JPH0648759Y2 - Battery capacity adjustment device - Google Patents

Battery capacity adjustment device

Info

Publication number
JPH0648759Y2
JPH0648759Y2 JP1988158164U JP15816488U JPH0648759Y2 JP H0648759 Y2 JPH0648759 Y2 JP H0648759Y2 JP 1988158164 U JP1988158164 U JP 1988158164U JP 15816488 U JP15816488 U JP 15816488U JP H0648759 Y2 JPH0648759 Y2 JP H0648759Y2
Authority
JP
Japan
Prior art keywords
battery
voltage
stack
discharge
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988158164U
Other languages
Japanese (ja)
Other versions
JPH0277864U (en
Inventor
敬史 橋本
誠 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1988158164U priority Critical patent/JPH0648759Y2/en
Publication of JPH0277864U publication Critical patent/JPH0277864U/ja
Application granted granted Critical
Publication of JPH0648759Y2 publication Critical patent/JPH0648759Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【考案の詳細な説明】 A.産業上の利用分野 本考案は、電池電圧が負電圧となるまで放電可能な電池
(亜鉛−臭素電池,亜鉛−臭素電池,レドックス・フロ
ー電池など)に適用する電池容量調整装置に関するもの
である。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention is applied to batteries (zinc-bromine battery, zinc-bromine battery, redox flow battery, etc.) that can be discharged until the battery voltage becomes a negative voltage. The present invention relates to a battery capacity adjusting device.

B.考案の概要 本考案は、負電圧まで放電可能な液循環型電池に適用す
る電池容量調整装置において、 直列接続の各電池本体にダイオードを並列接続すること
により、 電池電圧が負電圧になった場合、その電池本体をダイオ
ードでバイパスして、放電容量の不均一分が累積される
のを防止するようにしたものである。
B. Outline of the Invention The present invention is a battery capacity adjusting device applied to a liquid circulation type battery capable of discharging to a negative voltage, and by connecting a diode in parallel to each battery body connected in series, the battery voltage becomes a negative voltage. In this case, the battery body is bypassed by a diode to prevent the non-uniformity of the discharge capacity from accumulating.

C.従来の技術 負電圧まで放電可能な二次電池を複数個直列に接続して
運転すると、電池性能のバラツキにより自己放電量が異
なるため、各電池の放電容量が不均一になる。この状態
のままで繰り返し充放電を行うと、この不均一分が累積
されて放電容量に極端な差が生じる。
C. Conventional technology When multiple secondary batteries that can be discharged to a negative voltage are connected in series and operated, the discharge capacity of each battery becomes uneven because the amount of self-discharge varies due to variations in battery performance. When charging / discharging is repeatedly performed in this state, this nonuniformity is accumulated and an extreme difference occurs in the discharge capacity.

一例として亜鉛−臭素電池を用いた実験結果を示す。Experimental results using a zinc-bromine battery are shown as an example.

電極面積1600cm2,30セルバイポーラ接続の電池本体を3
スタック、電解液貯蔵タンクと循環ポンプ各々が有する
独立の配管系を3セットそれぞれ用意し、3スタックの
電池本体を電気的に直列に接続して、5サイクルの充放
電を行った。充電は定電流20A,2.5時間で行い、放電は
定電流20Aで行い、放電容量の最も多いスタック(放電
時間が最も長いスタック)の電池電圧が0(V)になっ
た時点を放電終了とした。放電容量Ahは(放電時間×20
A)で表される。
Electrode area 1600 cm 2 , 30 cell bipolar connected battery body 3
The stack, the electrolytic solution storage tank, and the circulation pump were provided with three sets of independent pipe systems, respectively, and the battery bodies of the three stacks were electrically connected in series to perform charge / discharge for 5 cycles. Charging was performed at a constant current of 20 A for 2.5 hours, discharging was performed at a constant current of 20 A, and the discharge was completed when the battery voltage of the stack with the largest discharge capacity (stack with the longest discharge time) reached 0 (V). . Discharge capacity Ah is (discharge time x 20
It is represented by A).

次表に各スタックの電池電圧が0(V)になるまでの放
電時間を、また第4図に電圧曲線を示す。
The following table shows the discharge time until the battery voltage of each stack reaches 0 (V), and FIG. 4 shows the voltage curve.

D.考案が解決しようとする課題 このように放電容量に極端な差が生じると、分担が大き
く偏り、電池の劣化を早めることになる。
D. Problems to be solved by the invention When such an extreme difference in discharge capacity occurs, the sharing is greatly biased, and the deterioration of the battery is accelerated.

本考案の目的は、各電池の放電容量の均一化が図れる電
池容量調整装置を提供することにある。
An object of the present invention is to provide a battery capacity adjusting device capable of achieving uniform discharge capacity of each battery.

E.課題を解決するための手段 本考案は、負電圧まで放電可能な液循環型電池の電池本
体を複数スタック電気的に直列に接続し、各スタックに
独立の液循環系を装備した電源設備において、直列接続
の各電池本体にダイオードをそのアノードが電池の負極
側となるよう並列接続したことを特徴するものである。
E. Means for Solving the Problem The present invention is a power supply facility in which a plurality of battery main bodies of liquid circulation type batteries capable of discharging to a negative voltage are electrically connected in series and each stack is equipped with an independent liquid circulation system. In the above, a diode is connected in parallel to each battery body connected in series so that its anode is on the negative electrode side of the battery.

F.作用 電池電圧が負電圧になった場合、その電池本体と並列の
ダイオードに電流が流れ始め、これに伴ってその電池本
体に電流が殆ど流れなくなる。即ち、電池本体がダイオ
ーードでバイパスされる。
F. Action When the battery voltage becomes a negative voltage, a current starts to flow in the diode in parallel with the battery body, and accordingly, almost no current flows in the battery body. That is, the battery body is bypassed by the diode.

このようにして全ての電池本体が負電圧となり、放電容
量の不均一分が累積されることが防止される。
In this way, all the battery main bodies become negative voltage, and it is possible to prevent the nonuniformity of the discharge capacity from accumulating.

G.実施例 以下、本考案を図面に示す実施例に基づいて詳細に説明
する。
G. Embodiment Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.

第1図は本考案の一実施例を示すもので、直列接続の3
スタックの電池本体1〜3に各々ダイオード4〜6を並
列に接続している。この場合、ダイオード4〜6のアノ
ードが電池本体1〜3の負極側となるようにする。
FIG. 1 shows an embodiment of the present invention.
Diodes 4 to 6 are connected in parallel to the battery bodies 1 to 3 of the stack, respectively. In this case, the anodes of the diodes 4 to 6 are on the negative electrode side of the battery bodies 1 to 3.

なお、モジュールの両端子間には、充電用あるいは強制
放電用の外部電源(または負荷)7を接続する。
An external power source (or load) 7 for charging or forcibly discharging is connected between both terminals of the module.

次に、動作について述べる。電池電圧が正の時、即ち通
常の充放電の時は、ダイオード4〜6に逆電圧が加わっ
ており、ダイオードには電流が流れない。
Next, the operation will be described. When the battery voltage is positive, that is, during normal charging / discharging, a reverse voltage is applied to the diodes 4 to 6, and no current flows through the diodes.

一方、放電が終了しても外部電源7などで放電と同じ方
向に電流を流すと、自己放電量の大きかった電池が早く
0(V)以下になる。そのまま通電を継続すると、0
(V)以下になった電池と並列に接続されているダイオ
ードに電流が流れ始め、電池電圧が−1(V)近くにな
ると、電池に電流が殆ど流れなくなる。
On the other hand, even if the discharge is completed, if the external power supply 7 or the like causes a current to flow in the same direction as the discharge, the battery having a large self-discharge amount quickly becomes 0 (V) or less. If you continue to energize, 0
A current starts to flow in the diode connected in parallel with the battery having a voltage of (V) or less, and when the battery voltage approaches -1 (V), almost no current flows in the battery.

これは、第2図に示すように各電池本体1〜3に切り換
えスイッチ11〜13とバイパス回路14〜16を設け、電池電
圧が0(V)以下になった時点で自動的にバイパス回路
に切り換えるように構成した回路と等価であり、放電容
量の少なかった電池がバイパスされて、結局全ての電池
が負電圧になる。これにより、電池容量の不均一分の累
積が防止される。
As shown in FIG. 2, each battery main body 1 to 3 is provided with changeover switches 11 to 13 and bypass circuits 14 to 16, and when the battery voltage becomes 0 (V) or less, the bypass circuit is automatically activated. It is equivalent to a circuit configured to switch, and a battery having a low discharge capacity is bypassed, and eventually all the batteries become negative voltage. This prevents the accumulation of non-uniformity in battery capacity.

以下に、亜鉛−臭素電池を用いた実験結果を例示する。Below, the experimental result using a zinc-bromine battery is illustrated.

電極面積1600cm2,30セルバイポーラ接続の電池本体を3
スタック電気的に直列に接続し、各スタックに電解液貯
蔵タンクと循環ポンプを各々が有する独立の配管系を装
備した。
Electrode area 1600 cm 2 , 30 cell bipolar connected battery body 3
The stacks were electrically connected in series, and each stack was equipped with an independent piping system having an electrolyte storage tank and a circulation pump.

そして、20A,2.5時間充電し、放電容量の大きな方が0
(V)になるまで20Aで放電し、それを5サイクル繰り
返した。
Then, charge for 20A for 2.5 hours, and the one with the larger discharge capacity is 0
It was discharged at 20 A until it reached (V), and this was repeated for 5 cycles.

次表に各スタックの電池電圧が0(V)になるまでの放
電時間を、第3図に電圧曲線をそれぞれ示す。
The discharge time until the battery voltage of each stack becomes 0 (V) is shown in the following table, and the voltage curve is shown in FIG.

この表から明らかなように各スタックの放電時間は略均
一となり、また電圧曲線も似た曲線となる。
As is clear from this table, the discharge time of each stack is substantially uniform, and the voltage curves are similar curves.

H.考案の効果 以上のように本考案によれば、直列接続の各電池スタッ
クにダイオードをそのアノードが負極側となるよう並列
接続し、電池電圧が負電圧になった場合にはその電池を
ダイオードによってバイパスするようにしたので、簡単
な回路構成で放電容量の不均一分が累積されることを防
止できる。
H. Effect of the Invention As described above, according to the present invention, a diode is connected in parallel to each battery stack connected in series so that the anode thereof is on the negative side, and the battery is connected when the battery voltage becomes a negative voltage. Since the bypass is performed by the diode, it is possible to prevent the nonuniformity of the discharge capacity from being accumulated with a simple circuit configuration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る電池容量調整装置の一実施例を示
す回路図、第2図は同実施例の等価回路図、第3図は同
実施例の電圧曲線図、第4図は従来の電圧曲線図であ
る。 1〜3…電池本体、4〜6…ダイオード、7…外部電源
(または負荷)。
FIG. 1 is a circuit diagram showing an embodiment of a battery capacity adjusting device according to the present invention, FIG. 2 is an equivalent circuit diagram of the same embodiment, FIG. 3 is a voltage curve diagram of the same embodiment, and FIG. 3 is a voltage curve diagram of FIG. 1-3 ... Battery main body, 4-6 ... Diode, 7 ... External power source (or load).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】負電圧まで放電可能な液循環型電池の電池
本体を複数スタック電気的に直列に接続し、各スタック
に独立の液循環系を装備した電源設備において、直列接
続の各電池本体にダイオードをそのアノードが電池の負
極側となるよう並列接続したことを特徴とする電池容量
調整装置。
1. A power supply facility in which a plurality of stacks of liquid circulation type batteries capable of discharging to a negative voltage are electrically connected in series and each stack is equipped with an independent liquid circulation system. A battery capacity adjusting device in which a diode is connected in parallel with the anode of the battery on the negative side of the battery.
JP1988158164U 1988-12-05 1988-12-05 Battery capacity adjustment device Expired - Lifetime JPH0648759Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988158164U JPH0648759Y2 (en) 1988-12-05 1988-12-05 Battery capacity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988158164U JPH0648759Y2 (en) 1988-12-05 1988-12-05 Battery capacity adjustment device

Publications (2)

Publication Number Publication Date
JPH0277864U JPH0277864U (en) 1990-06-14
JPH0648759Y2 true JPH0648759Y2 (en) 1994-12-12

Family

ID=31438247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988158164U Expired - Lifetime JPH0648759Y2 (en) 1988-12-05 1988-12-05 Battery capacity adjustment device

Country Status (1)

Country Link
JP (1) JPH0648759Y2 (en)

Also Published As

Publication number Publication date
JPH0277864U (en) 1990-06-14

Similar Documents

Publication Publication Date Title
EP0348983B1 (en) Method of charging and discharging battery and power source apparatus adopting the same
US11081899B2 (en) Battery system
US5061578A (en) Electrolyte circulation type secondary battery operating method
DE10035959A1 (en) Method of discharging a variety of rechargeable batteries and battery assembly
EP0204038A1 (en) Method of operating a secondary battery
US11817605B2 (en) Flow battery
CA2486364A1 (en) Operating method of redox flow battery and cell stack of redox flow battery
JPH11506863A (en) How to restore electrode activity
US20230396091A1 (en) Battery management architectures for flow batteries
US20200119563A1 (en) Battery management
JP2001008373A (en) Battery unit and charging method of battery
JP3419115B2 (en) Battery charge / discharge protection device
JPH0648759Y2 (en) Battery capacity adjustment device
JP2897094B2 (en) Charge / discharge device
KR101599962B1 (en) Energe storage system
CN108128186B (en) Lead-acid power battery management system and control method thereof
JPH06111852A (en) Battery system
CN116799914B (en) Lithium battery pack management system based on active equalization
CN111404224B (en) Storage battery four-quadrant energizing repair device and method
JPH06311670A (en) Storage-battery charging device using solar battery as power supply
EP3866292A1 (en) Solar tracker power management
JPH0112514Y2 (en)
US20090009130A1 (en) Apparatus and Method for Charging an Accumulator
CN114156993A (en) Storage battery equalization circuit and control method
JPH0533646U (en) Secondary power supply