JPH0648975Y2 - Magnetostatic wave delay linear oscillator - Google Patents

Magnetostatic wave delay linear oscillator

Info

Publication number
JPH0648975Y2
JPH0648975Y2 JP6217288U JP6217288U JPH0648975Y2 JP H0648975 Y2 JPH0648975 Y2 JP H0648975Y2 JP 6217288 U JP6217288 U JP 6217288U JP 6217288 U JP6217288 U JP 6217288U JP H0648975 Y2 JPH0648975 Y2 JP H0648975Y2
Authority
JP
Japan
Prior art keywords
magnetostatic wave
wave delay
delay element
amplifier
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6217288U
Other languages
Japanese (ja)
Other versions
JPH01171111U (en
Inventor
弦 上原
久雄 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP6217288U priority Critical patent/JPH0648975Y2/en
Publication of JPH01171111U publication Critical patent/JPH01171111U/ja
Application granted granted Critical
Publication of JPH0648975Y2 publication Critical patent/JPH0648975Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は例えばVCO(voltage−controlled oscillator:
電圧制御型発振器)等に使用される静磁波遅延線型発振
器(Magnetostatic wave Delay Line Oscillator)に関
し,SSB(single sideband)位相ノイズの改善をはかっ
た静磁波遅延線型発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is, for example, a VCO (voltage-controlled oscillator:
The present invention relates to magnetostatic wave delay line oscillators (voltage controlled oscillators) and the like, and relates to magnetostatic wave delay line oscillators with SSB (single sideband) phase noise improved.

<従来の技術> まず,静磁波遅延素子について簡単に説明する。一様磁
界中に金属導体からなる2本のトランスジューサと磁性
体とを近接して配置し,この2本のトランスジューサの
一方に高周波電流を流すとその近くの磁性体中のスピン
が揺ぎ,その揺ぎが静磁波となって伝搬し,他方のトラ
ンスジューサにはスピンの揺ぎに起因する高周波の誘電
電流が流れる。スピンの揺ぎの伝搬速度は磁界の強さに
応じて変化するので遅延時間の可変な素子となる。
<Prior Art> First, a magnetostatic wave delay element will be briefly described. When two transducers made of a metal conductor and a magnetic material are placed close to each other in a uniform magnetic field, and a high-frequency current is passed through one of the two transducers, spins in the magnetic material near the transducer fluctuate. The fluctuation propagates as a magnetostatic wave and propagates, and a high-frequency dielectric current due to the fluctuation of the spin flows in the other transducer. Since the propagation speed of spin fluctuations changes according to the strength of the magnetic field, the device has a variable delay time.

第3図は上記静磁波遅延素子に図示しない磁界印加手段
により磁界を印加し,ループ中を流れる周波数信号をカ
プラを介してスペクトラムアナライザ内に取込んで発振
周波数特性を測定している状態を示す構成図であり,1は
静磁波遅延素子,2は増幅器,3はカプラ,4はスペクトラム
アナライザである。これらはループ状に接続され印加し
た磁界に応じて発振周波数が変化する。
FIG. 3 shows a state in which a magnetic field is applied to the magnetostatic wave delay element by a magnetic field applying means (not shown), the frequency signal flowing in the loop is taken into the spectrum analyzer through the coupler, and the oscillation frequency characteristic is measured. 1 is a magnetostatic wave delay element, 2 is an amplifier, 3 is a coupler, and 4 is a spectrum analyzer. These are connected in a loop and the oscillation frequency changes according to the applied magnetic field.

第4図は上記構成の発振器に一定の磁界を印加したとき
に発振する周波数のスペクトラムを示している。この図
によればfoの周波数がパワーのピーク(Ps)となり,こ
の前後の周波数はなだらかにパワーが小さくなってい
る。全体の信号のトータルパワーとピークから離れたあ
る周波数のパワー密度の比(実用上はピーク周波数のパ
ワーとその前後の周波数のパワー…図ではfoの周波数の
パワーPsとfoからfm離れた周波数のパワーの比Pssb/P
s)をSSB位相ノイズ(fm)と呼んでいるがこの比は小さ
い程望ましい。
FIG. 4 shows a spectrum of frequencies oscillated when a constant magnetic field is applied to the oscillator having the above-mentioned configuration. According to this figure, the frequency of fo is the peak of power (Ps), and the power before and after this is gently reduced. The ratio of the total power of the entire signal and the power density of a certain frequency away from the peak (in practice, the power of the peak frequency and the power of the frequencies before and after it ... In the figure, the power Ps of the frequency fo and the frequency fm away from fo Power ratio Pssb / P
s) is called SSB phase noise (fm), but the smaller the ratio, the better.

SSB位相ノイズ(fm)は次式により計算することが出来
る。
The SSB phase noise (fm) can be calculated by the following formula.

L(fm)=−177+F−Pc −20log(2π・τg・fm) [dBc/Hz] … ここで, F;アンプの雑音指数[dB] Pc;アンプの入力パワー(静磁波遅延素子の出力パワ
ー) …[dBm] Pc=Pin−l Pin=静磁波遅延素子の入力パワー[dBm] l=静磁波遅延素子でのロス [dB] τg;静磁波遅延素子での群遅延時間(エネルギーが伝わ
る速度) …[ns] fm;中心周波数からずれた周波数 なお,上述の式はProc.1985 Ultrasonics Sympo.,P16
3〜168に記載された K.W.Chang,W.Isak,Kunz等の “Phase Noise Characteristics of MSW Device"に示された式 l(fm)=−177+logF−10LogPm−20Log(2πτ・f
m)をアレンジしたものである。
L (fm) = − 177 + F−Pc −20log (2π · τg · fm) [dBc / Hz]… where F; amplifier noise figure [dB] Pc; amplifier input power (static wave delay element output power) )… [DBm] Pc = Pin-l Pin = Input power of magnetostatic wave delay element [dBm] l = Loss in magnetostatic wave delay element [dB] τg; Group delay time in magnetostatic wave delay element (speed at which energy is transmitted) )… [Ns] fm; Frequency deviated from the center frequency The above equation is Proc.1985 Ultrasonics Sympo., P16
The formula shown in “Phase Noise Characteristics of MSW Device” by KW Chang, W. Isak, Kunz and others described in 3 to 168 l (fm) = − 177 + logF−10LogPm−20Log (2πτ ・ f
m) is an arrangement.

静磁波遅延素子でのロスlは l=76.4×10-3・ΔH・τg … となることが知られ(1988年2月に発行された(Proc.I
EEE,76,No2,P171−187…W.Isak“Magnetostatic Wave T
echnology:A Review")ている。
It is known that the loss l in the magnetostatic wave delay element is 1 = 76.4 × 10 -3 · ΔH · τg (issued in February 1988 (Proc.I
EEE, 76, No2, P171−187 ... W. Isak “Magnetostatic Wave T
echnology: A Review ").

従って L(fm)=−177+F−Pin +76.4×10-3・ΔH・τg −20log(2π・τg・fm) … となる。Therefore, L (fm) = − 177 + F−Pin + 76.4 × 10 −3 · ΔH · τg −20log (2π · τg · fm).

ΔH=静磁波遅延素子に使われる磁性体の磁気共鳴の半
値幅 <考案が解決しようとする課題> 上式によれば76.4×10-3・ΔH・τgの項はτgを大き
くすると大きくなり,−20log(2π・τg・fm)の項
はτgを大きくすると小さくなる。従って,式からSS
B位相ノイズはτgに対して最小値を持つことが分る。
即ち,F,Pin,ΔHなどのパラメータが与えれると,τg
を色々変えてやってもL(fm)はある値以下にすること
は出来ないという課題がある。
ΔH = full width at half maximum of magnetic resonance of magnetic material used in magnetostatic wave delay element <Problem to be solved by the invention> According to the above equation, the term of 76.4 × 10 -3 · ΔH · τg increases as τg increases, The term −20log (2π · τg · fm) becomes smaller as τg becomes larger. Therefore, from the expression SS
It can be seen that the B phase noise has a minimum value for τg.
That is, given parameters such as F, Pin, ΔH, τg
There is a problem that L (fm) cannot be made lower than a certain value even if various values are changed.

第5図は中心周波数2GHzとし,この周波数から10KHzず
れた位置でのSSB位相ノイズ(即ち,のL(fm)をL
(10KHz)とし,磁界の強さΔHを0.85 Oe,アンプの雑
音指数を2.5dBとし,静磁波遅延素子への入力パワー(P
in)をパラメータとしてSSB位相ノイズと郡遅延時間の
関係を示すものである。図によれば例えばPin=−5dBm
に対してはSSB位相ノイズは−118dBc/Hz]よりは小さく
できず,Pin=+20dBmに対しては−143[dBc/Hz]よりは
小さく出来ない。
In Fig. 5, the center frequency is 2 GHz, and the SSB phase noise (that is, L (fm) of L at the position deviated from this frequency by 10 KHz is L
(10 KHz), the magnetic field strength ΔH is 0.85 Oe, the noise figure of the amplifier is 2.5 dB, and the input power to the magnetostatic wave delay element (P
in) is used as a parameter to show the relationship between SSB phase noise and group delay time. According to the figure, for example Pin = -5 dBm
, SSB phase noise cannot be smaller than -118 dBc / Hz], and Pin = +20 dBm cannot be smaller than -143 [dBc / Hz].

本考案は上記従来技術の課題に鑑みて成されたもので,
静磁波遅延素子と増幅器を複数段直列に接続することに
よりSSBノイズが小となる静磁波遅延線型発振器を実現
することを目的とする。
The present invention has been made in view of the above problems of the prior art.
It is an object of the present invention to realize a magnetostatic wave delay linear oscillator with small SSB noise by connecting magnetostatic wave delay elements and amplifiers in series in multiple stages.

<問題点を解決するための手段> 上記問題点を解決するための本考案の構成は,一様な磁
界中に配置された複数個の静磁波遅延素子と該静磁波遅
延素子からの出力を増幅する複数の増幅器と,一つのカ
プラからなり, 前記静磁波遅延素子の出力を増幅器に入力し,その増幅
器の出力を次段の静磁波遅延素子の入力側に接続し,更
にその静磁波遅延素子の出力を次段の増幅器に入力する
ことを繰り返してループ状にn段直列に接続し,前記静
磁波遅延素子と増幅器で構成されるループ中の前記増幅
器の出力端子と静磁波遅延素子の入力側との間に前記カ
プラを配置して前記ループ中の周波数発振信号を取り出
すように構成し,前記静磁波遅延素子の郡遅延時間を最
小のSSB位相ノイズとなる様に設定することによりSSB位
相ノイズを小さくしたものである。
<Means for Solving the Problems> The configuration of the present invention for solving the above problems includes a plurality of magnetostatic wave delay elements arranged in a uniform magnetic field and outputs from the magnetostatic wave delay elements. It is composed of a plurality of amplifiers for amplifying and one coupler, the output of the magnetostatic wave delay element is input to the amplifier, the output of the amplifier is connected to the input side of the magnetostatic wave delay element of the next stage, and the magnetostatic wave delay By repeatedly inputting the output of the element to the amplifier of the next stage and connecting in series in a loop form in n stages, the output terminal of the amplifier and the magnetostatic wave delay element in the loop composed of the magnetostatic wave delay element and the amplifier The coupler is placed between the input side and the frequency oscillation signal in the loop so as to extract the frequency oscillation signal, and the group delay time of the magnetostatic wave delay element is set so as to obtain the minimum SSB phase noise. Phase noise is reduced It is.

<実施例> 以下,本考案を図面に基づいて説明する。第1図は本考
案の静磁波遅延線型発振器の一実施例を示す構成図であ
る。図において第3図と同一要素には同一符号を付して
重複する説明は省略するが,本実施例においては基板上
に静磁波遅延素子1a,1b,1cと増幅器2a,2b,2cが一つ置き
に配置され,静磁波遅延素子の出力トランスジューサ側
が増幅器の入力端子側に接続されこの増幅器の出力側が
静磁波遅延素子の入力トランスジューサ側にループ状に
配線されている。
<Example> Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a magnetostatic wave delay linear oscillator of the present invention. In the figure, the same elements as those in FIG. 3 are designated by the same reference numerals and the duplicate description is omitted, but in the present embodiment, the magnetostatic wave delay elements 1a, 1b, 1c and the amplifiers 2a, 2b, 2c are integrated on the substrate. The output side of the magnetostatic wave delay element is connected to the input terminal side of the amplifier, and the output side of this amplifier is wired in a loop to the input transducer side of the magnetostatic wave delay element.

カプラ3はループを構成する配線の途中に配置され,ル
ープ中を流れる周波数発振信号を取出す。
The coupler 3 is arranged in the middle of the wiring forming the loop and takes out the frequency oscillation signal flowing in the loop.

上記構成の周波数発振器において,中心周波数から10KH
zずれた位置の位相ノイズは式により次のように表わ
すことが出来る。
In the frequency oscillator with the above configuration, 10KH from the center frequency
The phase noise at the z-shifted position can be expressed by the following equation.

L(10KHz)=−177+F−Pc −20log(2π・3τg・10KHz) … 即ち,静磁波遅延素子と増幅器の組み合わせを第1図に
示すような3組とすれば−20log〜の項に含まれるτg
が3τgとなるのでSSB位相ノイズ(L)が小さくな
る。
L (10KHz) = − 177 + F−Pc −20log (2π · 3τg · 10KHz) That is, if the combination of the magnetostatic wave delay element and the amplifier is three sets as shown in FIG. τg
Is 3τg, the SSB phase noise (L) is small.

また,アンプの入力パワーPcは Pc=Pin−l Pin−76.4×10-3・ΔH・τg であるので, L(10KHz)=−177+F−Pin+76.4×10-3・ΔH・τ
g −20log(2π・3τg・10KHz) … となり,一般化してn個の増幅器と静磁波遅延線をつな
いだときは L(10KHz)=−177+F−Pin+76.4×10-3・ΔH・τ
g −20log(2π・nτg・10KHz) 即ち,静磁波遅延素子と増幅器の組み合わせをn組とす
れば−20log〜の項に含まれるτgがnτgとなるので
Lが小さくなる。
Moreover, since the input power Pc of the amplifier is Pc = Pin−1 Pin−76.4 × 10 −3 · ΔH · τg, L (10KHz) = − 177 + F−Pin + 76.4 × 10 −3 · ΔH · τ
g −20log (2π · 3τg · 10KHz) becomes, and when generalized to connect n amplifiers and magnetostatic wave delay line, L (10KHz) = -177 + F-Pin + 76.4 × 10 -3 · ΔH · τ
g −20log (2π · nτg · 10KHz) That is, if the combination of the magnetostatic wave delay element and the amplifier is n sets, τg included in the term of −20log to becomes nτg, so that L becomes small.

従ってτgを図5で示した様な最小のSSB位相ノイズと
なる様に設定した上でnを増やして行くと位相差ノイズ
L(10KHz)を小さくすることが出来る。
Therefore, the phase difference noise L (10 KHz) can be reduced by setting τg to the minimum SSB phase noise as shown in FIG. 5 and then increasing n.

第2図(イ),(ロ)は他の構成例を示す斜視図で,こ
の例では例えばシリコンやサファイア基板上に公知の半
導体技術やフォトリソグラフィの技術を用いて静磁波遅
延素子,増幅器,これらを結ぶ結線およびカプラを形成
し,この基板を積層してn段の発振器を形成したもので
ある。この様な構成によれば小形化が可能となる。
2 (a) and 2 (b) are perspective views showing another configuration example. In this example, a magnetostatic wave delay element, an amplifier, is formed on a silicon or sapphire substrate by using a known semiconductor technique or photolithography technique. A wiring and a coupler connecting these are formed, and the substrates are laminated to form an n-stage oscillator. With such a configuration, downsizing is possible.

<考案の効果> 以上述べたように本考案によれば,一様な磁界中に配置
された複数個の静磁波遅延素子と該静磁波遅延素子から
の出力を増幅する複数の増幅器と,一つのカプラからな
り, 前記静磁波遅延素子の出力を増幅器に入力し,その増幅
器の出力を次段の静磁波遅延素子の入力側に接続し,更
にその静磁波遅延素子の出力を次段の増幅器に入力する
ことを繰り返してループ状にn段直列に接続し,前記静
磁波遅延素子と増幅器で構成されるループ中の前記増幅
器の出力端子と静磁波遅延素子の入力側との間に前記カ
プラを配置して前記ループ中の周波数発振信号を取り出
すように構成し,前記静磁波遅延素子の郡遅延時間を最
小のSSB位相ノイズとなる様に設定したので,従来に比
較して位相ノイズの少ない静磁波遅延線型発振器を実現
することが出来る。
<Effects of the Invention> As described above, according to the present invention, a plurality of magnetostatic wave delay elements arranged in a uniform magnetic field and a plurality of amplifiers for amplifying the outputs from the magnetostatic wave delay elements, The output of the magnetostatic wave delay element is input to the amplifier, the output of the amplifier is connected to the input side of the magnetostatic wave delay element of the next stage, and the output of the magnetostatic wave delay element is further connected to the amplifier of the next stage. Is repeatedly connected to n stages in series in a loop form, and the coupler is provided between the output terminal of the amplifier and the input side of the magnetostatic wave delay element in the loop composed of the magnetostatic wave delay element and the amplifier. Is arranged so that the frequency oscillation signal in the loop is taken out and the group delay time of the magnetostatic wave delay element is set to be the minimum SSB phase noise. Implemented magnetostatic wave delay linear oscillator To it can be.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る静磁波遅延線型発振器の一実施例
を示す構成図,第2図は他の構成例を示す斜視図,第3
図は従来例を示す構成図,第4図はSSB位相ノイズの説
明図,第5図はSSB位相ノイズと郡遅延時間の関係を示
す図である。 1a〜1c…静磁波遅延素子,2a〜2c…増幅器,3…カプラ。
FIG. 1 is a block diagram showing an embodiment of a magnetostatic wave delay line oscillator according to the present invention, FIG. 2 is a perspective view showing another configuration example, and FIG.
FIG. 4 is a configuration diagram showing a conventional example, FIG. 4 is an explanatory diagram of SSB phase noise, and FIG. 5 is a diagram showing a relationship between SSB phase noise and group delay time. 1a to 1c ... Magnetostatic wave delay element, 2a to 2c ... Amplifier, 3 ... Coupler.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一様な磁界中に配置された複数個の静磁波
遅延素子と該静磁波遅延素子からの出力を増幅する複数
の増幅器と,一つのカプラからなり, 前記静磁波遅延素子の出力を増幅器に入力し,その増幅
器の出力を次段の静磁波遅延素子の入力側に接続し,更
にその静磁波遅延素子の出力を次段の増幅器に接続する
ことを繰り返してループ状にn段直列に接続し,前記静
磁波遅延素子と増幅器で構成されるループ中の前記増幅
器の出力端子と静磁波遅延素子の入力側との間に前記カ
プラを配置して前記ループ中の周波数発振信号を取り出
すように構成し,前記静磁波遅延素子の郡遅延時間を最
小のSSB位相ノイズとなる様に設定することによりSSB位
相ノイズを小さくしたことを特徴とする静磁波遅延線型
発振器。
1. A magnetostatic wave delay element comprising a plurality of magnetostatic wave delay elements arranged in a uniform magnetic field, a plurality of amplifiers for amplifying outputs from the magnetostatic wave delay elements, and a single coupler. The output is input to the amplifier, the output of the amplifier is connected to the input side of the magnetostatic wave delay element of the next stage, and the output of the magnetostatic wave delay element is connected to the amplifier of the next stage repeatedly to form n loops. Frequency oscillating signal in the loop by connecting the coupler between the output terminal of the amplifier and the input side of the magnetostatic wave delay element in the loop composed of the magnetostatic wave delay element and the amplifier connected in series. The magnetostatic wave delay linear oscillator is characterized in that the SSB phase noise is reduced by setting the group delay time of the magnetostatic wave delay element to be the minimum SSB phase noise.
JP6217288U 1988-05-13 1988-05-13 Magnetostatic wave delay linear oscillator Expired - Lifetime JPH0648975Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217288U JPH0648975Y2 (en) 1988-05-13 1988-05-13 Magnetostatic wave delay linear oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6217288U JPH0648975Y2 (en) 1988-05-13 1988-05-13 Magnetostatic wave delay linear oscillator

Publications (2)

Publication Number Publication Date
JPH01171111U JPH01171111U (en) 1989-12-04
JPH0648975Y2 true JPH0648975Y2 (en) 1994-12-12

Family

ID=31287804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217288U Expired - Lifetime JPH0648975Y2 (en) 1988-05-13 1988-05-13 Magnetostatic wave delay linear oscillator

Country Status (1)

Country Link
JP (1) JPH0648975Y2 (en)

Also Published As

Publication number Publication date
JPH01171111U (en) 1989-12-04

Similar Documents

Publication Publication Date Title
US4871984A (en) Surface acoustic wave oscillator
JPS5857804A (en) Push-pull microwave oscillator
US3855548A (en) Ultra high frequency single mode oscillation controlled by a surface acoustic wave crystal
US4325032A (en) PRF Stabilized surface acoustic wave oscillator
Avramov et al. Extremely low thermal noise floor, high power oscillators using surface transverse wave devices
US4760352A (en) Coupled resonator phase shift oscillator
JPH0648975Y2 (en) Magnetostatic wave delay linear oscillator
JPH05243984A (en) Phase synchronizing oscillator
Ishak et al. Tunable microwave resonators and oscillators using magnetostatic waves
US9270281B1 (en) Apparatuses and methods for tuning center frequencies
US6946921B1 (en) Method and apparatus for producing high-frequency oscillations
Driscoll et al. Extremely low phase noise UHF oscillators utilizing high-overtone, bulk acoustic resonators
US20030076178A1 (en) Injection-locked high-frequency oscillator
Fleischmann et al. A 2.5 GHz low noise phase locked surface transverse wave VCO
US5721515A (en) High stability single-port saw resonator oscillator
Tanski et al. A radar system application of an 840-MHz SAW resonator stabilized oscillator
JP2624496B2 (en) Variable frequency active filter
JPH04373301A (en) Delay feedback type surface acoustic wave voltage controlled oscillator
JP2847747B2 (en) Magnetostatic wave delay line type oscillator
Avramov et al. Surface transverse wave oscillators with extremely low thermal noise floors
Nomura et al. Small packaged VCSO for 10 [Gbit] Ethernet application
JPS6288402A (en) Monolithic microwave oscillator
Shreve et al. Surface Acoustic Wave Devices for Use in a High Performance Television Tuner
JPH0645829A (en) Magnetostatic wave oscillator
Madihian et al. GaAs-monolithic IC's for an X-band PLL-stabilized local source