JPH0649016A - Device and method continuously producing isocyanate compound - Google Patents

Device and method continuously producing isocyanate compound

Info

Publication number
JPH0649016A
JPH0649016A JP35123091A JP35123091A JPH0649016A JP H0649016 A JPH0649016 A JP H0649016A JP 35123091 A JP35123091 A JP 35123091A JP 35123091 A JP35123091 A JP 35123091A JP H0649016 A JPH0649016 A JP H0649016A
Authority
JP
Japan
Prior art keywords
reaction
solvent
tower
column
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35123091A
Other languages
Japanese (ja)
Inventor
Satoyuki Hattori
聡之 服部
Makoto Miyazawa
誠 宮沢
Izumi Shimoyama
泉 下山
Masatsugu Mizuguchi
雅嗣 水口
Tetsuo Yatani
哲男 八谷
Hirotsugu Tsuchiya
博嗣 土屋
Katsunori Fujimura
克範 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35123091A priority Critical patent/JPH0649016A/en
Publication of JPH0649016A publication Critical patent/JPH0649016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To continuously produce an isocyanate compound by thermally decomposing a carbamic ester at the boiling point of an inert solvent. CONSTITUTION:A device for production is equipped with means 22 and 23 which return an isocyanate compound as a main formed product from a distillation column 6 for removing a fraction consisting essentially of an alcohol compound and a recycling solvent to at least one zone except a column top zone of a column type reactor 4. In a method for production, the isocyanate compound and the solvent are returned from the distillation column 6 to at least one zone except the column top zone of the column type reactor 4. Since main reaction is promoted and reverse reaction and side reactions are suppressed, an isocyanate can be produced in high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イソシアネート化合物
の連続的製造装置及び方法に関するものであり、特に芳
香族カルバミン酸エステル類の熱分解反応による芳香族
イソシアネート類の製造装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for continuously producing isocyanate compounds, and more particularly to an apparatus and method for producing aromatic isocyanates by thermal decomposition reaction of aromatic carbamic acid esters.

【0002】[0002]

【従来の技術】ウレタン等の原料となるイソシアネート
の製造方法として、ホスゲン法に代わる製法が近年多く
研究されている。中でもカルバミン酸エステルを経由
し、次いでこれを縮合して、熱分解する方法が種々提案
されている。この熱分解反応は下記の式(1)で示され
る平衡反応であり、カルバミン酸エステル(ウレタン)
をイソシアネートとアルコールとに分解し、1方の分解
生成物であるイソシアネートを目的生成物として回収す
るものである。
2. Description of the Related Art As a method for producing an isocyanate, which is a raw material for urethane and the like, many researches have recently been made on a production method which is an alternative to the phosgene method. Above all, various methods of thermally decomposing via a carbamate, then condensing this, have been proposed. This thermal decomposition reaction is an equilibrium reaction represented by the following formula (1), and a carbamate (urethane)
Is decomposed into isocyanate and alcohol, and one decomposition product, isocyanate, is recovered as the target product.

【0003】[0003]

【化1】 [Chemical 1]

【0004】前記式(1)の平衡反応において、イソシ
アネートと共に生成されるもう1方の分解生成物である
アルコールを系外へ速やかに除去することにより、逆反
応であるウレタン生成反応を阻止し、目的生成物である
イソシアネートへの反応率を100%近いものにするこ
とができる。この可逆的熱分解反応を液相で行う場合
に、生成物のうちアルコールを有効に系外に抜き出す方
法は次の2つに分類することができる。即ち、不活性
ガスを導入してこれにアルコールを同伴させて系外に導
く方法(例えば、特開昭51-29445号、特開昭60-237058
号、特開平2-250857号各公報等)及び溶媒の沸点で反
応を行い、溶媒と共にアルコールを系外に蒸発させる方
法(例えば、特開昭57-123159 号、特開昭57-21356号、
特公昭61-13463号、特開昭63-150255 号、特開平1-2072
61号各公報等)である。
In the equilibrium reaction of the above formula (1), the other decomposition product of alcohol, which is formed together with the isocyanate, is rapidly removed out of the system to prevent the reverse reaction of urethane formation reaction, The reaction rate to the target product, isocyanate, can be made close to 100%. When this reversible thermal decomposition reaction is carried out in the liquid phase, the method of effectively extracting alcohol from the product to the outside of the system can be classified into the following two methods. That is, a method of introducing an inert gas and entraining it in an alcohol to guide it out of the system (for example, JP-A-51-29445 and JP-A-60-237058).
No. JP-A-2-250857) and a method of reacting at the boiling point of a solvent to evaporate alcohol together with the solvent out of the system (for example, JP-A-57-123159, JP-A-57-21356,
JP-B-61-13463, JP-A-63-150255, JP-A-1-2072
No. 61 publications, etc.).

【0005】溶媒の沸点で熱分解反応を行う前記方法
に関する前記公報記載の各方法は、いずれも回分式反応
器を用い、アルコールを効率よく系外に抜き出すことに
より分解反応を速やかに行うものである。しかしなが
ら、前記の熱分解反応を工業的に連続的に行う場合に
は、生成イソシアネートの反応性が高いので、イソシア
ネートが生成物同士で相互に反応したり或いは中間体生
成物との間で副生成物を生成し、この副生成物(高沸点
物質)が製品の品質を著しく損なうという欠点があっ
た。更に、蒸発によって溶媒が留出するために反応器内
部の基質濃度が上昇し、副反応が促進され、コーキング
が発生する等の好ましくない反応が生じた。
Each of the methods described in the above-mentioned publications relating to the above-mentioned method of carrying out the thermal decomposition reaction at the boiling point of the solvent is such that the decomposition reaction is carried out rapidly by using a batch reactor to efficiently extract alcohol out of the system. is there. However, when the above-mentioned thermal decomposition reaction is continuously carried out industrially, the reactivity of the produced isocyanate is high, so that the isocyanates react with each other or the by-products with the intermediate product. However, the by-product (high-boiling substance) significantly deteriorates the quality of the product. Furthermore, since the solvent is distilled off by evaporation, the substrate concentration inside the reactor is increased, side reactions are promoted, and undesired reactions such as coking occur.

【0006】これらの問題に対処するためには、例え
ば、特開昭60-231640 号(特公平3-5386号)公報に記載
されている、図2に示す様な装置を用いることが考えら
れる。即ち、原料容器1からカルバミン酸エステルと溶
媒とをポンプ2によりパイプ3から充填塔型反応器4に
挿入し、その反応塔4内で溶媒の沸点にて熱分解反応を
行う。続いて、反応生成物であるイソシアネート及びア
ルコール並びに溶媒の混合物を、反応塔4の塔頂からパ
イプ5を経由して蒸留塔6に導く。蒸留塔6では、アル
コール分をパイプ7からアルコール凝縮塔8へ送り、反
応系からアルコール分を除去する。一方、イソシアネー
ト及び溶媒は、その全部をパイプ9から反応塔4の塔頂
へ戻すか、或いはその一部をパイプ9から反応塔4の塔
頂へ戻す。なお、系内の圧力調整は圧力計11及び保圧
弁12によって行い、反応塔4及びアルコール凝縮塔8
の下部にそれぞれサンプリング管13,14を設ける。
こうして、アルコールを反応器4の上部に設けた蒸留塔
6から系外に除去し、溶媒を系内にリサイクルさせ、反
応塔4内部の基質濃度の上昇を防ぐことができる。
In order to deal with these problems, it is considered to use a device as shown in FIG. 2, for example, which is described in Japanese Patent Laid-Open No. 60-231640 (Japanese Patent Publication No. 3-5386). . That is, the carbamic acid ester and the solvent from the raw material container 1 are inserted into the packed tower type reactor 4 from the pipe 3 by the pump 2, and the thermal decomposition reaction is carried out in the reaction tower 4 at the boiling point of the solvent. Subsequently, a mixture of the reaction product of isocyanate, alcohol and solvent is introduced from the top of the reaction column 4 to the distillation column 6 via the pipe 5. In the distillation tower 6, the alcohol content is sent from the pipe 7 to the alcohol condensing tower 8 to remove the alcohol content from the reaction system. On the other hand, all of the isocyanate and the solvent are returned from the pipe 9 to the top of the reaction tower 4, or a part thereof is returned from the pipe 9 to the top of the reaction tower 4. The pressure inside the system is adjusted by the pressure gauge 11 and the pressure holding valve 12, and the reaction tower 4 and the alcohol condensing tower 8 are controlled.
Sampling tubes 13 and 14 are provided in the lower part of each.
In this way, the alcohol can be removed from the distillation column 6 provided at the upper part of the reactor 4 to the outside of the system, the solvent can be recycled into the system, and the increase of the substrate concentration inside the reaction column 4 can be prevented.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図2に
示す装置を用いる前記方法においても、反応塔4の下部
へ行くのに従って溶媒の蒸発量が累積的に増加して反応
系内の溶媒量が減少するので、生成イソシアネート及び
アルコールの濃度が相対的に増加する。従って、反応塔
4の下部では、逆反応や生成物と中間体相互の副反応が
促進され、副生成物の生成やコーキング等の好ましくな
い反応が促進されることになり、イソシアネート収率の
低下を引き起こす要因となる。更に、リサイクルさせる
べき大量の溶媒を反応塔4の上部などの一箇所に一度に
戻すことはフラッディング等のように反応塔4の運転を
乱す要因にもなるので好ましくない。
However, even in the above method using the apparatus shown in FIG. 2, the evaporation amount of the solvent is cumulatively increased as it goes to the lower part of the reaction tower 4, and the amount of the solvent in the reaction system is increased. As it decreases, the concentration of product isocyanate and alcohol increases relatively. Therefore, in the lower part of the reaction tower 4, the reverse reaction and the side reaction between the product and the intermediate are promoted, and the undesirable reaction such as the generation of the by-product and coking is promoted, which lowers the isocyanate yield. It becomes a factor to cause. Furthermore, returning a large amount of the solvent to be recycled to one place such as the upper portion of the reaction tower 4 at once is not preferable because it may disturb the operation of the reaction tower 4 such as flooding.

【0008】本発明者は、前記問題点の解決方法を鋭意
検討した結果、反応塔から留出した蒸気を反応塔外部に
設けた蒸留塔に導き、蒸留塔の塔頂部からアルコール分
を系外へ抜き出し、更に蒸留塔の塔底から留出する溶媒
(及びイソシアネート)を反応塔に還流する際に、反応
塔の塔頂以外の1箇所(特に下部)にリサイクル溶媒を
戻すか、或いは反応塔の塔頂以外の2箇所以上の任意の
領域にリサイクル溶媒(及びイソシアネート)を分割し
て戻すことにより正反応を促進させ、望ましくない逆反
応及び副反応を抑制することが可能となり、従来法に較
べ高転化率及び高選択率で熱分解反応を進行させること
ができることを見出した。本発明は、こうした知見に基
づくものである。
The present inventor, as a result of extensive studies on a method for solving the above-mentioned problems, led the vapor distilled from the reaction column to a distillation column provided outside the reaction column, and removed the alcohol component from the top of the distillation column to the outside of the system. When the solvent (and isocyanate) distilled out from the bottom of the distillation tower is refluxed to the reaction tower, the recycled solvent is returned to one place (especially lower part) other than the top of the reaction tower, or the reaction tower By dividing and returning the recycled solvent (and isocyanate) to two or more arbitrary areas other than the top of the column, it is possible to accelerate the forward reaction and suppress the undesired reverse reaction and side reaction. It was found that the thermal decomposition reaction can proceed at a higher conversion rate and a higher selectivity. The present invention is based on these findings.

【0009】[0009]

【課題を解決するための手段】従って、本発明は、
(1)不活性溶媒の沸点にてカルバミン酸エステル化合
物の熱分解反応を連続的に行うことのできる塔型反応器
と、(2)その塔型反応器に連絡する蒸留塔と、(3)
前記塔型反応器から前記蒸留塔へイソシアネート化合
物、アルコール化合物及び溶媒を送ることのできる手段
と、(4)前記蒸留塔からアルコール化合物を主成分と
する留分を系外へ除去することのできる手段とを有す
る、イソシアネート化合物の連続的製造装置において、
前記蒸留塔からイソシアネート化合物及び溶媒を主成分
とする留分の少なくとも1部を前記塔型反応器の塔頂領
域以外の少なくとも1つの領域へ戻すことのできる手段
を備えることを特徴とする、前記の連続的製造装置に関
する。更に、本発明は、塔型反応器を利用してカルバミ
ン酸エステル化合物を不活性溶媒の沸点にて熱分解して
イソシアネート化合物を連続的に製造する方法におい
て、前記塔型反応器からイソシアネート化合物、アルコ
ール化合物及び溶媒を前記塔型反応器に連絡する蒸留塔
に導き、その蒸留塔からアルコール化合物を主成分とす
る留分を系外に除去し、イソシアネート化合物及び溶媒
を主成分とする留分の少なくとも1部を前記蒸留塔から
前記塔型反応器の塔頂領域以外の少なくとも1つの領域
へ戻すことを特徴とする、イソシアネート化合物の連続
的製造方法にも関する。本発明は、好ましくは芳香族カ
ルバミン酸エステル化合物(特には芳香族ポリカルバミ
ン酸エステル化合物)の熱分解により、芳香族イソシア
ネート化合物(特には芳香族ポリイソシアネート化合
物)を連続的に製造するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides
(1) a tower reactor capable of continuously performing a thermal decomposition reaction of a carbamic acid ester compound at the boiling point of an inert solvent, (2) a distillation tower connected to the tower reactor, (3)
Means capable of sending an isocyanate compound, an alcohol compound and a solvent from the tower reactor to the distillation column, and (4) a fraction containing an alcohol compound as a main component can be removed from the distillation column out of the system. And a means for continuously producing an isocyanate compound,
A means for returning at least a part of a fraction containing an isocyanate compound and a solvent as a main component from the distillation column to at least one region other than the top region of the column reactor, Of continuous manufacturing equipment. Furthermore, the present invention is a method for continuously producing an isocyanate compound by thermally decomposing a carbamic acid ester compound at a boiling point of an inert solvent using a tower reactor, an isocyanate compound from the tower reactor, An alcohol compound and a solvent are introduced into a distillation column that communicates with the tower reactor, a fraction containing an alcohol compound as a main component is removed from the distillation column to the outside of the system, and a fraction containing an isocyanate compound and a solvent as a main component is removed. It also relates to a continuous process for the production of isocyanate compounds, characterized in that at least one part is returned from the distillation column to at least one region other than the top region of the column reactor. The present invention preferably continuously produces an aromatic isocyanate compound (in particular, an aromatic polyisocyanate compound) by thermal decomposition of an aromatic carbamic acid ester compound (in particular, an aromatic polycarbamic acid ester compound). .

【0010】以下、本発明を図1に沿って具体的に説明
する。図1に示す装置は、本発明を実施する際に用いる
ことのできる装置の1例であり、図2と同一の参照番号
を付した各要素はそれぞれ同一又は同様の作用を有する
要素である。図1に示す本発明装置は、図2に示す従来
装置におけるパイプ9に替えて、上部パイプ21と、中
間部パイプ22と、下部パイプ23とを備え、更にそれ
ら各パイプにそれぞれ上部バルブ31、中間部バルブ3
2及び下部バルブ33を有している点で異なる。即ち、
充填塔型反応器4内で溶媒の沸点にてカルバミン酸エス
テル化合物の熱分解反応を連続的に行い、反応生成物で
あるイソシアネート化合物及びアルコール化合物並びに
溶媒の混合物を、反応塔4の塔頂から蒸留塔6に導き、
全アルコール分をアルコール凝縮塔8へ送ってアルコー
ル分を反応系から除去し、イソシアネート化合物及び溶
媒は、その全部を反応塔4へ戻すか、或いはその一部を
反応塔4へ戻し、残りをドレイン10から系外へ取り出
す点では、前記図2に示す方法と変わらない。しかし、
本発明では、イソシアネート化合物及び溶媒の全部又は
一部を、反応塔4の塔頂領域以外の少なくとも1つの領
域に戻す。
The present invention will be specifically described below with reference to FIG. The device shown in FIG. 1 is an example of a device that can be used when the present invention is implemented, and each element having the same reference numeral as in FIG. 2 is an element having the same or similar action. The device of the present invention shown in FIG. 1 is provided with an upper pipe 21, an intermediate pipe 22, and a lower pipe 23 in place of the pipe 9 in the conventional device shown in FIG. Intermediate valve 3
2 and has a lower valve 33. That is,
The thermal decomposition reaction of the carbamic acid ester compound is continuously carried out in the packed tower type reactor 4 at the boiling point of the solvent, and the isocyanate compound and the alcohol compound which are reaction products and the mixture of the solvent are discharged from the top of the reaction tower 4. Leading to the distillation column 6,
The total alcohol content is sent to the alcohol condensing tower 8 to remove the alcohol content from the reaction system, and the isocyanate compound and the solvent may either be returned to the reaction tower 4 or a part thereof may be returned to the reaction tower 4 and the rest may be drained. The point of taking out from the system 10 is the same as the method shown in FIG. But,
In the present invention, all or part of the isocyanate compound and the solvent is returned to at least one region other than the top region of the reaction column 4.

【0011】図1に示す態様では、反応塔4の塔頂領域
へ戻すための上部パイプ21と、中間部及び下部領域に
戻すための2本のパイプ22,23を備えているが、塔
頂領域へ戻すための上部パイプ21は設けなくてもよ
く、塔頂領域以外の領域へ戻すためのパイプを1本の
み、或いは複数本設けてよい。また、予め比較的多数の
パイプを配置し、それら各パイプの途中にバルブを設
け、各バルブの開閉によりパイプ本数を事実上増減させ
たり、リサイクル溶媒を戻す領域を変更させることがで
きる。更に、バルブの開口度を調整して各領域へ戻す分
配率を変化させることもできる。バルブの開閉や開口度
の調整は、各操作毎に固定して行っても、操作中に変動
させてもよい。これらのバルブ調整と、反応塔4内の反
応条件(反応温度、濃度等)の調整とを適切に組み合わ
せると、反応率を向上させることができる。
In the embodiment shown in FIG. 1, an upper pipe 21 for returning to the top region of the reaction tower 4 and two pipes 22 and 23 for returning to the middle and lower regions are provided. The upper pipe 21 for returning to the region may not be provided, and only one pipe or a plurality of pipes for returning to the region other than the tower top region may be provided. Further, it is possible to arrange a relatively large number of pipes in advance, provide valves in the middle of each of these pipes, and actually open or close each valve to increase or decrease the number of pipes or change the region for returning the recycled solvent. Further, the opening ratio of the valve can be adjusted to change the distribution ratio of returning to each region. The opening and closing of the valve and the adjustment of the degree of opening may be fixed for each operation or may be changed during the operation. The reaction rate can be improved by appropriately combining these valve adjustments with the adjustment of the reaction conditions (reaction temperature, concentration, etc.) in the reaction tower 4.

【0012】ドレイン10に設けたバルブ16を調整し
て、イソシアネート化合物及び溶媒全部を反応塔4へ戻
すか、或いはその一部を反応塔4へ戻し、残りをドレイ
ン10から系外へ取り出すことができる。反応塔4へ戻
す量は、反応塔4内の運転条件によって適宜選択する。
また、蒸留塔6の温度条件を調整することによって蒸留
塔6の塔頂からの留出液量を変えることも可能である。
By adjusting the valve 16 provided in the drain 10, it is possible to return all of the isocyanate compound and the solvent to the reaction tower 4, or to return a part thereof to the reaction tower 4 and take the rest out of the system from the drain 10. it can. The amount returned to the reaction tower 4 is appropriately selected depending on the operating conditions in the reaction tower 4.
Further, the amount of distillate from the top of the distillation column 6 can be changed by adjusting the temperature condition of the distillation column 6.

【0013】本発明は、従来法と較べて蒸留塔から反応
塔への溶媒リサイクルの態様が前記のように異なるのみ
で、その他は従来法と実質的に異なる点はないので、本
発明で使用するカルバミン酸エステル化合物、不活性溶
媒、反応塔、蒸留塔、反応条件、副生成物の除去方法、
生成物の取得方法などは従来のものと同じでよい。所望
により、窒素、ヘリウム等の不活性ガス、或いは反応で
使用する溶媒の蒸気をキャリアーガスとして反応器に導
入してもよい。
Compared with the conventional method, the present invention is different from the conventional method only in the aspect of solvent recycling from the distillation column to the reaction column, and is otherwise substantially the same as the conventional method. Therefore, it is used in the present invention. Carbamic acid ester compound, inert solvent, reaction column, distillation column, reaction conditions, by-product removal method,
The method for obtaining the product may be the same as the conventional one. If desired, an inert gas such as nitrogen or helium, or vapor of a solvent used in the reaction may be introduced into the reactor as a carrier gas.

【0014】以上、本発明をカルバミン酸エステル化合
物の連続的熱分解反応によるイソシアネート化合物の製
造装置及び方法に関して説明したが、本発明は特定の出
発化合物の熱分解反応に限定されるものではなく、下記
の可逆的熱分解反応に一般的に適用することができるこ
とは明らかである。
Although the present invention has been described with reference to the apparatus and method for producing an isocyanate compound by the continuous thermal decomposition reaction of a carbamic acid ester compound, the present invention is not limited to the specific thermal decomposition reaction of a starting compound. It is obvious that it can be generally applied to the reversible thermal decomposition reaction described below.

【0015】[0015]

【化2】 [Chemical 2]

【0016】[0016]

【実施例】以下、実施例によって本発明を更に具体的に
説明するが、これらは本発明の範囲を限定するものでは
ない。以下の実施例において、ウレタン転化率及びイソ
シアネート選択率を以下の通りに求めた。まず、ウレタ
ン基及びイソシアネート基のモル数を下記の通りに計算
した。ここで、メチレンジフェニルジカーバメート、モ
ノイソシアネートカーバメート及びメチレンジフェニル
ジイソシアネートのモル数をそれぞれ〔MDU〕、〔M
IC〕及び〔MDI〕で表す。 ウレタン基のモル数=2×〔MDU〕+〔MIC〕 イソシアネート基のモル数=〔MIC〕+2×〔MD
I〕 続いて、ウレタン基及びイソシアネート基のモル数か
ら、下記の定義に従ってウレタン転化率及びイソシアネ
ート選択率を計算した。 ウレタン基の転化率=〔(仕込ウレタン基−残存ウレタ
ン基)/仕込ウレタン基〕×100 イソシアネート基の選択率=(生成イソシアネート基/
転化ウレタン基)×100
EXAMPLES The present invention will be described in more detail below with reference to examples, but these do not limit the scope of the present invention. In the following examples, urethane conversion and isocyanate selectivity were determined as follows. First, the number of moles of urethane group and isocyanate group was calculated as follows. Here, the number of moles of methylene diphenyl dicarbamate, monoisocyanate carbamate and methylene diphenyl diisocyanate are [MDU] and [M
IC] and [MDI]. Number of moles of urethane group = 2 × [MDU] + [MIC] Number of moles of isocyanate group = [MIC] + 2 × [MD
I] Subsequently, the urethane conversion rate and the isocyanate selectivity were calculated according to the following definitions from the number of moles of the urethane group and the isocyanate group. Conversion rate of urethane group = [(charged urethane group-remaining urethane group) / charged urethane group] x 100 Isocyanate group selectivity = (generated isocyanate group /
Converted urethane group) x 100

【0017】実施例1 図1に示す充填塔型反応装置を用いて試験を行った。反
応塔4は直径2.8cm及び高さ1mのステンレススチー
ル製であり、内部にヘリパックNo. 2(東京特殊金網
製)を充填した。蒸留塔6としては、内径3cm及び高さ
15cmのステンレススチール製円筒を用い、蒸留塔6の
下部には凝縮した溶媒を反応塔4に戻すためのパイプ2
1,22,23を、反応塔4の上部と、上部からそれぞ
れ30cm及び60cmの場所に設置し、各パイプにはバル
ブ31,32,33を設け、それらの操作によりパイプ
の開閉及び流量調整ができるようにした。バルブ31及
び33を明け、バルブ32を閉じ、還流液が反応塔の塔
頂と塔頂から60cmの2箇所に戻るようにした。
Example 1 A test was conducted using a packed tower reactor shown in FIG. The reaction tower 4 was made of stainless steel having a diameter of 2.8 cm and a height of 1 m, and was filled with Helipack No. 2 (made by Tokyo Special Wire Mesh) inside. As the distillation column 6, a stainless steel cylinder having an inner diameter of 3 cm and a height of 15 cm is used, and a pipe 2 for returning the condensed solvent to the reaction column 4 is provided below the distillation column 6.
1, 22 and 23 are installed at the upper part of the reaction tower 4 and at positions of 30 cm and 60 cm respectively from the upper part, and valves 31, 32 and 33 are provided on each pipe, and opening and closing of the pipe and flow rate adjustment by these operations. I made it possible. The valves 31 and 33 were opened, the valve 32 was closed, and the reflux liquid was allowed to return to the top of the reaction column and two points 60 cm from the top of the column.

【0018】まず、原料容器1から溶媒としてo−ジク
ロロベンゼン(以後ODCBと称す)を5ml/min の量
で反応塔4に供給し、外部ヒーター(図示せず)から約
200Wで加熱して反応塔内温度を約280℃に保ち、
更に保圧弁12により反応塔内圧力を約6kg/cm2 に保
ち、約30分間溶媒を還流させた。この時バルブ31及
び33の開度を調整することによって、各パイプ21及
び23を通って反応塔4に戻る液流量をそれぞれ約15
ml/min に設定した。また、反応塔4の上部に設置した
蒸留塔6を室温で空冷し、蒸留塔6の上部からの流出液
量が1ml/min以内になるようにした。反応塔4内の温
度分布が一定になった後、原料容器1からの供給液を、
メチレンジフェニレンジカーバメート(MDU)3.7
重量%を含有したODCB溶液に切り替え、その溶液を
5ml/min の量で反応塔4に供給し、熱分解反応を開始
させた。
First, o-dichlorobenzene (hereinafter referred to as ODCB) as a solvent was supplied from the raw material container 1 to the reaction column 4 at a rate of 5 ml / min, and heated by an external heater (not shown) at about 200 W for reaction. Keep the temperature in the tower at about 280 ℃,
Further, the pressure inside the reaction tower was kept at about 6 kg / cm 2 by the pressure holding valve 12, and the solvent was refluxed for about 30 minutes. At this time, by adjusting the openings of the valves 31 and 33, the liquid flow rate returning to the reaction tower 4 through the pipes 21 and 23 is about 15 respectively.
It was set to ml / min. The distillation column 6 installed on the upper part of the reaction column 4 was air-cooled at room temperature so that the amount of effluent from the upper part of the distillation column 6 was within 1 ml / min. After the temperature distribution in the reaction tower 4 becomes constant, the feed liquid from the raw material container 1 is
Methylene diphenylene dicarbamate (MDU) 3.7
The solution was switched to an ODCB solution containing wt%, and the solution was supplied to the reaction tower 4 at an amount of 5 ml / min to start the thermal decomposition reaction.

【0019】反応開始から20分経過した後、反応塔4
内の温度分布が安定してから反応塔4の下部に設けたサ
ンプリング管13より試料を採取し、液体クロマトグラ
フィー(GPC)により生成物の分析を行った。この結
果、ウレタン転化率100%、イソシアネート選択率9
9.7%であった。
After 20 minutes from the start of the reaction, the reaction tower 4
After the temperature distribution inside was stabilized, a sample was taken from the sampling tube 13 provided in the lower part of the reaction tower 4, and the product was analyzed by liquid chromatography (GPC). As a result, urethane conversion is 100% and isocyanate selectivity is 9
It was 9.7%.

【0020】実施例2 実施例1と同様に図1に示す装置を用いたが、バルブ3
1,32,33全部を開け、還流液が反応塔4の塔頂、
塔頂から30cm及び60cmの3箇所にそれぞれ約10ml
/min づつ均等に戻るようにした。蒸留塔6を室温で空
冷し、この時の蒸留塔6の塔頂からの流出液量は約1ml
/min であった。ついで実施例1と同様の操作を行い、
試料を採取して分析したところ、ウレタン転化率99.
3%、イソシアネート選択率99.6%であった。
Example 2 The apparatus shown in FIG. 1 was used as in Example 1, except that the valve 3
1, 32, 33 are all opened, and the reflux liquid is the top of the reaction tower 4,
About 10 ml at each of 30 cm and 60 cm from the top of the tower
I tried to return evenly every minute. The distillation column 6 was air-cooled at room temperature, and the amount of effluent from the top of the distillation column 6 at this time was about 1 ml.
/ Min. Then, the same operation as in Example 1 is performed,
When a sample was taken and analyzed, the urethane conversion rate was 99.
It was 3% and the isocyanate selectivity was 99.6%.

【0021】実施例3 実施例1と同様に図1に示す装置を用いたが、バルブ3
2を完全に閉じ、バルブ31,33の開度を調整して、
還流液が反応塔4の塔頂及び塔頂から60cmの2箇所に
それぞれ約10ml/min 及び約20ml/min と異なる量
で戻るようにした。蒸留塔6を空冷し、蒸留塔6の塔頂
からの留出液量が約1ml/min となるようにした。つい
で実施例1と同様の操作を行い、試料を採取して分析し
たところ、ウレタン転化率100%、イソシアネート選
択率99.2%であった。
Example 3 The apparatus shown in FIG. 1 was used as in Example 1, except that the valve 3 was used.
2 is completely closed and the opening degree of the valves 31 and 33 is adjusted,
The reflux liquid was made to return to the top of the reaction tower 4 and two points 60 cm from the top of the reaction tower 4 at different amounts of about 10 ml / min and about 20 ml / min, respectively. The distillation column 6 was air-cooled so that the amount of distillate from the top of the distillation column 6 was about 1 ml / min. Then, the same operation as in Example 1 was performed, and a sample was collected and analyzed, and it was found that the urethane conversion was 100% and the isocyanate selectivity was 99.2%.

【0022】実施例4 実施例1と同様に図1に示す装置を用いたが、バルブ3
2を完全に閉じ、バルブ31,33の開度を調整して、
還流液が反応塔4の塔頂及び塔頂から60cmの2箇所に
それぞれ約12ml/min づつの量で戻るようにした。蒸
留塔6をガラスウールで保温し、蒸留塔6の塔頂からの
留出液量が5ml/min となるようにした。ついで実施例
1と同様の操作を行い、試料を採取して分析したとこ
ろ、ウレタン転化率100%、イソシアネート選択率9
9.0%であった。
Example 4 The apparatus shown in FIG. 1 was used as in Example 1, except that the valve 3
2 is completely closed and the opening degree of the valves 31 and 33 is adjusted,
The reflux liquid was made to return to the top of the reaction tower 4 and two points 60 cm from the top of the reaction tower at a rate of about 12 ml / min each. The distillation column 6 was kept warm with glass wool so that the amount of distillate from the top of the distillation column 6 would be 5 ml / min. Then, the same operation as in Example 1 was performed, and a sample was collected and analyzed. As a result, the urethane conversion was 100% and the isocyanate selectivity was 9%.
It was 9.0%.

【0023】比較例1 実施例1〜4で用いた図1に示す装置を使用し、蒸留塔
6を室温に保温し、バルブ31のみを開け、バルブ3
2,33を完全に閉じ、還流液が反応塔4の塔頂のみに
戻るようにした(即ち、図2に示す装置によるものと同
じ運転をした)。この時還流した液流量は30ml/min
であった。また蒸留塔6を空冷し、この時の蒸留塔6の
塔頂からの流出液量は約1ml/min であった。ついで実
施例1と同様の操作を行い、試料を採取して分析したと
ころウレタン転化率95.8%、イソシアネート選択率
99.0%であった。
Comparative Example 1 Using the apparatus shown in FIG. 1 used in Examples 1 to 4, the distillation column 6 was kept at room temperature, only the valve 31 was opened, and the valve 3 was used.
2, 33 were completely closed, and the reflux liquid was returned only to the top of the reaction column 4 (that is, the same operation as that by the apparatus shown in FIG. 2 was performed). At this time, the flow rate of the liquid refluxed was 30 ml / min.
Met. Further, the distillation column 6 was air-cooled, and the amount of effluent from the top of the distillation column 6 at this time was about 1 ml / min. Then, the same operation as in Example 1 was performed, and a sample was collected and analyzed, and it was found that the urethane conversion was 95.8% and the isocyanate selectivity was 99.0%.

【0024】[0024]

【発明の効果】本発明では、蒸留塔からのリサイクル溶
媒を反応塔の頂塔以外の領域、即ち中段ないし下段に、
場合により適当に分配して戻すので、反応塔下部の溶媒
量の減少が解消され、カルバミン酸エステル化合物から
イソシアネート化合物への正反応が促進され、イソシア
ネート化合物等からカルバミン酸エステル化合物への逆
反応やイソシアネート化合物相互間等の副反応を抑制す
ることができ、高収率でイソシアネート化合物を製造す
ることができる。
INDUSTRIAL APPLICABILITY In the present invention, the recycled solvent from the distillation column is introduced into a region other than the top column of the reaction column, that is, in the middle or lower stage.
Depending on the case, it is appropriately distributed and returned, so that the decrease in the amount of solvent in the lower part of the reaction column is eliminated, the positive reaction from the carbamic acid ester compound to the isocyanate compound is promoted, and the reverse reaction from the isocyanate compound etc. to the carbamic acid ester compound is Side reactions, such as between isocyanate compounds, can be suppressed, and the isocyanate compound can be produced in high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置を模式的に示す説明図である。FIG. 1 is an explanatory view schematically showing a device of the present invention.

【図2】従来法による装置を模式的に示す説明図であ
る。
FIG. 2 is an explanatory view schematically showing a device according to a conventional method.

【符号の説明】[Explanation of symbols]

1 原料容器 4 反応塔 6 蒸留塔 8 アルコール凝縮器 21,22,23 パイプ 31,32,33 バルブ 1 Raw Material Container 4 Reaction Tower 6 Distillation Tower 8 Alcohol Condenser 21, 22, 23 Pipe 31, 32, 33 Valve

フロントページの続き (72)発明者 水口 雅嗣 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 八谷 哲男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 土屋 博嗣 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 藤村 克範 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Masatsugu Mizuguchi Marunouchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Tube Co., Ltd. (72) Inventor Tetsuo Yatani Marunouchi 1-2-2 Nihon Steel Pipe Co., Ltd. Company (72) Inventor Hirotsugu Tsuchiya 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Katsunori Fujimura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(1)不活性溶媒の沸点にてカルバミン酸
エステル化合物の熱分解反応を連続的に行うことのでき
る塔型反応器と、(2)その塔型反応器に連絡する蒸留
塔と、(3)前記塔型反応器から前記蒸留塔へイソシア
ネート化合物、アルコール化合物及び溶媒を送ることの
できる手段と、(4)前記蒸留塔からアルコール化合物
を主成分とする留分を系外へ除去することのできる手段
とを有する、イソシアネート化合物の連続的製造装置に
おいて、前記蒸留塔からイソシアネート化合物及び溶媒
を主成分とする留分の少なくとも1部を前記塔型反応器
の塔頂領域以外の少なくとも1つの領域へ戻すことので
きる手段を備えることを特徴とする、前記の連続的製造
装置。
1. A tower reactor capable of continuously carrying out a thermal decomposition reaction of a carbamic acid ester compound at a boiling point of an inert solvent, and (2) a distillation tower connected to the tower reactor. (3) Means capable of sending an isocyanate compound, an alcohol compound and a solvent from the tower reactor to the distillation tower, and (4) a fraction containing an alcohol compound as a main component from the distillation tower out of the system. In the continuous apparatus for producing an isocyanate compound having means capable of removing, at least a part of a fraction containing the isocyanate compound and a solvent as a main component from the distillation column except for the top region of the column reactor. A continuous manufacturing device as described above, characterized in that it comprises means capable of returning to at least one area.
【請求項2】 塔型反応器を利用してカルバミン酸エス
テル化合物を不活性溶媒の沸点にて熱分解してイソシア
ネート化合物を連続的に製造する方法において、前記塔
型反応器からイソシアネート化合物、アルコール化合物
及び溶媒を前記塔型反応器に連絡する蒸留塔に導き、そ
の蒸留塔からアルコール化合物を主成分とする留分を系
外に除去し、イソシアネート化合物及び溶媒を主成分と
する留分の少なくとも1部を前記蒸留塔から前記塔型反
応器の塔頂領域以外の少なくとも1つの領域へ戻すこと
を特徴とする、イソシアネート化合物の連続的製造方
法。
2. A method for continuously producing an isocyanate compound by thermally decomposing a carbamic acid ester compound at the boiling point of an inert solvent using a tower reactor, wherein an isocyanate compound and an alcohol are produced from the tower reactor. The compound and the solvent are introduced into a distillation column that communicates with the column-type reactor, a fraction containing an alcohol compound as a main component is removed from the distillation column to the outside of the system, and at least a fraction containing an isocyanate compound and a solvent as a main component is removed. A continuous process for producing an isocyanate compound, characterized in that 1 part is returned from the distillation column to at least one region other than the top region of the column reactor.
JP35123091A 1991-12-13 1991-12-13 Device and method continuously producing isocyanate compound Pending JPH0649016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35123091A JPH0649016A (en) 1991-12-13 1991-12-13 Device and method continuously producing isocyanate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35123091A JPH0649016A (en) 1991-12-13 1991-12-13 Device and method continuously producing isocyanate compound

Publications (1)

Publication Number Publication Date
JPH0649016A true JPH0649016A (en) 1994-02-22

Family

ID=18415932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35123091A Pending JPH0649016A (en) 1991-12-13 1991-12-13 Device and method continuously producing isocyanate compound

Country Status (1)

Country Link
JP (1) JPH0649016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071037A1 (en) 2008-12-19 2010-06-24 宇部興産株式会社 Conjugated diene polymer manufacturing method, polybutadiene, and rubber composition utilizing the same
WO2016156188A1 (en) 2015-03-31 2016-10-06 Basf Se Process for preparing isocyanates by carbamate dissociation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071037A1 (en) 2008-12-19 2010-06-24 宇部興産株式会社 Conjugated diene polymer manufacturing method, polybutadiene, and rubber composition utilizing the same
WO2016156188A1 (en) 2015-03-31 2016-10-06 Basf Se Process for preparing isocyanates by carbamate dissociation

Similar Documents

Publication Publication Date Title
EP0355443B1 (en) Cyclic process for the preparation of (cyclo)aliphatic diisocyanates
US4208347A (en) Process for the synthesis of urea
EP3743404A1 (en) Process for the preparation of isocyanates
JP4273531B2 (en) Method for producing isocyanatoalkyl (meth) acrylate
KR100218656B1 (en) Reactor and process for thermal clearage of carbonic acid esters
JPH0672982A (en) Preparation of alkyl-mono- and -di-isocyanates
KR100670885B1 (en) Process for the Preparation of Organic Polyisocyanates
US6680407B2 (en) Installation and process for the preparation of urea
EP0611753A1 (en) Improved process for urea production involving a carbon dioxide stripping step
EP0796244B2 (en) Process and plant for the production of urea with high conversion yield and low energy consumption
JPH0649016A (en) Device and method continuously producing isocyanate compound
JP2708709B2 (en) Method for producing organic isocyanate
JPH05194351A (en) Apparatus for continuously producing isocyanate compound and method therefor
US5646328A (en) Process for removing by-products from diurethanes
JPS59108754A (en) Thermal cracking of aromatic urethane
JPH11343276A (en) New urethane compound and production of multifunctional aliphatic diisocyanate
EP3459930A1 (en) Multistep process for the preparation of hexamethylene diisocyanate, pentamethylene diisocyanate or toluene diisocyanate
JPH02250857A (en) Production of polyisocyanate
US3499021A (en) Toluene diisocyanate process
US6750365B2 (en) Thermal dissociation of allophanates
JPH04275269A (en) Continuous production of isocyanate
EP0822181B1 (en) Process and plant for the production of urea with high conversion yield and low energy consumption
JPH01203356A (en) Production of polyisocyanate
JPH02212465A (en) Production of polyisocyanate
JPH01207261A (en) Production of polyisocyanate