power steering apparatus | |
JPH0223494Y2 (en) | ||
JP3634014B2 (en) | Hydraulic power steering device | |
EP0529485A2 (en) | Steering apparatus | |
JPH0335146B2 (en) | ||
KR100469384B1 (en) | Repulsion device for steering system | |
JPH032466Y2 (en) | ||
JPS6177569A (en) | Reaction force mechanism for power steering handle | |
JP2533209Y2 (en) | Mating structure | |
JPH0740461Y2 (en) | Four-wheel steering system | |
JP2959321B2 (en) | Vehicle rear wheel steering system | |
JPH0542951Y2 (en) | ||
JPH04118871U (en) | Hydraulic control valve for power steering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |