JPH0649017A - Method for purifying chlorphenesin carbamate - Google Patents

Method for purifying chlorphenesin carbamate

Info

Publication number
JPH0649017A
JPH0649017A JP22337192A JP22337192A JPH0649017A JP H0649017 A JPH0649017 A JP H0649017A JP 22337192 A JP22337192 A JP 22337192A JP 22337192 A JP22337192 A JP 22337192A JP H0649017 A JPH0649017 A JP H0649017A
Authority
JP
Japan
Prior art keywords
cpc
products
stabilizer
water
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22337192A
Other languages
Japanese (ja)
Inventor
Atsumi Kishimoto
淳己 岸本
Mitsugi Kumashiro
貢 熊代
Tadashi Katsura
正 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Fine Chemicals Co Ltd
Original Assignee
Sumika Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Fine Chemicals Co Ltd filed Critical Sumika Fine Chemicals Co Ltd
Priority to JP22337192A priority Critical patent/JPH0649017A/en
Publication of JPH0649017A publication Critical patent/JPH0649017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To purify the objective CPC extremely efficiently and in high purity without causing decomposed products of CPC or by-products resulting from transfer of carbamoyl group by using a specific stabilizer. CONSTITUTION:In a method for purifying chlorphenesin carbamate (CPC), water contained in the chlorophenecine carbamate is azeotropically dehydrated together with an organic solvent in the presence of at least one selected from the group consisting of iron, nickel, cobalt, copper and zinc salts and ammonium salt of mineral acid as a stabilizer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はカルバミン酸クロルフェ
ネシンの精製方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for purifying chlorphenesin carbamate.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】カルバミ
ン酸クロルフェネシン(以下、CPCと略する)は、筋
弛緩剤として有用な化合物であり、米国特許第 3,161,5
67号、同 3,214,336号にその合成方法および医薬用途の
開示がある。その合成の1例として、中間体である3−
p−クロロフェノキシ−2−ヒドロキシプロピル クロ
ロカーボネートを合成し、これに水酸化アンモニウムを
作用させてCPCを合成する方法が採られている。これ
らの方法によりCPCの合成を行った際には、最終的に
目的物に含まれる水分や副産物を除去するために精製を
行う必要がある。この精製方法としては、従来よりまず
CPC中に混在する水分をトルエン等の有機溶媒にて共
沸脱水することによって乾燥させ、次いでメタノールの
ようなアルコールを加えて再結晶させる方法が使用され
ている。ところが、水分を除去するための有機溶媒との
共沸脱水時に、下記の反応式に示すような分解物(CP
D)あるいはカルバモイル基の転移した副産物(CE
C)が生じるという問題が指摘される。そのため再結晶
による精製を数回繰り返すことにより、高純度のCPC
を得ており、工業的にはかなり煩雑である。
BACKGROUND OF THE INVENTION Chlorphenesin carbamate (hereinafter abbreviated as CPC) is a compound useful as a muscle relaxant, and is disclosed in US Pat. No. 3,161,5.
Nos. 67 and 3,214,336 disclose the synthetic method and pharmaceutical use. As an example of the synthesis, 3-
A method has been adopted in which p-chlorophenoxy-2-hydroxypropyl chlorocarbonate is synthesized and ammonium hydroxide is allowed to act on it to synthesize CPC. When CPC is synthesized by these methods, it is necessary to perform purification in order to finally remove water and by-products contained in the target product. As this purification method, conventionally, a method is used in which water contained in CPC is first dried by azeotropic dehydration with an organic solvent such as toluene, and then dried, and then recrystallized by adding an alcohol such as methanol. . However, during azeotropic dehydration with an organic solvent to remove water, a decomposition product (CP
D) or a by-product (CE of carbamoyl group transfer)
The problem that C) occurs is pointed out. Therefore, high-purity CPC can be obtained by repeating purification by recrystallization several times.
Is obtained, and it is quite complicated industrially.

【0003】[0003]

【化1】 [Chemical 1]

【0004】本発明者らはこれらの分解物および副産物
の生成の原因について検討した。その結果、前記のよう
な合成方法により得られた粗CPC結晶には水分が通常
10〜30重量%程度含まれているが、CPCが水の存
在下に加熱されると化学構造上不安定となり、分解物や
副産物が生成することが明らかになった。そこで、本発
明者らは目的化合物の収率の向上を目指し、工業的生産
を有利に行うために、精製段階でのこれらの問題につい
て鋭意検討を加えた。その結果、精製の段階で特定の安
定化剤を使用することにより、CPD、CEC等の分解
物および副産物が生成することなく高純度のCPCを得
ることができることを見出し、本発明を完成した。この
ことは、従来に比べて工業的にも有利である。
The present inventors examined the cause of the formation of these decomposition products and by-products. As a result, the crude CPC crystals obtained by the above-described synthesis method usually contain about 10 to 30% by weight of water, but when CPC is heated in the presence of water, it becomes unstable in its chemical structure. , It became clear that decomposition products and by-products are produced. Therefore, the present inventors have diligently studied these problems in the refining stage in order to improve the yield of the target compound and advantageously perform industrial production. As a result, they have found that by using a specific stabilizer in the purification stage, it is possible to obtain high-purity CPC without producing degradation products and byproducts such as CPD and CEC, and completed the present invention. This is industrially advantageous as compared with the conventional one.

【0005】[0005]

【課題を解決するための手段】即ち、本発明の要旨は、
カルバミン酸クロルフェネシンの精製方法において、該
カルバミン酸クロルフェネシン中に含まれる水分を、安
定化剤として鉄,ニッケル,コバルト,銅,または亜鉛
の塩、および鉱酸アンモニウム塩よりなる群から選ばれ
る少なくとも1種の存在下に、有機溶媒とともに共沸脱
水することを特徴とするカルバミン酸クロルフェネシン
の精製方法に関する。
The summary of the present invention is as follows.
In the method for purifying chlorphenesin carbamate, the water contained in the chlorphenesin carbamate is selected from the group consisting of salts of iron, nickel, cobalt, copper or zinc as a stabilizer and ammonium salt of mineral acid. The present invention relates to a method for purifying chlorphenesin carbamate, which comprises azeotropic dehydration with an organic solvent in the presence of at least one of

【0006】本発明において使用される安定化剤として
は、鉄,ニッケル,コバルト,銅,または亜鉛の塩、お
よび鉱酸アンモニウム塩が挙げられる。具体的には鉄,
ニッケル,コバルト,銅,または亜鉛の鉱酸塩(塩酸
塩、硫酸塩、リン酸塩)や酢酸塩、各種鉱酸のアンモニ
ウム塩が例示され、特に硫酸第二鉄、硫酸アンモニウム
および塩化アンモニウムが入手が容易で安価である点か
ら好ましい。これらの安定化剤は、単独であるいは2種
以上を混合して使用することができる。安定化剤の添加
量はCPCに対して、通常0.01重量%以上、好まし
くは0.1〜0.5重量%である。添加量が0.01重
量%より少なければ、CPCの安定が図れず、前記のよ
うなCPD、CEC等の分解物および副産物が生起しや
すくなり、また0.5重量%より多くても、それに見合
っただけの効果が得られないので経済的ではない。
The stabilizers used in the present invention include salts of iron, nickel, cobalt, copper, or zinc, and ammonium salts of mineral acids. Specifically, iron,
Examples include nickel, cobalt, copper, or zinc mineral salts (hydrochlorides, sulfates, phosphates), acetates, and ammonium salts of various mineral acids. In particular, ferric sulfate, ammonium sulfate, and ammonium chloride are available. It is preferable because it is easy and inexpensive. These stabilizers can be used alone or in admixture of two or more. The amount of the stabilizer added is usually 0.01% by weight or more, preferably 0.1 to 0.5% by weight, based on CPC. If the added amount is less than 0.01% by weight, the stability of CPC cannot be achieved and the decomposition products and by-products such as CPD and CEC described above are likely to occur. It's not economical because you can't get what you want.

【0007】本発明において、粗CPC結晶の合成方法
は特に限定されることはなく公知の方法で行われる。例
えば本発明の精製方法は、3−p−クロロフェノキシ−
2−ヒドロキシプロピル クロロカーボネートを合成
し、これに水酸化アンモニウムを作用させて得られる粗
CPCの精製に適用される。前記のように粗CPC結晶
には水分が通常10〜30重量%程度含まれているが、
この水分は粗CPCに安定化剤とともにトルエン、ベン
ゼン、キシレン、モノクロルベンゼン、ニトロベンゼン
等の有機溶媒を加えて共沸させて除去する。この時の共
沸温度は、使用する有機溶媒によって自ずと限られてく
るが、80〜100℃、好ましくは80〜85℃であ
る。安定化剤を添加し、安定化剤の存在下に共沸脱水す
ることによって、CPCは水分の存在下において100
〜120℃に加熱しても安定である。しかし、CPCの
融点が89〜91℃であることから、これ以上の温度に
加熱することは避けるほうがよい。
In the present invention, the method for synthesizing the crude CPC crystal is not particularly limited and may be a known method. For example, the purification method of the present invention comprises 3-p-chlorophenoxy-
It is applied to the purification of crude CPC obtained by synthesizing 2-hydroxypropyl chlorocarbonate and reacting it with ammonium hydroxide. As described above, the crude CPC crystal usually contains about 10 to 30% by weight of water,
This water is removed by azeotropically adding to the crude CPC an organic solvent such as toluene, benzene, xylene, monochlorobenzene and nitrobenzene together with a stabilizer. The azeotropic temperature at this time is naturally limited depending on the organic solvent used, but is 80 to 100 ° C, preferably 80 to 85 ° C. By adding a stabilizer and performing azeotropic dehydration in the presence of the stabilizer, CPC becomes 100 in the presence of water.
It is stable even when heated to ~ 120 ° C. However, since the melting point of CPC is 89 to 91 ° C., it is better to avoid heating to a temperature higher than this.

【0008】脱水された粗CPC結晶には安定化剤の
他、合成過程で生じた微量の分解物、副産物が含まれて
いるので、次いでメタノールのようなアルコールおよび
活性炭、セライト等の吸着剤を加えて精製、結晶化す
る。このようにして精製されたCPCには、CPCの分
解物あるいはカルバモイル基の転移による副産物等は検
出されない高純度なものであり、筋弛緩剤等として医薬
用途において有用に使用される。
Since the dehydrated crude CPC crystals contain not only a stabilizer but also a small amount of decomposition products and by-products generated in the synthesis process, an alcohol such as methanol and an adsorbent such as activated carbon and celite are then added. In addition, it is purified and crystallized. The CPC thus purified has a high purity in which a decomposed product of CPC or a by-product resulting from the transfer of a carbamoyl group is not detected and is useful as a muscle relaxant or the like in pharmaceutical applications.

【0009】[0009]

【実施例】以下、実施例および比較例により本発明をさ
らに詳しく説明するが、本発明はこれらの実施例等によ
りなんら限定されるものではない。 実施例1 CPC40g、水10g、トルエン200gおよび硫酸
第二鉄0.04gを四つ口フラスコに仕込み、共沸脱水
により水を留去し、メタノール6gを加えて60〜65
℃で溶解させた後、活性炭1gとセライト1.5gを仕
込み、80〜85℃にて30分間攪拌し、熱濾過を行っ
た。その後、濾液を冷却し、CPCを結晶化させ、濾別
乾燥してCPC38gを得た。得られたCPCを液体ク
ロマトグラフィーにて分析したところ、分解物、副産物
であるCPD、CECは検出されず、CPC含量は9
9.98%であった。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 40 g of CPC, 10 g of water, 200 g of toluene and 0.04 g of ferric sulfate were charged into a four-necked flask, water was distilled off by azeotropic dehydration, and 6 g of methanol was added to 60-65.
After dissolving at 0 ° C, 1 g of activated carbon and 1.5 g of celite were charged, stirred at 80 to 85 ° C for 30 minutes, and hot filtered. Then, the filtrate was cooled, CPC was crystallized, filtered and dried to obtain 38 g of CPC. When the obtained CPC was analyzed by liquid chromatography, degradation products and by-products CPD and CEC were not detected, and the CPC content was 9
It was 9.98%.

【0010】実施例2 硫酸第二鉄0.04gの代わりに硫酸アンモニウム0.
08gを用いる以外は実施例1と同様に行った。その結
果、CPC38.5gを得、液体クロマトグラフィーに
て分析したところ、分解物、副産物であるCPD、CE
Cは検出されず、CPC含量は99.97%であった。
Example 2 Ammonium sulphate was added in place of 0.04 g of ferric sulphate.
Example 1 was repeated except that 08 g was used. As a result, when 38.5 g of CPC was obtained and analyzed by liquid chromatography, it was found that decomposed products and by-products CPD and CE were obtained.
C was not detected and the CPC content was 99.97%.

【0011】実施例3 硫酸第二鉄0.04gの代わりに塩化アンモニウム0.
05gを用いる以外は実施例1と同様に行った。その結
果、CPC37.8gを得、液体クロマトグラフィーに
て分析したところ、分解物、副産物であるCPD、CE
Cは検出されず、CPC含量は99.95%であった。
Example 3 Ammonium chloride was added in place of 0.04 g of ferric sulfate.
The same procedure as in Example 1 was carried out except that 05 g was used. As a result, 37.8 g of CPC was obtained and analyzed by liquid chromatography to find that degradation products and by-products CPD and CE
No C was detected and the CPC content was 99.95%.

【0012】比較例1 CPC40g、水10gおよびトルエン200gを四つ
口フラスコに仕込み、共沸脱水により水を留去し、メタ
ノール6gを加えて60〜65℃で溶解させた後、活性
炭1gとセライト1.5gを仕込み、80〜85℃にて
30分間攪拌し、熱濾過を行った。その後、濾液を冷却
し、CPCを結晶化させ、濾別乾燥してCPC38gを
得た。得られたCPCを液体クロマトグラフィーにて分
析したところ、分解物、副産物であるCPD1%、CE
C5%の生成が見られ、CPC含量は94%であった。
COMPARATIVE EXAMPLE 1 40 g of CPC, 10 g of water and 200 g of toluene were charged into a four-necked flask, water was distilled off by azeotropic dehydration, 6 g of methanol was added and dissolved at 60 to 65 ° C., and then 1 g of activated carbon and Celite were added. 1.5 g was charged, the mixture was stirred at 80 to 85 ° C. for 30 minutes, and hot filtered. Then, the filtrate was cooled, CPC was crystallized, filtered and dried to obtain 38 g of CPC. The obtained CPC was analyzed by liquid chromatography to find that decomposed products and by-products CPD1%, CE
C5% formation was observed and the CPC content was 94%.

【0013】実施例4 CPC40g、水10g、トルエン80gおよび硫酸第
二鉄0.04gを四つ口フラスコに仕込み、85℃に4
0時間加熱還流した。その後、液体クロマトグラフィー
にて分析したところ、分解物、副産物であるCPD、C
ECは検出されなかった。
Example 4 40 g of CPC, 10 g of water, 80 g of toluene and 0.04 g of ferric sulfate were charged into a four-necked flask, and the mixture was heated to 85 ° C. for 4 hours.
The mixture was heated under reflux for 0 hours. After that, when analyzed by liquid chromatography, it was found that decomposed products and by-products CPD and C
No EC was detected.

【0014】実施例5 CPC40g、水10g、トルエン80gおよび硫酸ア
ンモニウム0.10gを四つ口フラスコに仕込み、85
℃に20時間加熱還流した。その後、液体クロマトグラ
フィーにて分析したところ、分解物、副産物であるCP
D、CECは検出されなかった。
Example 5 40 g of CPC, 10 g of water, 80 g of toluene and 0.10 g of ammonium sulfate were charged into a four-necked flask, and 85
The mixture was heated to reflux for 20 hours at 0 ° C. After that, when analyzed by liquid chromatography, CP which is a decomposition product and a by-product
D and CEC were not detected.

【0015】実施例6 CPC40g、水10g、トルエン80gおよび塩化ア
ンモニウム0.05gを四つ口フラスコに仕込み、85
℃に20時間加熱還流した。その後、液体クロマトグラ
フィーにて分析したところ、分解物、副産物であるCP
D、CECは検出されなかった。
Example 6 40 g of CPC, 10 g of water, 80 g of toluene and 0.05 g of ammonium chloride were charged into a four-necked flask, and 85
The mixture was heated to reflux for 20 hours at 0 ° C. After that, when analyzed by liquid chromatography, CP which is a decomposition product and a by-product
D and CEC were not detected.

【0016】実施例7 CPC40g、水10gおよび硫酸第二鉄0.04gを
四つ口フラスコに仕込み、85℃に40時間加熱還流し
た。その後、液体クロマトグラフィーにて分析したとこ
ろ、分解物、副産物であるCPD、CECは検出されな
かった。
Example 7 40 g of CPC, 10 g of water and 0.04 g of ferric sulfate were placed in a four-necked flask and heated to 85 ° C. for 40 hours under reflux. Then, when analyzed by liquid chromatography, degradation products and by-products CPD and CEC were not detected.

【0017】比較例2 CPC40g、水10g、トルエン80gを四つ口フラ
スコに仕込み、85℃に8時間加熱還流した。その後、
液体クロマトグラフィーにて分析したところ、分解物、
副産物であるCPD7.5%、CEC16.5%の生成
が見られ、CPC含量は76%であった。
Comparative Example 2 CPC (40 g), water (10 g) and toluene (80 g) were charged in a four-necked flask and heated to 85 ° C. for 8 hours under reflux. afterwards,
When analyzed by liquid chromatography,
By-products CPD 7.5% and CEC 16.5% were produced, and the CPC content was 76%.

【0018】実施例8 クロルフェネシン(CPD)40gを200gのベンゼ
ンに懸濁させたのち、20〜30℃にて、ホスゲン23
gの冷ベンゼン(100g)溶液を1時間を要して滴下
し、30℃にて結晶が溶解するまで保温した。そのの
ち、トリエチルアミン24gを同温にて滴下し、1時間
保温した。さらに、冷水100mlにて3回抽出し、ト
リエチルアミンの塩酸塩を除去した。このようにして得
られた3−p−クロロフェノキシ−2−ヒドロキシプロ
ピルクロロカーボネートのベンゼン溶液に、28%アン
モニア水50gを20〜25℃にて2時間を要して滴下
し、同温にて24時間保温した。そののち、10%硫酸
にて、pH8.0〜8.5まで中和したのち、得られた
結晶を濾別し、さらに水100mlにて3回洗浄した。
この結果、粗CPC50g(うち10gが水)を得た。
この得られた粗CPC50g、トルエン200gおよび
硫酸第二鉄0.04gを四つ口フラスコに仕込み、共沸
脱水により水を留去し、メタノール6gを加えて60〜
65℃で溶解させたのち、活性炭1gとセライト1.5
gを仕込み80〜85℃にて30分間攪拌し、熱濾過を
行った。そののち、濾液を冷却し、CPCを結晶化さ
せ、濾別乾燥してCPC38gを得た。得られたCPC
を液体クロマトグラフィーにて分析したところ、分解
物、副産物であるCPD、CECは検出されず、CPC
含量は99.96%であった。
Example 8 40 g of chlorphenesin (CPD) was suspended in 200 g of benzene, and phosgene 23 was added at 20 to 30 ° C.
A solution of g of cold benzene (100 g) was added dropwise over 1 hour, and the temperature was kept at 30 ° C. until the crystals were dissolved. After that, 24 g of triethylamine was added dropwise at the same temperature and kept warm for 1 hour. Furthermore, 100 ml of cold water extracted 3 times, and the hydrochloride of triethylamine was removed. To the benzene solution of 3-p-chlorophenoxy-2-hydroxypropyl chlorocarbonate thus obtained, 50 g of 28% ammonia water was added dropwise at 20 to 25 ° C over 2 hours, and at the same temperature. It was kept warm for 24 hours. After that, the mixture was neutralized with 10% sulfuric acid to pH 8.0 to 8.5, and the obtained crystals were separated by filtration and washed with 100 ml of water three times.
As a result, 50 g of crude CPC (10 g of which was water) was obtained.
50 g of the obtained crude CPC, 200 g of toluene, and 0.04 g of ferric sulfate were charged into a four-necked flask, water was distilled off by azeotropic dehydration, and 6 g of methanol was added to 60-
After melting at 65 ° C, activated carbon 1g and Celite 1.5
g was charged, the mixture was stirred at 80 to 85 ° C. for 30 minutes, and hot filtration was performed. After that, the filtrate was cooled, CPC was crystallized, filtered and dried to obtain 38 g of CPC. The obtained CPC
Was analyzed by liquid chromatography, no degradation products and by-products CPD and CEC were detected, and CPC
The content was 99.96%.

【0019】比較例3 実施例8と同様にして粗CPC50g(うち10gが
水)を得た。その得られた粗CPC50gおよびトルエ
ン200gを四つ口フラスコに仕込み、共沸脱水により
水を留去し、メタノール6gを加えて60〜65℃で溶
解させたのち、活性炭1gとセライト1.5gを仕込
み、80〜85℃にて30分間攪拌し、熱濾過を行っ
た。その後、濾液を冷却し、CPCを結晶化させ、濾別
乾燥してCPC37.5gを得た。得られたCPCを液
体クロマトグラフィーにて分析したところ、分解物、副
産物であるCPD1%、CEC5.5%の生成が見られ
CPC含量は93.5%であった。
Comparative Example 3 50 g of crude CPC (10 g of which was water) was obtained in the same manner as in Example 8. 50 g of the obtained crude CPC and 200 g of toluene were charged into a four-necked flask, water was distilled off by azeotropic dehydration, 6 g of methanol was added and dissolved at 60 to 65 ° C., and then 1 g of activated carbon and 1.5 g of celite were added. The mixture was charged, stirred at 80 to 85 ° C. for 30 minutes, and hot filtered. Then, the filtrate was cooled, CPC was crystallized, filtered and dried to obtain 37.5 g of CPC. When the obtained CPC was analyzed by liquid chromatography, it was found that decomposed products and by-products CPD1% and CEC5.5% were produced, and the CPC content was 93.5%.

【0020】[0020]

【発明の効果】本発明による安定化剤を使用することに
よって、CPCの分解物あるいはカルバモイル基の転移
による副産物等が生起することがなく、目的とするCP
Cを極めて効率よく高純度に精製することができる。
The use of the stabilizer according to the present invention does not cause decomposition products of CPC or byproducts due to the transfer of carbamoyl groups, and the desired CP
C can be highly efficiently purified to high purity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 カルバミン酸クロルフェネシンの精製方
法において、該カルバミン酸クロルフェネシン中に含ま
れる水分を、安定化剤として鉄,ニッケル,コバルト,
銅,または亜鉛の塩、および鉱酸アンモニウム塩よりな
る群から選ばれる少なくとも1種の存在下に、有機溶媒
とともに共沸脱水することを特徴とするカルバミン酸ク
ロルフェネシンの精製方法。
1. A method for purifying chlorphenesin carbamate, wherein water contained in the chlorphenesin carbamate is used as a stabilizer for iron, nickel, cobalt,
A method for purifying chlorphenesin carbamate, which comprises performing azeotropic dehydration with an organic solvent in the presence of at least one selected from the group consisting of salts of copper or zinc, and ammonium salts of mineral acids.
【請求項2】 安定化剤が硫酸第二鉄、硫酸アンモニウ
ムまたは塩化アンモニウムである請求項1記載の精製方
法。
2. The purification method according to claim 1, wherein the stabilizer is ferric sulfate, ammonium sulfate or ammonium chloride.
【請求項3】 安定化剤の添加量が、カルバミン酸クロ
ルフェネシンに対して0.01重量%以上である請求項
1記載の精製方法。
3. The purification method according to claim 1, wherein the amount of the stabilizer added is 0.01% by weight or more based on chlorphenesin carbamate.
【請求項4】 有機溶媒がトルエン、ベンゼン、キシレ
ン、モノクロルベンゼン、又はニトロベンゼンである請
求項1記載の精製方法。
4. The purification method according to claim 1, wherein the organic solvent is toluene, benzene, xylene, monochlorobenzene, or nitrobenzene.
JP22337192A 1992-07-29 1992-07-29 Method for purifying chlorphenesin carbamate Pending JPH0649017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22337192A JPH0649017A (en) 1992-07-29 1992-07-29 Method for purifying chlorphenesin carbamate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22337192A JPH0649017A (en) 1992-07-29 1992-07-29 Method for purifying chlorphenesin carbamate

Publications (1)

Publication Number Publication Date
JPH0649017A true JPH0649017A (en) 1994-02-22

Family

ID=16797098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22337192A Pending JPH0649017A (en) 1992-07-29 1992-07-29 Method for purifying chlorphenesin carbamate

Country Status (1)

Country Link
JP (1) JPH0649017A (en)

Similar Documents

Publication Publication Date Title
EP0018546B1 (en) Process for the production of phenylglycyl chloride hydrochlorides
SU584774A3 (en) Method of preparing azoxazole derivatives
DE69501705T2 (en) Process for the preparation of optically active piperazine derivatives and intermediates for their manufacture
JP2001521498A (en) Method for producing O- (3-amino-2-hydroxy-propyl) -hydroxymic acid halide
CN112272665B (en) Process for preparing ritalst
JPH0649017A (en) Method for purifying chlorphenesin carbamate
US2744136A (en) Amides of sulfonylserinophenones
US4661625A (en) Synthesis and purification of d-propoxyphene hydrochloride
EP0481118A1 (en) A method for producing butyl 3'-(1H-tetrazol-5-yl) oxanilate
JPH10245352A (en) Purification of biscresol compounds
JP3640319B2 (en) Method for producing benzamide derivative
AU723133B2 (en) Process for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
JP2859791B2 (en) Method for producing 4-bromomethylbiphenyl compound
EP0070467B1 (en) Process for synthesising n-isopropyl-n'-o-carbomethoxyphenylsulphamide
JP3291987B2 (en) Purification method of O, S-dimethyl-N-acetylphosphoramidothioate
JPH0217163A (en) Production of diaminomaleonitrile and diaminoacrylonitrile derivative
US4279836A (en) Hydroxamic acid derivative and method of preparing metoclopramide using same
JPH09255644A (en) Production of adipic acid dihydrazide
JPH0558985A (en) Production of cyanoguanidine derivative
JPH0446175A (en) Production of 5-hydroxy-3,4-methylenedioxybenzoic acid derivative
JP2696727B2 (en) Method for producing dinitroazobenzene
KR940009935B1 (en) N-benzoyl-c-thiophenoxyimidoyl chloride derivatives and manufacturing method thereof
CA2201779C (en) The manufacture of levobupivacaine and analogues thereof from l-lysine
JPS5923314B2 (en) New pyrrole derivative
JPH07267950A (en) Production of 5-chloro-n-(4,5-dihydro-1h-imidazol-2-yl)-2,1,3-benzothiadiazole-4-amine or its acid-added salt