JPH064902B2 - Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds - Google Patents

Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Info

Publication number
JPH064902B2
JPH064902B2 JP60096272A JP9627285A JPH064902B2 JP H064902 B2 JPH064902 B2 JP H064902B2 JP 60096272 A JP60096272 A JP 60096272A JP 9627285 A JP9627285 A JP 9627285A JP H064902 B2 JPH064902 B2 JP H064902B2
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
steel
sour
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60096272A
Other languages
Japanese (ja)
Other versions
JPS61253345A (en
Inventor
亘史 野村
哲雄 武田
牧夫 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60096272A priority Critical patent/JPH064902B2/en
Publication of JPS61253345A publication Critical patent/JPS61253345A/en
Publication of JPH064902B2 publication Critical patent/JPH064902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接部応力腐食割れ抵抗の優れた鋼材に係り、
特に湿潤硫化水素環境下で使用されるラインパイプ、石
油化学プラント、LPGタンク等に使用される溶接部応
力腐食割れ抵抗の優れた耐サワー用鋼材に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a steel material having excellent resistance to stress corrosion cracking in a welded portion,
In particular, the present invention relates to a sour-resistant steel material having excellent resistance to stress corrosion cracking in welded parts used in line pipes, petrochemical plants, LPG tanks and the like used in a wet hydrogen sulfide environment.

(従来の技術及び問題点) 近年原油、ガスの輸送、貯蔵に当り使用される鋼材は応
力腐食割れを起こす可能性が高まってきている。原因
は、良質な石油資源の減少に伴ない原油中の硫化水素含
有量が多くなってきているためである。すなわち、鋼材
が腐食する際に原油中に硫化水素が含まれていると、腐
食により発生する水素が原子状になり鋼中に侵入し易く
なることからいわゆる硫化物反応力腐食割れを起し易く
なってくる。
(Prior Art and Problems) In recent years, steel materials used for transportation and storage of crude oil and gas are likely to undergo stress corrosion cracking. The cause is that the amount of hydrogen sulfide in crude oil is increasing with the decrease in quality petroleum resources. That is, when hydrogen sulfide is contained in crude oil when steel materials corrode, hydrogen generated by corrosion becomes atomic and easily penetrates into the steel, so it is easy to cause so-called sulfide reactive corrosion cracking. Is coming.

かくの如き硫化物応力腐食割れについて、従来鋼につい
て整理してみると、高張力鋼では硬さと硫化物応力腐食
割れの関係について多くの研究がある。この場合、硬さ
とは溶接部を示す場合は溶接熱影響部硬さであり、溶接
部を含まない場合は母材の硬さであるが、硬さがHv2
50程度を境にして割れ感受性が変化し、Hv250以
下に制御して使用することによって硫化物応力腐食割れ
を防げることが知られている。この硬さを呈する組織の
内容については、高張力鋼であることから通常焼入焼戻
し処理により製造せざるを得ないため、組織は焼戻しマ
ルテンサイトである。
With respect to such sulfide stress corrosion cracking, when arranging the conventional steels, there are many studies on the relationship between hardness and sulfide stress corrosion cracking in high strength steel. In this case, the hardness is the weld heat affected zone hardness when showing a welded portion, and the hardness of the base metal when the welded portion is not included, but the hardness is Hv2.
It is known that the susceptibility to cracking changes at about 50, and sulfide stress corrosion cracking can be prevented by controlling the Hv to 250 or less before use. Regarding the content of the structure exhibiting this hardness, since it is a high-strength steel, it is generally unavoidable to manufacture it by quenching and tempering treatment, so the structure is tempered martensite.

これら高張力鋼の使用分野としては通常油井管である
が、従来の技術としては例えば特開昭58−91150
号公報に見られるように焼入、焼戻し処理鋼についてMn
およびP等の偏析部に生ずる硬さの高い部分の解消とLa
添加による粒界脆化の防止による硫化物応力腐食割れ抵
抗の増大を図るものがある。又、特開昭58−1074
76号公報には均一硬さ分布を得るための最適成分系を
有する焼入、焼戻し処理鋼についての提案がある。しか
しながら、母材の硬さはHv230以下で問題ないものの、
強度的に見た場合高張力鋼に対してもう少し強度の低い
鋼の溶接熱影響部の硬さと硫化物応力腐食割れの関係に
ついてはあまり研究されていない。
The field of use of these high-strength steels is usually oil country tubular goods, but the conventional technology is, for example, JP-A-58-91150
As can be seen in Japanese Patent Publication, regarding quenched and tempered steels, Mn
And the elimination of high hardness in the segregated part such as P and La
There is an attempt to increase sulfide stress corrosion cracking resistance by preventing grain boundary embrittlement by addition. Also, JP-A-58-1074
Japanese Patent Publication No. 76 has a proposal on a quenched and tempered steel having an optimum component system for obtaining a uniform hardness distribution. However, although the hardness of the base material is Hv230 or less, there is no problem,
In terms of strength, the relationship between the hardness of the weld heat-affected zone and the sulfide stress corrosion cracking of steel, which has a slightly lower strength than high-strength steel, has not been well studied.

(問題点を解決するための手段、作用) 本発明の要旨は、重量%でC0.02〜0.05%,Si0.1〜
0.5%,Mn0.6〜1.2%,Al≦0.05%,Nb0.02〜0.1
%,B0.001〜0.003%,Ti0.01〜0.04%,Ca0.001
〜0.010%を含み、P≦0.02%,S≦0.005%に制限し、
又はこれに加えてさらにNi0.1〜0.7%,Cr0.2〜0.8
%,Cu0.1〜0.5%,Mo0.1〜0.7%,V0.02〜0.1
%,W0.01〜0.08%のうちより選ばれた1種または2種
以上を含み、残部鉄及び不可避的な不純物から成り、溶
接熱影響部の組織が微細なベーナイト組織となることを
特徴とする溶接部応力腐食割れ抵抗の優れた耐サワー用
鋼材である。
(Means and Actions for Solving Problems) The gist of the present invention is that C0.02 to 0.05% by weight% and Si0.1 to
0.5%, Mn 0.6-1.2%, Al ≦ 0.05%, Nb 0.02-0.1
%, B0.001 to 0.003%, Ti0.01 to 0.04%, Ca0.001
〜0.010%, P ≦ 0.02%, S ≦ 0.005%,
Or, in addition to this, Ni0.1-0.7%, Cr0.2-0.8
%, Cu 0.1 to 0.5%, Mo 0.1 to 0.7%, V 0.02 to 0.1
%, W 0.01 to 0.08%, one or more selected from the group consisting of balance iron and unavoidable impurities, and the structure of the weld heat affected zone is a fine bainite structure. It is a sour-resistant steel material with excellent resistance to stress corrosion cracking in welds.

本発明者らは、高張力鋼に比べ炭素含有量及びその他の
合金元素添加量が少い成分系から成る鋼について硬さと
組織を詳細に検討し、これと硫化物応力腐食割れ性との
関係づけを行った。その結果、サワー環境で使用される
ラインパイプ用鋼、貯蔵に使用されるタンク用鋼等の鋼
材で、溶接熱影響部の応力腐食割れ抵抗の優れた鋼材を
見出した。この鋼材を通常の鋼材と区別して溶接部応力
腐食割れ抵抗の優れた耐サワー用鋼材と言うことが出来
る。
The present inventors have studied in detail the hardness and structure of a steel composed of a component system in which the carbon content and the amount of other alloying elements added are smaller than those of high-strength steel, and the relationship between this and sulfide stress corrosion cracking resistance. I made an appointment. As a result, we have found steels such as line pipe steels used in sour environments and tank steels used for storage that have excellent stress corrosion cracking resistance in the heat affected zone. This steel material can be called a sour-resistant steel material having excellent resistance to stress corrosion cracking at the welded portion by distinguishing it from ordinary steel materials.

即ち、本発明者らは種々検討を重ねた結果、溶接熱影響
部(特に高温のオーステナイト域に加熱された領域=粗
粒化部)の組織を上部ベーナイト組織を生成させずに微
細なベーナイト組織にしたときにHv=300程度まで応力
腐食割れを生じない鋼が得られることを見出し、溶接部
応力腐食割れ抵抗の優れた耐サワー用鋼材を得ることが
出来るという知見を得た。
That is, as a result of various studies conducted by the inventors, the structure of the weld heat affected zone (particularly the area heated to a high temperature austenite region = coarse grained portion) has a fine bainite structure without generating an upper bainite structure. It was found that a steel that does not cause stress corrosion cracking up to about Hv = 300 can be obtained when the above is set, and it was found that a sour-resistant steel material having excellent resistance to stress corrosion cracking in the weld zone can be obtained.

本発明は以上の如き知見に基いてなされたものである。The present invention has been made based on the above findings.

以下に本発明を詳細に説明する。The present invention will be described in detail below.

先ず本発明鋼材における基本成分の限定理由について説
明する。
First, the reasons for limiting the basic components in the steel material of the present invention will be described.

Cは強度を得るために添加するが、溶接粗粒化部の組織
を微細なベーナイトとするために添加量範囲が決定され
る。0.02%未満では上部ベーナイト組織となり組織が粗
くなる。また、0.05%超となると組織がマルテンサイト
組織となり、マルテンサイト組織では硫化物応力腐食割
れが起る。したがってCは0.02〜0.05%とした。
C is added in order to obtain strength, but the addition amount range is determined in order to make the structure of the weld coarsening portion fine bainite. If it is less than 0.02%, it becomes an upper bainite structure and the structure becomes coarse. Further, if it exceeds 0.05%, the structure becomes a martensitic structure, and sulfide stress corrosion cracking occurs in the martensitic structure. Therefore, C is set to 0.02 to 0.05%.

Siは脱酸のために添加する。0.10%未満では脱酸が不十
分であり、0.5%超では脱酸は十分となるが鋼を脆化さ
せる。したがってSiは0.10〜0.50%とした。
Si is added for deoxidation. If it is less than 0.10%, deoxidation is insufficient, and if it exceeds 0.5%, deoxidation is sufficient, but the steel becomes brittle. Therefore, Si is set to 0.10 to 0.50%.

Mnは強度を得るためでもあるが、添加によって溶接粗粒
化部の組織を微細なベーナイトにするために添加量範囲
が決定される。0.60%未満では上部ベーナイト組織とな
り組織が粗くなる。また、1.2%超となると組織がマル
テンサイト組織となり、硫化物応力腐食割れが起る。し
たがってMnは0.6〜1.2とした。
Mn is also used for obtaining strength, but the addition amount range is determined in order to make the structure of the weld coarsening part fine bainite by addition. If it is less than 0.60%, the upper bainite structure is formed and the structure becomes coarse. Further, if it exceeds 1.2%, the structure becomes a martensite structure, and sulfide stress corrosion cracking occurs. Therefore, Mn was set to 0.6 to 1.2.

Alは脱酸のために添加する。しかし0.05%超となるとか
えって酸化物を形成し、鋼の清浄度を減少させ、応力腐
食割れに悪影響があるために、Alは0.05%以下とした。
Al is added for deoxidation. However, if it exceeds 0.05%, oxides are rather formed, the cleanliness of steel is reduced, and stress corrosion cracking is adversely affected, so Al was made 0.05% or less.

Nbは強度と靱性を得るために添加する。0.02%未満では
強度、靱性に対する添加効果がない。0.1%超の添加で
は強度、靱性に対してNbの析出物粗大化のために逆効果
となる。したがってNbは0.02%〜0.1%とした。
Nb is added to obtain strength and toughness. If it is less than 0.02%, it has no effect on strength and toughness. Addition of more than 0.1% has an adverse effect on strength and toughness due to coarsening of Nb precipitates. Therefore, Nb is 0.02% to 0.1%.

Bは焼入性向上のために添加する。本発明鋼ではC量を
低くしているので、組織を微細なベーナイトとするには
適度の焼入性を確保することが必要である。0.001%未
満では焼入性が確保出来ず、0.003%超の添加でも巨大
なボロン化合物が生成し、焼入性が確保出来ない。した
がってBは0.001〜0.003%とした。
B is added to improve hardenability. Since the C content of the steel of the present invention is low, it is necessary to secure an appropriate hardenability in order to make the structure fine bainite. If it is less than 0.001%, the hardenability cannot be ensured, and even if it exceeds 0.003%, a huge boron compound is formed and the hardenability cannot be secured. Therefore, B is set to 0.001 to 0.003%.

TiはCa-Ti-Sを形成させ、靱性及び介在物の分散のため
に添加する。0.01%未満では効果がなく、0.04%超では
酸化物を形成し、介在物分散に効果がなくなる。したが
ってTiは0.01〜0.04%とした。
Ti forms Ca-Ti-S and is added for toughness and dispersion of inclusions. If it is less than 0.01%, it has no effect, and if it exceeds 0.04%, it forms an oxide and loses the effect of dispersing inclusions. Therefore, Ti is set to 0.01 to 0.04%.

Caは介在物の球状化のために添加する。即ちCa-Ti-S
を形成させ、硫化物応力腐食割れの起点となるMnSの形
成を防ぐためである。0.001%未満では介在物球状化に
効果がなく、0.010%超では酸化物形成のため介在物球
状化に効果がなくなる。したがってCaは0.001〜0.01%
とした。
Ca is added for spheroidizing the inclusions. That is Ca-Ti-S
To prevent the formation of MnS, which is the starting point of sulfide stress corrosion cracking. If it is less than 0.001%, it has no effect on the spheroidization of inclusions, and if it exceeds 0.010%, it has no effect on the spheroidization of inclusions due to oxide formation. Therefore, Ca is 0.001 to 0.01%
And

Pは鋼中に含まれる不純物元素であり、かつまた粒界に
偏析し硫化物応力腐食割れを起し易くする。この割れを
起し易くする働きはマルテンサイトのときに最も顕著で
あるが、微細なベーナイト組織のときでも含有量が少な
い事が望ましい。しかしながら、0.02%以下にしておけ
ば割れの原因とならない。したがってPは0.02%以下に
制限した。
P is an impurity element contained in the steel and also segregates at the grain boundaries to easily cause sulfide stress corrosion cracking. The function of facilitating this cracking is most remarkable in the case of martensite, but it is desirable that the content is small even in the case of a fine bainite structure. However, if it is 0.02% or less, it will not cause cracking. Therefore, P is limited to 0.02% or less.

Sも鋼中に含まれる不純物元素であり、含有量が少ない
事が望ましいが、0.005%以下であればCa,Ti添加によっ
て介在物の分散球状化を行なうことが出来るので、Sは
0.005%以下に制限した。
S is also an impurity element contained in the steel, and it is desirable that the content is small, but if it is 0.005% or less, the inclusion of Ca and Ti can disperse and spheroidize the inclusions, so S is
It was limited to 0.005% or less.

以上が本発明鋼材の基本成分系であるが、本発明におい
てはこれらの元素に加え、強度を得る目的と、C,Mn量と
の焼入性とのバランスで、以上の基本成分の他にさらに
Ni0.1〜0.7%,Cr0.2〜0.8%,Cu0.1〜0.5%,Mo0.1〜
0.7%,V0.02〜0.1%,W0.01〜0.08%のうちより選ば
れた1種または2種以上を添加させることができる。以
下各元素について添加理由を述べる。
Although the above is the basic component system of the steel material of the present invention, in the present invention, in addition to these elements, the purpose of obtaining strength, C, in balance of the hardenability of C, Mn amount, in addition to the above basic components further
Ni0.1-0.7%, Cr0.2-0.8%, Cu0.1-0.5%, Mo0.1-
One or more selected from 0.7%, V0.02 to 0.1%, and W0.01 to 0.08% can be added. The reason for adding each element will be described below.

Niは強度、靱性を得るために添加するが、0.1%未満
では効果がない。0.7%超では焼入性が上昇し、組織が
マルテンサイトになり、応力腐食割れが起り易くなる。
したがってNiは0.1〜0.7%とした。
Ni is added to obtain strength and toughness, but if it is less than 0.1%, it has no effect. If it exceeds 0.7%, the hardenability increases, the structure becomes martensite, and stress corrosion cracking easily occurs.
Therefore, Ni is set to 0.1 to 0.7%.

Crも強度、靱性を得るために添加するが、0.2%未満
では効果がない。0.8%超では焼入性が上昇し、組織が
マルテンサイトになり、応力腐食割れが起り易くなる。
したがってCrは0.2〜0.8%とした。
Cr is also added to obtain strength and toughness, but if it is less than 0.2%, it has no effect. If it exceeds 0.8%, the hardenability increases, the structure becomes martensite, and stress corrosion cracking easily occurs.
Therefore, Cr is set to 0.2 to 0.8%.

Cuも強度、靱性を得るために添加するが、0.1%未満
では効果がない。0.5%超では焼入性が上昇し、組織が
マルテンサイトになり、応力腐食割れが起り易くなる。
したがってCuは0.1〜0.5%とした。
Cu is also added to obtain strength and toughness, but if it is less than 0.1%, it has no effect. If it exceeds 0.5%, the hardenability increases, the structure becomes martensite, and stress corrosion cracking easily occurs.
Therefore, Cu is set to 0.1 to 0.5%.

Moも強度、靱性を得るために添加するが、0.1%未満
では効果がない。0.7%超では焼入性が上昇し、組織が
マルテンサイトになり、応力腐食割れが起り易くなる。
したがってMoは0.1〜0.7%とした。
Mo is also added to obtain strength and toughness, but if it is less than 0.1%, it has no effect. If it exceeds 0.7%, the hardenability increases, the structure becomes martensite, and stress corrosion cracking easily occurs.
Therefore, Mo is set to 0.1 to 0.7%.

Vも強度、靱性を得るために添加するが、0.02%未満で
は効果がない。0.1%超では焼入性が上昇し、組織がマ
ルテンサイトとなり、応力腐食割れが起り易くなる。し
たがってVは0.02〜0.1%とした。
V is also added to obtain strength and toughness, but if it is less than 0.02%, it has no effect. If it exceeds 0.1%, the hardenability increases, the structure becomes martensite, and stress corrosion cracking easily occurs. Therefore, V is set to 0.02 to 0.1%.

Wも強度、靱性を得るために添加するが、0.01%未満で
は効果がない。0.08%超では焼入性が上昇し、組織がマ
ルテンサイトになり応力腐食割れが起り易くなる。した
がってWは0.01〜0.08%とした。
W is also added in order to obtain strength and toughness, but if it is less than 0.01%, it has no effect. If it exceeds 0.08%, the hardenability increases, the structure becomes martensite, and stress corrosion cracking easily occurs. Therefore, W is set to 0.01 to 0.08%.

なお本発明の鋼は通常の製鋼、普通造塊、或いは連続鋳
造等の手段により鋳塊としたのち、通常の圧延工程を経
て、所望の寸法、形状の鋼材とすることが出来る。
The steel of the present invention can be formed into an ingot by means of ordinary steelmaking, ordinary ingot formation, continuous casting, or the like, and then subjected to an ordinary rolling process to obtain a steel material having a desired size and shape.

以下に実施例により本発明の効果をさらに具体的に示
す。
The effects of the present invention will be more specifically described below with reference to examples.

(実施例) 第1表に供試鋼の成分を示す。供試鋼は現場溶製圧延材
及び実験室溶解、圧延材を用いた。いずれの鋼も加熱温
度は1200℃、圧下スケジュールはラインパイプ用鋼
として通常用いらている制御圧延の条件を採用した。仕
上板厚は18mmとした。
(Example) Table 1 shows the components of the sample steel. As the sample steel, in-situ melted rolled material and laboratory melted and rolled material were used. The heating temperature of all the steels was 1200 ° C., and the rolling schedule was the condition of the controlled rolling which is usually used as the steel for line pipes. The finished plate thickness was 18 mm.

応力腐食割れ試験方法について述べると、試片作製はま
ず種々の溶接熱影響部の組織を得るために第1図に示す
如く寸法t1=18mm,l1=200mm,l2=300mmの供
試鋼片1の圧延方向Wに入熱を変化させて溶接を行い、
溶接ビード2を中央に入れ、第2図に示すような寸法t1
=18mm,t2=20mm,l1=200mmの応力腐食割れ試
験片3を切り出した。
Describing the stress corrosion cracking test method, first, in order to obtain various weld heat affected zone structures, test pieces were prepared with dimensions t 1 = 18 mm, l 1 = 200 mm, l 2 = 300 mm as shown in FIG. Welding is performed by changing the heat input in the rolling direction W of the billet 1,
The weld bead 2 is inserted in the center and the dimension t 1 as shown in FIG.
= 18 mm, t 2 = 20 mm, l 1 = 200 mm, a stress corrosion cracking test piece 3 was cut out.

応力負荷手段は第3図に示すような3点曲げ治具によっ
て行った。第3図に於て試験片3は絶縁物4を介して曲
げ治具5及び支点6に取りつけられ、ボルト7を締付け
ることにより応力が負荷される。応力負荷後、試験片を
治具ごと腐食液に浸漬して割れの判定を行った。
The stress applying means was a three-point bending jig as shown in FIG. In FIG. 3, the test piece 3 is attached to the bending jig 5 and the fulcrum 6 via the insulator 4, and a stress is applied by tightening the bolt 7. After the stress was applied, the test piece together with the jig was immersed in a corrosive liquid to determine cracking.

腐食液は硫化水素飽和−5%塩化ナトリウム液である。The corrosive liquid is hydrogen sulfide saturated-5% sodium chloride liquid.

第2表に供試鋼の機械的性質及び先に述べた方法で行っ
た応力腐食割れ試験結果を示す。本発明鋼は応力腐食割
れ抵抗が比較鋼に比べて著しく優れていることが解る。
Table 2 shows the mechanical properties of the test steels and the results of stress corrosion cracking tests conducted by the method described above. It can be seen that the steels of the present invention have significantly better stress corrosion cracking resistance than the comparative steels.

(発明の効果) 以上の実施例からも明らかなように、本発明によれば溶
接部応力腐食割れ抵抗の優れた耐サワー用鋼材の提供が
可能となり、産業上の効果は極めて顕著なものがある。
(Effect of the invention) As is clear from the above examples, according to the present invention, it is possible to provide a sour-resistant steel material having excellent weld stress corrosion cracking resistance, and the industrial effect is extremely remarkable. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は応力腐食割れ試片の作製要領を示す図、 第2図は応力腐食割れ試験片の寸法形状を示す図、 第3図は応力腐食割れ試験曲げ治具にて試験片に曲げ応
力を負荷する手段の説明図である。 1…供試鋼試片、2…溶接ビード、3…応力腐食割れ試
験片、4…絶縁物、5…曲げ治具、6…支点、7…ボル
ト。
Fig. 1 is a diagram showing the production procedure of a stress corrosion cracking test piece, Fig. 2 is a diagram showing the dimensions and shape of the stress corrosion cracking test piece, and Fig. 3 is a bending stress applied to the test piece by a stress corrosion cracking test bending jig. It is explanatory drawing of the means to load. DESCRIPTION OF SYMBOLS 1 ... Specimen steel specimen, 2 ... welding bead, 3 ... stress corrosion cracking specimen, 4 ... insulator, 5 ... bending jig, 6 ... fulcrum, 7 ... bolt.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−104653(JP,A) 特開 昭57−126959(JP,A) 特開 昭58−91150(JP,A) 特開 昭58−107476(JP,A) 特開 昭59−80752(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-57-104653 (JP, A) JP-A-57-126959 (JP, A) JP-A-58-91150 (JP, A) JP-A-58- 107476 (JP, A) JP 59-80752 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で C 0.02〜0.05%、 Si0.10〜0.50%、 Mn0.6〜1.2%、 Al≦0.05%、 Nb0.02〜0.10%、 B 0.001〜0.003%、 Ti0.01〜0.04%、 Ca0.001〜0.010% を含み P≦0.02%、 S≦0.005% に制限し、残部鉄及び不可避的な不純物から成り、溶接
熱影響部の組織が微細なベーナイト組織となることを特
徴とする溶接部応力腐食割れ抵抗の優れた耐サワー用鋼
材。
1. By weight%, C 0.02 to 0.05%, Si 0.10 to 0.50%, Mn 0.6 to 1.2%, Al ≦ 0.05%, Nb 0.02 to 0.10. %, B 0.001 to 0.003%, Ti 0.01 to 0.04%, Ca 0.001 to 0.010%, P ≤ 0.02%, S ≤ 0.005%, balance iron And an inevitable impurity, and the structure of the weld heat affected zone becomes a fine bainite structure.
【請求項2】重量%で C 0.02〜0.05%、 Si0.10〜0.50%、 Mn0.6〜1.2%、 Al≦0.05%、 Nb0.02〜0.10%、 B 0.001〜0.003%、 Ti0.01〜0.04%、 Ca0.001〜0.010% を含み P≦0.02%、 S≦0.005% に制限し、更に Ni0.1〜0.7%、 Cr0.2〜0.8%、 Cu0.1〜0.5%、 Mo0.1〜0.7%、 V 0.02〜0.1%、 W 0.01〜0.08% のうちより選ばれた1種または2種以上を含み、残部鉄
及び不可避的な不純物から成り、溶接熱影響部の組織が
微細なベーナイト組織となることを特徴とする溶接部応
力腐食割れ抵抗の優れた耐サワー用鋼材。
2. By weight%, C 0.02 to 0.05%, Si 0.10 to 0.50%, Mn 0.6 to 1.2%, Al ≦ 0.05%, Nb 0.02 to 0.10. %, B 0.001 to 0.003%, Ti 0.01 to 0.04%, Ca 0.001 to 0.010%, P ≤ 0.02%, S ≤ 0.005%, and further Ni0 1 to 0.7%, Cr 0.2 to 0.8%, Cu 0.1 to 0.5%, Mo 0.1 to 0.7%, V 0.02 to 0.1%, W 0.01 to Weld stress, characterized by containing one or more selected from 0.08%, balance iron and unavoidable impurities, and the structure of the weld heat affected zone becomes a fine bainite structure Sour-resistant steel with excellent corrosion cracking resistance.
JP60096272A 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds Expired - Lifetime JPH064902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096272A JPH064902B2 (en) 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096272A JPH064902B2 (en) 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Publications (2)

Publication Number Publication Date
JPS61253345A JPS61253345A (en) 1986-11-11
JPH064902B2 true JPH064902B2 (en) 1994-01-19

Family

ID=14160508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096272A Expired - Lifetime JPH064902B2 (en) 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Country Status (1)

Country Link
JP (1) JPH064902B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945753B2 (en) * 1980-12-19 1984-11-08 住友金属工業株式会社 Steel for line pipes with excellent hydrogen sulfide cracking resistance and its manufacturing method
JPS57126959A (en) * 1981-01-29 1982-08-06 Sumitomo Metal Ind Ltd High strength and high toughness steel for pipe line with excellent hydrogen sulfide crack resistance
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS5980752A (en) * 1982-10-28 1984-05-10 Nippon Kokan Kk <Nkk> Steel material having superior resistance to cracking due to hydrogen embrittlement in hydrogen sulfide environment
JPS6033310A (en) * 1983-07-30 1985-02-20 Nippon Steel Corp Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance

Also Published As

Publication number Publication date
JPS61253345A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
EP1954847B1 (en) High-strength steel for seamless, weldable steel pipes
EP0021349B1 (en) High tensile steel and process for producing the same
CA2461831C (en) Hot-rolled steel strip for high strength electric resistance welding pipe and manufacturing method thereof
US4059440A (en) Highly corrosion resistant ferritic stainless steel
KR20210091755A (en) Hot rolled steel strip and manufacturing method thereof
CN113166903B (en) Steel material having excellent hydrogen-induced cracking resistance and method for producing same
JP2016183387A (en) Thick steel plate for low temperature and production method therefor
US3288600A (en) Low carbon, high strength alloy steel
CN115210400A (en) Steel material, method for producing same, and tank
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPS6043433A (en) Manufacture of clad steel plate with superior corrosion resistance and toughness
JP2781000B2 (en) Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS63213619A (en) Manufacture of high strength stainless steel material having superior workability and causing no softening due to welding
KR102351770B1 (en) Manufacturing method of Ni-containing steel sheet
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPH064902B2 (en) Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds
JP4848651B2 (en) High strength thin steel sheet with excellent torsional rigidity and method for producing the same
CN105814225A (en) Marine steel forging
Vegi et al. Effect of Rolling Direction and Gauge Length on the Mechanical Properties of S460MC High Strength Low Alloy Steel
JPH06240406A (en) Steel plate with high strength and high toughness
JP7367896B1 (en) Steel plate and its manufacturing method
JPS58120726A (en) Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term