JPH064862A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH064862A
JPH064862A JP16444792A JP16444792A JPH064862A JP H064862 A JPH064862 A JP H064862A JP 16444792 A JP16444792 A JP 16444792A JP 16444792 A JP16444792 A JP 16444792A JP H064862 A JPH064862 A JP H064862A
Authority
JP
Japan
Prior art keywords
oxygen
magnetic
forming
nozzle
coo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16444792A
Other languages
Japanese (ja)
Inventor
Yasuaki Ban
泰明 伴
Kiyokazu Toma
清和 東間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16444792A priority Critical patent/JPH064862A/en
Publication of JPH064862A publication Critical patent/JPH064862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve mass productivity by introducing oxygen into an initial incident region of Co vapor and forming a nonmagnetic CoO ground layer. CONSTITUTION:While a high-polymer substrate 1 is made to travel along a cylindrical can 4, the nonmagnetic CoO ground layer is formed in the region on the side nearer the inlet of a nozzle 10 for forming the nonmagnetic CoO ground layer and in succession, A Co-O magnetic layer is formed on the side nearer the outlet. The nozzle 10 is disposed in proximity to the can 4 as far as possible at this time and oxygen is blown out toward the inlet side of the substrate 1 like an oxygen introducing direction 11, by which the quantity of the oxygen to be introduced is minimized. A shield 6 may be provided between the nozzle 10 and an evaporating source 8 to prevent an oxygen blow-off port from being closed by deposits during vapor deposition. The position of the nozzle 9 for oxygen introduction for forming the Co-O may not be near the outlet shield 7 and may be parted from the can 4. As a result, the magnetic tape having decreased drop-outs is produced with good mass productivity by one stroke.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度記録再生特性に
優れた磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having excellent high density recording / reproducing characteristics.

【0002】[0002]

【従来の技術】現在、磁気記録再生装置は小型化、高密
度化の傾向にあり、従来の塗布型媒体の高密度化の限界
を越えるものとして金属薄膜型媒体が注目されている。
これに関しては、Co−Ni−Oから成る金属薄膜型媒
体がVTR用の磁気テープとして実用化されている。
2. Description of the Related Art At present, magnetic recording / reproducing devices tend to be smaller and have higher densities, and metal thin film type media have been attracting attention as exceeding the limit of high density of conventional coating type media.
In this regard, a metal thin film type medium made of Co-Ni-O has been put to practical use as a magnetic tape for VTR.

【0003】しかしながら、家庭用ディジタルVTR、
ハイビジョン用VTRなど次世代VTRに対応する磁気
記録媒体には、さらに優れた高密度記録再生特性が要求
されており、その候補としてCo−Cr、Co−Ni−
Cr、Co−O、Co−Ni−O等を主成分とする磁気
記録媒体が検討されている。
However, home digital VTRs,
Further excellent high-density recording / reproducing characteristics are required for magnetic recording media compatible with next-generation VTRs such as high-definition VTRs. Co-Cr, Co-Ni-can be used as candidates.
Magnetic recording media containing Cr, Co-O, Co-Ni-O, or the like as a main component have been studied.

【0004】そのなかで、非磁性CoO下地層を介して
形成したCo−Oは、優れた磁気特性と記録再生特性が
得られ、次世代磁気テープとして期待される。
Among them, Co-O formed through a non-magnetic CoO underlayer has excellent magnetic characteristics and recording / reproducing characteristics, and is expected as a next-generation magnetic tape.

【0005】(図4)は、磁気記録媒体の製造装置の一
例として円筒状キャン系を用いたウェッブコータ式の連
続蒸着装置を示したものである。この図において1は長
尺の高分子基板であり2、3はそれぞれ高分子基板1の
供給ロールおよび巻き取りロールである。高分子基板1
には円筒状キャン4の周面上を円筒状キャンの走行方向
5に走行する間に蒸発原子が堆積される。この際、蒸発
源8と円筒状キャン4の間に入り側シールド6及び出側
シールド7を設け、それらの位置を調節することで蒸発
原子の高分子基板1への初期入射角R1及び終期入射角
R2を制御することができる。Co−O膜をを反応真空
蒸着する場合は酸素導入ノズル9から所望の磁気特性が
得られるだけ酸素を導入する。
FIG. 4 shows a web coater type continuous vapor deposition apparatus using a cylindrical can system as an example of a magnetic recording medium manufacturing apparatus. In this figure, 1 is a long polymer substrate, and 2 and 3 are a supply roll and a winding roll of the polymer substrate 1, respectively. Polymer substrate 1
During the traveling of the cylindrical can 4 in the traveling direction 5 of the cylindrical can 4, the vaporized atoms are accumulated. At this time, an entrance-side shield 6 and an exit-side shield 7 are provided between the evaporation source 8 and the cylindrical can 4, and the positions thereof are adjusted to adjust the initial incidence angle R1 and the final incidence of evaporated atoms to the polymer substrate 1. The angle R2 can be controlled. When the Co—O film is reactively vacuum-deposited, oxygen is introduced from the oxygen introduction nozzle 9 so as to obtain desired magnetic characteristics.

【0006】[0006]

【発明が解決しようとする課題】(図4)に示す装置に
よって非磁性CoO下地層及びCo−O磁性層を順次形
成する場合、2回の蒸着工程が必要であるため量産性に
問題があった。また基板あるいは下地層表面に不純物が
混入したり傷が入ったりしてドロップアウトが多発し、
磁気テープとして完成させる上で問題があった。
When the nonmagnetic CoO underlayer and the Co—O magnetic layer are sequentially formed by the apparatus shown in FIG. 4, there is a problem in mass productivity because two vapor deposition steps are required. It was Also, impurities are mixed into the surface of the substrate or the underlayer or scratches occur, resulting in frequent dropouts.
There was a problem in completing it as a magnetic tape.

【0007】そこで本発明は上記の問題を解消し、ドロ
ップアウトが少ない磁気テープを量産性良く製造するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems and to manufacture a magnetic tape with less dropout with good mass productivity.

【0008】[0008]

【課題を解決するための手段】連続真空蒸着法によって
長尺の高分子基板上にCoとOを主成分とする磁性層を
形成する際に、Co蒸気の初期入射領域に酸素を導入し
て非磁性CoO下地層を形成し、引続き終期入射領域に
て前記磁性層を形成する。
When a magnetic layer containing Co and O as the main components is formed on a long polymer substrate by a continuous vacuum deposition method, oxygen is introduced into an initial incidence region of Co vapor. A non-magnetic CoO underlayer is formed, and then the magnetic layer is formed in the final incidence region.

【0009】[0009]

【作用】請求項1に記載の方法によれば、1回の蒸着工
程で非磁性CoO下地層とCo−O磁性層を形成するこ
とが出来るので、量産性が向上する。また、非磁性Co
O下地層形成後その表面は何にも触れることなくCo−
O磁性層が形成されるので、CoO下地層の表面に不純
物が混入したり傷が入ったりすることがなく、ドロップ
アウトが減少する。
According to the method of the first aspect, the non-magnetic CoO underlayer and the Co-O magnetic layer can be formed in a single vapor deposition step, so that mass productivity is improved. In addition, non-magnetic Co
After forming the O underlayer, the surface of
Since the O magnetic layer is formed, the surface of the CoO underlayer is not mixed with impurities or scratched, and the dropout is reduced.

【0010】一般に非磁性CoO下地層の形成に必要な
酸素の導入量はCo−O磁性層を形成するのに必要な酸
素の導入量に比べて著しく大きい。従って飽和磁化の大
きいCo−O磁性層を形成するには非磁性CoO層の形
成のための酸素の導入がCo−O磁性層の形成に及ぼす
影響を減らす必要がある。しかし非磁性CoO下地層を
形成するための酸素導入ノズルを、蒸気の入射量域内に
あってかつ高分子基板に近接して配したノズルより、前
記高分子基板の走行の入り側に向けて導入すると酸素が
拡散する以前のところで反応蒸着されるので酸素の導入
量を最小限に抑制することができる。
Generally, the amount of oxygen introduced to form the non-magnetic CoO underlayer is significantly larger than the amount of oxygen introduced to form the Co—O magnetic layer. Therefore, in order to form a Co—O magnetic layer having a large saturation magnetization, it is necessary to reduce the influence of the introduction of oxygen for forming the non-magnetic CoO layer on the formation of the Co—O magnetic layer. However, the oxygen introduction nozzle for forming the non-magnetic CoO underlayer is introduced toward the entrance side of the traveling of the polymer substrate from a nozzle arranged in the vapor incident amount region and close to the polymer substrate. Then, since the reactive vapor deposition is performed before the oxygen diffuses, the introduction amount of oxygen can be suppressed to the minimum.

【0011】次に非磁性CoO形成用酸素導入ノズル
を、蒸気流の密度がそのもっとも高い値の2/3以下と
なる高分子基板の入り側の領域に配して形成した磁気テ
ープと、より出側に配して形成した磁気テープ、そして
比較用に2段階に分けて形成した磁気テープのオージェ
分光分析を行ったところ、非磁性CoO形成用酸素導入
ノズルを蒸気流の密度がそのもっとも高い値の2/3以
下となる前記高分子基板の入り側の領域に配して形成し
た磁気テープの場合、酸素の存在比率の膜厚方向の分布
が、2回に分けて形成した磁気テープと同様に急激に変
化していた。これに対し、より出側に配して形成した磁
気テープの場合は、酸素の分布の変化が緩やかになって
いた。すなわち、前記非磁性CoO形成用酸素導入ノズ
ルを、蒸気流の密度がそのもっとも高い値の2/3以下
となる前記高分子基板の入り側の領域に配して形成する
ことで、2段階に分けて形成した磁気テープと同様の非
磁性層と磁性層の境界が明確な薄膜が得られる。その結
果、従来の2段階に分けた蒸着法で形成した磁気テープ
と同等の優れた磁気特性と記録再生特性が得られること
がわかった。また、この様な結果が得られた要因として
は、前記非磁性CoO形成用酸素導入ノズルを、蒸気流
の密度がそのもっとも高い値の2/3以下となる前記高
分子基板の入り側の領域に配することで、蒸気流が障壁
のような役割を担うことになって、酸素の気流がより出
側の領域へ拡散するのが妨げられるものと推測してい
る。
Next, a magnetic tape formed by arranging an oxygen introducing nozzle for forming a non-magnetic CoO in a region on the entrance side of the polymer substrate where the density of the vapor flow is 2/3 or less of the highest value, and Auger spectroscopic analysis of a magnetic tape formed on the outlet side and a magnetic tape formed in two steps for comparison showed that the oxygen introduction nozzle for forming non-magnetic CoO had the highest vapor flow density. In the case of the magnetic tape formed in the area on the entry side of the polymer substrate having a value of ⅔ or less, the distribution of the oxygen abundance ratio in the film thickness direction is the same as the magnetic tape formed in two steps. It was also changing rapidly. On the other hand, in the case of the magnetic tape formed further on the output side, the change in oxygen distribution was gradual. That is, the oxygen introducing nozzle for forming non-magnetic CoO is formed in two stages by arranging the oxygen introducing nozzle for forming the non-magnetic CoO in a region on the inlet side of the polymer substrate where the vapor flow density is 2/3 or less of the highest value. Similar to the separately formed magnetic tape, a thin film having a clear boundary between the non-magnetic layer and the magnetic layer can be obtained. As a result, it was found that excellent magnetic characteristics and recording / reproducing characteristics equivalent to those of the conventional magnetic tape formed by the vapor deposition method divided into two stages can be obtained. Further, as a factor for obtaining such a result, the oxygen introduction nozzle for forming the non-magnetic CoO has a region on the inlet side of the polymer substrate in which the vapor flow density is ⅔ or less of the highest value. It is speculated that the vapor flow acts as a barrier and prevents the oxygen flow from diffusing to the more outflow side region.

【0012】[0012]

【実施例】(図1)は本発明の製造方法を実施できる磁
気記録媒体の製造装置の1例の概略図であり、(図4)
の装置のシールドの間に非磁性CoO形成用の酸素導入
ノズル10を配した構造の連続真空蒸着装置である。
(図1)の装置では、円筒状キャン4に沿って高分子基
板1を走行させながら、その上に前記非磁性CoO下地
層形成用の10より入り側の領域で非磁性CoO下地層
を形成し、続いてより出側の領域でCo−O磁性層を形
成する。ここで非磁性CoO下地層形成用の酸素導入ノ
ズル10はキャンにできるだけ近接して配し、(図1)
中に記した酸素導入方向11のように高分子基板の入り
側に向けて酸素を吹き出す。そうすることによって前述
したように酸素の導入量を必要最小限に抑えることが出
来る。我々の検討では入り側シールド6の上から基板走
行方向に向けて酸素を導入する場合に比べて半分以下の
導入量で済ますことができた。また、蒸着中に酸素の吹
き出し口が堆積物で塞がれないように非磁性CoO下地
層形成用の酸素導入ノズル10と蒸発源8の間にシール
ドを設けてもよい。これに対しCo−O層形成用の酸素
導入ノズル9の位置は(図1)に示したような出側シー
ルド7付近である必要は無く、例えばキャンから離して
蒸着室全体に酸素を行きわたらせるようにしてもよい。
(FIG. 1) is a schematic view of an example of a magnetic recording medium manufacturing apparatus capable of carrying out the manufacturing method of the present invention (FIG. 4).
Is a continuous vacuum vapor deposition apparatus having a structure in which an oxygen introduction nozzle 10 for forming non-magnetic CoO is arranged between the shields of the above apparatus.
In the apparatus shown in FIG. 1, the non-magnetic CoO underlayer is formed on the polymer substrate 1 while traveling along the cylindrical can 4 in a region on the entry side of the nonmagnetic CoO underlayer forming layer 10. Then, subsequently, a Co—O magnetic layer is formed in the region on the more output side. Here, the oxygen introducing nozzle 10 for forming the non-magnetic CoO underlayer is arranged as close as possible to the can (FIG. 1).
Oxygen is blown out toward the entrance side of the polymer substrate as in the oxygen introduction direction 11 described therein. By doing so, the amount of oxygen introduced can be minimized as described above. In our study, less than half the amount of oxygen was introduced compared to the case where oxygen was introduced from above the entrance-side shield 6 toward the substrate running direction. Further, a shield may be provided between the oxygen introduction nozzle 10 for forming the non-magnetic CoO underlayer and the evaporation source 8 so that the outlet of oxygen is not blocked by the deposit during vapor deposition. On the other hand, the position of the oxygen introducing nozzle 9 for forming the Co—O layer does not have to be near the outlet shield 7 as shown in (FIG. 1). You may do it.

【0013】CoO下地層形成用の酸素導入ノズル10
の位置を変化させたときの磁気特性の変化について述べ
る。入り側シールドと出側シールドの位置は、入射角に
してそれぞれ80°と40°に固定した。比較用として
は、出側シールドをCoO下地層形成用酸素導入ノズル
の位置まで移動してCoO下地層を形成し、次に出側シ
ールドの位置を戻し、入り側のシールドをCoO下地層
形成用酸素導入ノズルの位置まで移動してCo−O層を
形成する2段階に分けた方法で作製した。なお高分子基
板の送り速度とCo−O層形成用酸素導入ノズルからの
酸素の導入量は、2段階に分けた方法で作製した場合に
Co−O層の膜厚が約200nm、飽和磁化が450e
mu/ccとなるようにした。
Oxygen introducing nozzle 10 for forming a CoO underlayer
The change of the magnetic characteristics when the position of is changed will be described. The positions of the entrance-side shield and the exit-side shield were fixed at an incident angle of 80 ° and 40 °, respectively. For comparison, the outgoing shield is moved to the position of the CoO underlayer forming oxygen introducing nozzle to form the CoO underlayer, then the outgoing shield is returned, and the incoming shield is used for forming the CoO underlayer. It was manufactured by a method divided into two steps of moving to the position of the oxygen introducing nozzle to form a Co—O layer. The feeding speed of the polymer substrate and the amount of oxygen introduced from the oxygen introducing nozzle for forming the Co—O layer are about 200 nm when the film is produced by a method divided into two steps, and the saturation magnetization is 450e
It was set to be mu / cc.

【0014】(図2)は、面内角型比を、CoO下地層
形成用酸素導入ノズルを同じ位置として2回に分けて作
製した前述の比較用磁気テープの値で規格化した値と、
蒸着時のCoO下地層形成用酸素導入ノズルの位置の蒸
気流密度をそのもっとも高い値で規格化した値との関係
を示したものである。(図2)より規格化された蒸気流
密度が2/3以下となる入り側の領域では、面内角型比
が4%以内の減衰量におさまっている。しかしながらそ
れより出側の領域では面内角型比の劣下が著しいことが
わかる。この様な面内角型比が劣下した場合にはテープ
全体の飽和磁化が大きく低下しており、CoO下地層形
成のための酸素が出側に拡散していることが推定され
た。また、CoO下地層形成用酸素導入ノズルの位置が
規格化された蒸気流密度が2/3以下となる入り側の領
域にある場合でも、わずかに飽和磁化が減少していた
が、この場合にはCo−O磁性層形成用の酸素導入ノズ
ルからの導入量を再調整することで前述の比較用磁気テ
ープと同じ飽和磁化とすることができた。そのとき面内
角形比の値は比較用磁気テープの値を再現した。
FIG. 2 shows the in-plane squareness ratio normalized by the values of the above-mentioned magnetic tape for comparison, which was prepared by dividing the oxygen introduction nozzle for forming the CoO underlayer into the same position twice.
It shows the relationship between the vapor flow density at the position of the oxygen introduction nozzle for forming the CoO underlayer during vapor deposition and the value normalized by the highest value. In the area on the inlet side where the vapor flow density standardized from (FIG. 2) is 2/3 or less, the in-plane squareness ratio is within 4%. However, it can be seen that the in-plane squareness ratio is remarkably deteriorated in the region on the output side. When the in-plane squareness ratio was deteriorated, the saturation magnetization of the entire tape was significantly reduced, and it was estimated that oxygen for forming the CoO underlayer was diffused to the outlet side. Further, even when the position of the oxygen introducing nozzle for forming the CoO underlayer is in the inlet side region where the standardized vapor flow density is 2/3 or less, the saturation magnetization was slightly decreased. It was possible to obtain the same saturation magnetization as that of the above-mentioned magnetic tape for comparison by readjusting the amount introduced from the oxygen introducing nozzle for forming the Co—O magnetic layer. At that time, the value of the in-plane squareness ratio reproduced the value of the comparative magnetic tape.

【0015】(図3)は、上述のようにして磁気特性を
再現した磁気テープの再生出力を前述の比較用磁気テー
プの値で規格化して示したものである。測定にはドラム
テスターを用いた。(図3)の様に再生出力においても
ほぼ再現した。
FIG. 3 shows the reproduction output of the magnetic tape whose magnetic characteristics are reproduced as described above, normalized by the value of the above-mentioned magnetic tape for comparison. A drum tester was used for the measurement. As shown in (Fig. 3), the reproduction output was almost reproduced.

【0016】(表1)は、記録再生特性が再現した磁気
テープを市販のVTRにかけてドロップアウトカウンタ
ーでドロップアウトを測定した結果を示している。ドロ
ップアウトとしては−16dB以上の出力低下が15μ
sec以上つづいたときカウントした。2度に分けて作
製した磁気テープに比べて本発明の方法で1度で作製し
た磁気テープは、ドロップアウトが40%以上少なくな
っていた。これは工程の簡略化によりテープ表面の傷や
汚れが減少したためである。
Table 1 shows the results of measuring the dropout with a dropout counter by applying a commercially available VTR to a magnetic tape whose recording / reproducing characteristics are reproduced. As a dropout, output drop of -16 dB or more is 15μ
It was counted when it continued for more than sec. The magnetic tape manufactured once by the method of the present invention had a dropout of 40% or more less than the magnetic tape manufactured twice. This is because scratches and stains on the tape surface were reduced by simplifying the process.

【0017】[0017]

【表1】 [Table 1]

【0018】なお、この様な結果は入射角が異なる場
合、例えば入射角が垂直に近い場合でも同様に得られ
た。但し入射角が垂直に近い場合には、角型比は垂直方
向の磁化曲線を反磁界補正したもので比較した。
Incidentally, such a result was similarly obtained when the incident angle was different, for example, when the incident angle was nearly vertical. However, when the incident angle was close to vertical, the squareness ratio was compared by demagnetizing the magnetization curve in the vertical direction.

【0019】一般に磁性層を蒸着した場合、蒸着原子の
入射角によって磁性層の磁気特性や記録再生特性が変化
するが、(図1)に示したような蒸着装置の場合、磁性
層の初期入射角は、非磁性CoO下地層形成用酸素導入
ノズルの位置で規定され、(図1)中の中間入射角R3
となる。この場合所望の中間入射角R3を得るためには
以下のような手順で行えばよい。 (1)シールドの間隔を蒸発源の真上を中心として所望
の蒸着範囲より十分に広くとり、高分子基板をキャン上
で停止させた状態で蒸着する。 (2)基板単位面積当りの蒸着物の体積を水平面の単位
面積当りの値に規格化し、それの基板走行方向の分布を
求め、それを蒸気流密度の分布とする。 (3)(2)で求めた蒸気流密度の最も高い値の2/3
以下の高分子基板の入り側の領域にCo−O層形成の初
期入射位置を定め、CoO下地層形成用の酸素導入ノズ
ルを配する。 (4)(3)で所望の初期入射角が得られない場合に
は、蒸発源を移動する。
Generally, when a magnetic layer is vapor-deposited, the magnetic characteristics and recording / reproducing characteristics of the magnetic layer change depending on the incident angle of vapor-deposited atoms. In the vapor deposition apparatus shown in FIG. 1, the initial incidence of the magnetic layer. The angle is defined by the position of the oxygen introduction nozzle for forming the non-magnetic CoO underlayer, and the intermediate incident angle R3 in FIG.
Becomes In this case, the following procedure may be performed to obtain the desired intermediate incident angle R3. (1) An interval between shields is set sufficiently wider than a desired vapor deposition range centering right above an evaporation source, and vapor deposition is performed with a polymer substrate stopped on a can. (2) The volume of the deposit per unit area of the substrate is standardized to a value per unit area of the horizontal plane, the distribution in the substrate running direction is obtained, and this is used as the vapor flow density distribution. (3) 2/3 of the highest value of vapor flow density found in (2)
An initial incident position for forming a Co—O layer is defined in the area on the entry side of the polymer substrate below, and an oxygen introduction nozzle for forming a CoO underlayer is arranged. (4) If the desired initial incident angle cannot be obtained in (3), the evaporation source is moved.

【0020】以上Co−O層形成の所望の初期入射角を
得る方法について述べた。なおCo−O層形成の終期入
射角は出側のシールドの位置によって決めればよい。
The method for obtaining a desired initial incident angle for forming the Co-O layer has been described above. The final incident angle for forming the Co-O layer may be determined by the position of the shield on the output side.

【0021】また、我々の検討ではCoO下地層形成時
の入射角は上層のCo−O層の磁気特性にあまり影響し
なかったので、CoO下地層とCo−O層の膜厚の比が
所望の値となるように出側のシールドとCoO下地層形
成用酸素導入ノズルとの間隔を調整すればよかった。
Further, in our study, the incident angle at the time of forming the CoO underlayer did not significantly affect the magnetic characteristics of the upper Co--O layer, so that the ratio of the film thickness of the CoO underlayer and the Co--O layer is desired. It suffices to adjust the distance between the shield on the outlet side and the oxygen introducing nozzle for forming the CoO underlayer so that

【0022】[0022]

【発明の効果】本発明の製造方法によれば、2度に分け
て作製していた非磁性CoO層を下地としCo−O層を
上層とする構成の磁気テープと同等の磁気特性と記録再
生特性をもち、ドロップアウトの少ない磁気テープを1
回の工程で量産性よく作製することが可能である。
According to the manufacturing method of the present invention, magnetic characteristics and recording / reproducing equivalent to those of a magnetic tape having a non-magnetic CoO layer as a base and a Co-O layer as an upper layer, which are separately manufactured, are provided. 1 magnetic tape with characteristics and low dropout
It can be manufactured with good mass productivity in a single process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施できる磁気記録媒体の
製造装置の1例の概略図
FIG. 1 is a schematic view of an example of a magnetic recording medium manufacturing apparatus capable of carrying out the manufacturing method of the present invention.

【図2】面内角型比と、蒸着時のCoO下地層形成用酸
素導入ノズルの位置の蒸気流密度との関係を示したグラ
FIG. 2 is a graph showing the relationship between the in-plane squareness ratio and the vapor flow density at the position of the oxygen introduction nozzle for forming the CoO underlayer during vapor deposition.

【図3】本発明の方法で製造した磁気テープの再生出力
の評価結果を示したグラフ
FIG. 3 is a graph showing evaluation results of reproduction output of a magnetic tape manufactured by the method of the present invention.

【図4】従来方法の製造に用いられる磁気記録媒体の製
造装置の概略図
FIG. 4 is a schematic view of an apparatus for manufacturing a magnetic recording medium used for manufacturing a conventional method.

【符号の説明】[Explanation of symbols]

1 高分子基板 2 供給ロール 3 巻取りロール 4 円筒状キャン 5 円筒状キャンの回転方向 6 入り側シールド 7 出側シールド 8 蒸発源 9、10 酸素導入ノズル 11 酸素導入方向 R1 初期入射角 R2 終期入射角 R3 中間入射角 1 Polymer Substrate 2 Supply Roll 3 Winding Roll 4 Cylindrical Can 5 Rotational Direction of Cylindrical Can 6 Entry Side Shield 7 Egress Side Shield 8 Evaporation Source 9, 10 Oxygen Introduction Nozzle 11 Oxygen Introduction Direction R1 Initial Incident Angle R2 Final Incident Angle R3 Intermediate incidence angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】連続真空蒸着法によって長尺の高分子基板
上にCoとOを主成分とする磁性層を形成する際に、C
o蒸気の初期入射領域に酸素を導入して非磁性CoO下
地層を形成し、引続き終期入射領域に酸素を導入して前
記磁性層を形成する磁気記録媒体の製造方法。
1. When a magnetic layer containing Co and O as main components is formed on a long polymer substrate by continuous vacuum deposition, C is used.
o A method of manufacturing a magnetic recording medium, wherein oxygen is introduced into the initial incidence region of vapor to form a non-magnetic CoO underlayer, and then oxygen is introduced into the final incidence region to form the magnetic layer.
【請求項2】非磁性CoO下地層を形成するための酸素
を、蒸気の入射量域内にあってかつ高分子基板に近接し
て配したノズルより、前記高分子基板の走行の入り側に
向けて導入する請求項1に記載の磁気記録媒体の製造方
法。
2. Oxygen for forming a non-magnetic CoO underlayer is directed toward the running side of the polymer substrate from a nozzle arranged in the vapor incident amount region and close to the polymer substrate. The method for producing a magnetic recording medium according to claim 1, which is introduced as a method.
【請求項3】非磁性CoO下地層を形成するための酸素
導入ノズルを蒸気流密度がそのもっとも高い値の2/3
以下となる領域に配することを特徴とする請求項2に記
載の磁気記録媒体の製造方法。
3. An oxygen introduction nozzle for forming a non-magnetic CoO underlayer has a vapor flow density of ⅔ of its highest value.
The method of manufacturing a magnetic recording medium according to claim 2, wherein the magnetic recording medium is arranged in the following region.
JP16444792A 1992-06-23 1992-06-23 Production of magnetic recording medium Pending JPH064862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16444792A JPH064862A (en) 1992-06-23 1992-06-23 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16444792A JPH064862A (en) 1992-06-23 1992-06-23 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH064862A true JPH064862A (en) 1994-01-14

Family

ID=15793345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16444792A Pending JPH064862A (en) 1992-06-23 1992-06-23 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH064862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855416B2 (en) 2001-10-17 2005-02-15 Victor Company Of Japan, Ltd. Thin film magnetic recording medium
GB2536252A (en) * 2015-03-10 2016-09-14 Bobst Manchester Ltd Improved vacuum coater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855416B2 (en) 2001-10-17 2005-02-15 Victor Company Of Japan, Ltd. Thin film magnetic recording medium
GB2536252A (en) * 2015-03-10 2016-09-14 Bobst Manchester Ltd Improved vacuum coater
GB2536252B (en) * 2015-03-10 2018-10-10 Bobst Manchester Ltd Method of operating a vacuum coater for coating a web

Similar Documents

Publication Publication Date Title
US4582746A (en) Magnetic recording medium
US4661418A (en) Magnetic recording medium
US5418059A (en) Magnetic recording medium and method for producing the same
US4343834A (en) Process for preparing magnetic recording medium
JPH064862A (en) Production of magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
US5298282A (en) Production of magnetic recording medium
JP2554277B2 (en) Magnetic recording media
JP3867544B2 (en) Magnetic recording medium and method for manufacturing the same
JPH0475577B2 (en)
JP2605803B2 (en) Magnetic recording media
JPH05342551A (en) Magnetic recording medium and its production
JPS62289911A (en) Magnetic recording medium and its manufacture
JPH0370290B2 (en)
JPH01149217A (en) Magnetic recording medium
JPH0479043B2 (en)
JPH04337520A (en) Magnetic recording medium and production thereof
JPH05159267A (en) Magnetic recording medium and production of the medium
JPH04186528A (en) Manufacture of magnetic recording medium
JPS63152018A (en) Magnetic recording medium
JPH04283422A (en) Production of magnetic recording medium
JPH0689430A (en) Production of magnetic recording medium
JP2000163744A (en) Production of magnetic recording medium
JPH01307914A (en) Perpendicular magnetic recording medium
JPH0689431A (en) Production of magnetic recording medium