JPH0649233B2 - Welding method for stainless steel - Google Patents

Welding method for stainless steel

Info

Publication number
JPH0649233B2
JPH0649233B2 JP323785A JP323785A JPH0649233B2 JP H0649233 B2 JPH0649233 B2 JP H0649233B2 JP 323785 A JP323785 A JP 323785A JP 323785 A JP323785 A JP 323785A JP H0649233 B2 JPH0649233 B2 JP H0649233B2
Authority
JP
Japan
Prior art keywords
phase
welding
stainless steel
nitrogen
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP323785A
Other languages
Japanese (ja)
Other versions
JPS61165277A (en
Inventor
慶治 大崎
隆義 神余
勝彦 福村
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP323785A priority Critical patent/JPH0649233B2/en
Publication of JPS61165277A publication Critical patent/JPS61165277A/en
Publication of JPH0649233B2 publication Critical patent/JPH0649233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明はステンレス鋼の溶接法、より詳細に言えば、ス
テンレス鋼の溶接金属中のフェライト相とオーステナイ
ト相の含有比率を制御する溶接法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a welding method for stainless steel, and more particularly to a welding method for controlling the content ratio of a ferrite phase and an austenite phase in a weld metal of stainless steel.

〈発明の背景〉 焼鈍後の組織がフェライト相とオーステナイト相からな
る2相ステンレス鋼は、耐応力腐食割れ性や機械的性質
に優れているので、プラント用材料や耐海水機器用材料
として用いられている。しかし日本工業規格(JIS)
におけるSUS 329J1に代表される2相ステンレス鋼は溶
接されたままの状態ではフェライト単相組織となるのが
通常であり、フェライトの結晶粒界に炭窒化物が析出す
るので粒界腐食感受性が高いという問題がある。この問
題を解決するためには、溶接金属の組織をもフェライト
相とオーステナイト相の2相となるように組成を設計す
ればよいわけであるが、高温から急冷される溶着金属組
織を2相にするためには、焼鈍状態での組織がオーステ
ナイト相過剰となり、つぎのような問題を生ずる。
<Background of the Invention> Duplex stainless steels whose structure after annealing is composed of a ferrite phase and an austenite phase are excellent in stress corrosion cracking resistance and mechanical properties, and are therefore used as materials for plants and seawater resistant equipment. ing. However, Japanese Industrial Standards (JIS)
In SUS 329J1, the duplex stainless steel typically has a ferrite single-phase structure in the as-welded state, and carbonitride precipitates at the crystal grain boundaries of ferrite, so it is highly susceptible to intergranular corrosion. There is a problem. In order to solve this problem, the composition should be designed so that the structure of the weld metal also has two phases, the ferrite phase and the austenite phase, but the weld metal structure rapidly cooled from a high temperature is changed to two phases. In order to do so, the structure in the annealed state becomes austenite phase excess, and the following problems occur.

そのような組織では、熱間での変形抵抗が増大し、熱間
加工が困難になること、および、冷却過程においてシグ
マ(σ)相の析出速度が極めて速くなり、鋼が極めて脆
くなることから、鋼の製造自体が困難になる。
In such a structure, the deformation resistance during hot increases, hot working becomes difficult, and the precipitation rate of the sigma (σ) phase becomes extremely high in the cooling process, and the steel becomes extremely brittle. However, it becomes difficult to manufacture steel.

本発明者らは上記の問題の解決を求めて種々検討を重ね
たが、窒素がオーステナイト形成元素であることに着目
し、溶接雰囲気中の窒素の量を加減することにより、生
成溶着金属中のフェライト相とオーステナイト相の割合
を制御できることを見出し本発明を完成した。
The present inventors have made various investigations in order to solve the above problems, but paying attention to the fact that nitrogen is an austenite forming element, by adjusting the amount of nitrogen in the welding atmosphere, the generated weld metal The present invention has been completed by finding that the ratio between the ferrite phase and the austenite phase can be controlled.

〈発明の構成〉 本発明によれば、ステンレス鋼をシールドガスを用いて
溶接する際に、不活性ガスのシールドガス中に種々の割
合で窒素を含有させることによって溶着金属中に所望量
のオーステナイト相を出現させることを特徴とするステ
ンレス鋼の溶接方法が提供される。より具体的には、焼
鈍状態でフエライト相とオーステナイト相の2相組織を
呈する2相ステンレス鋼同士の溶接方法において,シー
ルドガス雰囲気下で該ステンレス鋼母材自身を溶融して
溶着金属とすると共に,該シールドガス中に適量の窒素
ガスを含有させて母材よりも多量に窒素を含有する溶着
金属を形成し,そのさい,該シールドガス中の窒素含有
量を調節することにより溶接部のオーステナイト量を母
材のオーステナイト量に近づけることを特徴とする2相
ステンレス鋼の溶接方法を提供する。ここで「母材自身
を溶融して容着金属とする」とは、いわゆる溶接棒(溶
加材)を用いる溶接法とは異なり,溶接しようとする母
材の接合部を溶融して接合する溶接法を意味する。この
ように母材自身を溶融接合し且つシールドガスで溶着部
を不活性雰囲気に保持する溶接法には熱の供給の仕方に
よって各種の溶接法があるが,代表的なものには非溶極
式のアーク溶接(例えばTIG溶接)がある。
<Structure of the Invention> According to the present invention, when welding stainless steel using a shield gas, a desired amount of austenite is contained in the weld metal by containing nitrogen in various ratios in the shield gas of an inert gas. A method of welding stainless steel is provided which is characterized by the appearance of phases. More specifically, in a method for welding two-phase stainless steels having a two-phase structure of a ferrite phase and an austenite phase in an annealed state, the stainless steel base material itself is melted in a shield gas atmosphere to form a weld metal. , A suitable amount of nitrogen gas is contained in the shield gas to form a weld metal containing nitrogen in a larger amount than the base metal, and the austenite of the weld is adjusted by adjusting the nitrogen content in the shield gas. Provided is a welding method for duplex stainless steel, characterized in that the amount is brought close to the amount of austenite of the base material. Here, "melting the base metal itself to form a receiving metal" is different from the welding method using a so-called welding rod (filler material), and the joining part of the base material to be welded is melted and joined. Means welding method. As described above, there are various welding methods for fusion-bonding the base metal itself and maintaining the welded portion in an inert atmosphere with a shield gas. There are various welding methods depending on the heat supply method. There is a type of arc welding (for example, TIG welding).

今日一般に使用される2相ステンレス鋼(10Ni−2
4Cr−3Mo鋼)の溶体化状態におけるフェライト相
オーステナイト相含有比はおよそ40:60であるが、
この鋼を溶接したときの溶着金属ほぼフェライト単相と
なる。しかし、溶接時に不活性ガスシール気体中に窒素
を約5v/v%含有させることによって、溶着金属中のフェ
ライト相オーステナイト相の比率はほぼ半々となる。
Duplex stainless steel (10Ni-2
4Cr-3Mo steel) has a ferrite phase austenite phase content ratio in the solution state of about 40:60,
When the steel is welded, the deposited metal becomes almost a ferrite single phase. However, when the inert gas sealing gas contains about 5 v / v% nitrogen at the time of welding, the ratio of the ferrite phase and the austenite phase in the weld metal becomes almost half.

〈発明の具体的開示〉 図面を参照して、主として2相ステンレス鋼の溶接につ
いて本発明を詳細に説明する。
<Specific Disclosure of the Invention> The present invention will be described in detail mainly with respect to welding of duplex stainless steel with reference to the drawings.

第1表に示す組成の鋼が常法により溶製され、圧延され
て、3mm厚の冷延鋼板とし、1050℃で10分間均熱
後水冷処理し、巾25mm、長さ70mmの試片に作成し
た。この状態(溶体化状態)でのオーステナイト相含有
比は、この表に示されるように57%および61%であ
る。
A steel having the composition shown in Table 1 is melted and rolled into a cold rolled steel sheet having a thickness of 3 mm by a conventional method, soaked at 1050 ° C. for 10 minutes and then water-cooled to obtain a specimen having a width of 25 mm and a length of 70 mm. Created. The austenite phase content ratios in this state (solution treatment state) are 57% and 61% as shown in this table.

オーステナイト含有率は下記のポイントカウント法によ
って測定される。
The austenite content is measured by the following point counting method.

光学顕微鏡による観察視野を400格子点に分割し、研
摩試料の観察において、オーステナイト相上に来る格子
点の数を計測する。これを30視野について実施しオー
ステナイト相上に来た格子点数の総和を求め、それを4
00×30で除し、100分率で表す。
The observation field of view by an optical microscope is divided into 400 lattice points, and the number of lattice points on the austenite phase is measured in the observation of the polished sample. This is carried out for 30 fields of view, and the total number of lattice points that have come on the austenite phase is obtained,
It is divided by 00 × 30 and expressed as a percentage.

第1表に示す2相ステンレス鋼を溶接速度100cm/mi
n、溶接電流80Aで、バックシールドガスとしてアル
ゴン5l/min、アークシールドガスとしてアルゴンの
み、窒素のみ、および種々の割合のアルゴン/窒素混合
ガス(総流量20/min)を用いて、タングステンイ
ナートガス(TIG)アーク溶接した(ビードを置い
た)時の溶着金属中のオーステナイト相の含有比率を測
定した。その結果をシールドガス中の窒素ガスの容量百
分率に対して整理した結果を添付図面に示す。
Welding speed of 100 cm / mi for duplex stainless steel shown in Table 1
n, welding current 80A, argon 5l / min as a back shield gas, only argon, only nitrogen as an arc shield gas, and various ratios of argon / nitrogen mixed gas (total flow rate 20 / min) using tungsten inert gas ( (TIG) The content ratio of the austenite phase in the deposited metal at the time of arc welding (bead placed) was measured. The attached drawings show the results of the results arranged in terms of the volume percentage of nitrogen gas in the shield gas.

この図によって明らかであるように、アルゴンのみをシ
ールドガスとした場合、溶着金属の組織は殆どフェライ
ト単相であるが、シールドガス中に窒素を含有させ、そ
の含有率を増加することによってオーステナイト相出現
率を増加させることができ、窒素100%ではオーステ
ナイト100%とすることもできることがわかる。
As is clear from this figure, when argon alone is used as the shield gas, the structure of the deposited metal is almost a ferrite single phase, but nitrogen is contained in the shield gas, and the austenite phase is increased by increasing the content rate. It can be seen that the appearance rate can be increased, and that 100% nitrogen can be 100% austenite.

それぞれ特定組成の被溶接鋼について、この関係を求め
ておけば、この方法は広範囲の組成に対して適用でき
る。
If this relationship is obtained for each steel to be welded having a specific composition, this method can be applied to a wide range of compositions.

供試鋼の場合、約5v/v%の窒素添加で所望のオーステナ
イト50%を達成できる。
In the case of the test steel, the desired austenite of 50% can be achieved by adding about 5 v / v% nitrogen.

第1表に記した組成の試料をアルゴンのみ、および5v/v
%の窒素を含むアルゴンをシールドガスとして用いて、
上記の条件で溶接したものを、JIS G0575(ス
テンレス鋼の硫酸硫酸銅腐食試験方法)に従って試験し
た結果を第2表に示す。シールドガスとしてアルゴンの
みを用いた試料は曲げ試験において割れを生じているの
に対して、窒素含有アルゴンを使用したものは全く割れ
を起さず、顕著な耐蝕性の改善が見られる。
Samples of the composition shown in Table 1 were argon only, and 5 v / v
Using argon containing% nitrogen as a shield gas,
Table 2 shows the results of the welding under the above conditions, which were tested according to JIS G0575 (corrosion test method for copper sulfate sulfate of stainless steel). The sample using only argon as the shielding gas showed cracks in the bending test, whereas the sample using nitrogen-containing argon did not cause any cracks and a remarkable improvement in corrosion resistance was observed.

〈発明の効果〉 以上に説明したように、本発明方法によれば、製造課程
における熱間変形抵抗の問題やシグマ相析出の問題をな
んら考慮することなく、溶着金属組織に所望量のオース
テナイト相を析出させることが可能であり、溶着金属の
耐蝕性を向上させることができる。
<Effects of the Invention> As described above, according to the method of the present invention, a desired amount of austenite phase is present in the weld metal structure without considering the problems of hot deformation resistance and sigma phase precipitation in the manufacturing process. Can be deposited, and the corrosion resistance of the deposited metal can be improved.

【図面の簡単な説明】[Brief description of drawings]

添付図面は2相ステンレス鋼を溶接速度10cm/min、溶
接電流80Aで、バックシールドガスとしてアルゴン5
l/min、アークシールドガスとしてアルゴンのみ、窒素
のみ、および種々の割合のアルゴン/窒素混合ガスを用
いて、タングステンイナートガス(TIG)アーク溶接
した(ビードを置いた)時の溶着金属中のオーステナイ
ト相の含有比率を測定した。その結果をシールドガス中
の窒素ガスの容量百分率に対して整理した結果を示す。
The attached drawing shows duplex stainless steel with a welding speed of 10 cm / min, a welding current of 80 A, and argon of 5 as a back shield gas.
l / min, austenite phase in the weld metal during tungsten inert gas (TIG) arc welding (beading) using argon only, nitrogen only, and various ratios of argon / nitrogen mixed gas as arc shield gas The content ratio of was measured. The results are summarized with respect to the volume percentage of nitrogen gas in the shield gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝田 博 山口県新南陽市大字富田4976番地 日新製 鋼株式会社周南製鋼所内 (56)参考文献 特開 昭59−218281(JP,A) 特公 昭45−34444(JP,B1) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Asada 4976 Tomita, Shinnanyo City, Yamaguchi Prefecture Inside Shunan Steel Works, Nisshin Steel Co., Ltd. (56) Reference JP-A-59-218281 (JP, A) JP 45-34444 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】焼鈍状態でフエライト相とオーステナイト
相の2相組織を呈する2相ステンレス鋼同士の溶接方法
において,シールドガス雰囲気下で該ステンレス鋼母材
自身を溶融して溶着金属とすると共に,該シールドガス
中に適量の窒素ガスを含有させて母材よりも多量の窒素
を含有する溶着金属を形成し,そのさい,該シールドガ
ス中の窒素含有量を調節することにより溶接部のオース
テナイト量を母材のオーステナイト量に近づけることを
特徴とする2相ステンレス鋼の溶接方法。
1. A method of welding two-phase stainless steels having a two-phase structure of a ferrite phase and an austenite phase in an annealed state, wherein the stainless steel base material itself is melted in a shield gas atmosphere to form a weld metal, and A suitable amount of nitrogen gas is contained in the shield gas to form a weld metal containing a larger amount of nitrogen than the base metal, and the amount of austenite in the weld is adjusted by adjusting the nitrogen content in the shield gas. A welding method for duplex stainless steel, characterized in that the amount of austenite is close to that of the base metal.
JP323785A 1985-01-14 1985-01-14 Welding method for stainless steel Expired - Lifetime JPH0649233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP323785A JPH0649233B2 (en) 1985-01-14 1985-01-14 Welding method for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP323785A JPH0649233B2 (en) 1985-01-14 1985-01-14 Welding method for stainless steel

Publications (2)

Publication Number Publication Date
JPS61165277A JPS61165277A (en) 1986-07-25
JPH0649233B2 true JPH0649233B2 (en) 1994-06-29

Family

ID=11551846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP323785A Expired - Lifetime JPH0649233B2 (en) 1985-01-14 1985-01-14 Welding method for stainless steel

Country Status (1)

Country Link
JP (1) JPH0649233B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220411909A1 (en) * 2020-03-31 2022-12-29 Nippon Steel Stainless Steel Corporation Welded structure and storage tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245225A (en) * 2006-03-20 2007-09-27 Iwatani Industrial Gases Corp Method for welding stainless steel and welding wire for stainless steel
JP6726499B2 (en) * 2016-03-29 2020-07-22 日鉄ステンレス株式会社 Duplex Stainless Steel Weld Joint, Duplex Stainless Steel Welding Method, and Duplex Stainless Steel Weld Joint Manufacturing Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220411909A1 (en) * 2020-03-31 2022-12-29 Nippon Steel Stainless Steel Corporation Welded structure and storage tank
US11946126B2 (en) * 2020-03-31 2024-04-02 Nippon Steel Stainless Steel Corporation Welded structure and storage tank

Also Published As

Publication number Publication date
JPS61165277A (en) 1986-07-25

Similar Documents

Publication Publication Date Title
CA1326143C (en) Ferritic stainless steel and processing therefore
EP1008417A1 (en) Flux cored wire for welding duplex stainless steel
JPH09225679A (en) Ni base heat resistant brazing filter metal excellent in wettability and corrosion resistance
JPH0510419B2 (en)
US3963532A (en) Fe, Cr ferritic alloys containing Al and Nb
US3914506A (en) Welding material for austenitic stainless steels
US4534793A (en) Cast iron welding materials and method
JPH0649233B2 (en) Welding method for stainless steel
CA1041798A (en) Filler metal
KR100805060B1 (en) TIG WELDING METHOD TO IMPROVE PITTING CORROSION RESISTANCE OF 22%Cr DUPLEX STAINLESS STEEL WELDS
JPH0638997B2 (en) Brazing ribbon for brazing
CN110900033B (en) Gas shielded mineral powder type 314 heat-resistant stainless steel flux-cored wire
JPS63121641A (en) External coating of sheathed heater made of austenitic stainless steel
JPS62197294A (en) Mig arc welding wire for austenitic stainless steel
JPH0796390A (en) Wire for welding 9cr-1mo steel
EP0038820B1 (en) Cast iron welding materials
GB2083499A (en) Austenitic steel
JP2660708B2 (en) Stainless steel gas shielded arc welding wire
RU2041784C1 (en) Solder and soldering method
JPS586790A (en) Cr-mo-welding wire heat resistant steel
JPS61117253A (en) Martensitic stainless steel for welded construction having superior hot workability
JPS6188997A (en) Wire for welding 9cr-1mo steel
RU2080973C1 (en) Nickel-base alloy for manufacture of welding wire
JP2936234B2 (en) Welding wire used for welding spheroidal graphite cast iron with ferrite and ferritic stainless steel
JPS63268592A (en) Ferrite welding material