JPH0648330B2 - Light-to-light conversion element - Google Patents

Light-to-light conversion element

Info

Publication number
JPH0648330B2
JPH0648330B2 JP63180563A JP18056388A JPH0648330B2 JP H0648330 B2 JPH0648330 B2 JP H0648330B2 JP 63180563 A JP63180563 A JP 63180563A JP 18056388 A JP18056388 A JP 18056388A JP H0648330 B2 JPH0648330 B2 JP H0648330B2
Authority
JP
Japan
Prior art keywords
light
conversion element
optical
photoconductive layer
layer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63180563A
Other languages
Japanese (ja)
Other versions
JPH0229715A (en
Inventor
稜雄 高梨
新太郎 中垣
浩彦 篠永
伝 浅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP63180563A priority Critical patent/JPH0648330B2/en
Publication of JPH0229715A publication Critical patent/JPH0229715A/en
Publication of JPH0648330B2 publication Critical patent/JPH0648330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は撮像装置や光書込み投影装置などに好適な光−
光変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical device suitable for an image pickup device, an optical writing projection device, and the like.
The present invention relates to a light conversion element.

(従来の技術) 光学像を入力し、出力としても光学像が出力できるよう
に構成されている光−光変換素子としては、例えば液晶
型光変調器、光伝導電性ポッケルス効果素子、マイクロ
チャンネル型光変調器などのような空間変調素子、ある
いはフォトクロミック材を用いて構成された素子という
ように各種の構成形態のものが、例えば、光書込み投影
装置、光コンピュータの光並列処理のための素子、画像
の記録用の素子などとして従来から注目されて来てお
り、また、本出願人会社では光−光変換素子を用いた高
解像度の撮像装置についての提案を行っている。
(Prior Art) Examples of light-to-light conversion elements configured to input an optical image and output the optical image also include a liquid crystal optical modulator, a photoconductive Pockels effect element, and a microchannel. Modulators such as a spatial light modulator, or elements having various configurations such as an element formed by using a photochromic material are, for example, an element for optical parallel processing of an optical writing projection device or an optical computer. , Has been attracting attention as an element for recording an image, and the applicant company has proposed a high-resolution image pickup device using a light-light conversion element.

第5図は従来の光−光変換素子の構成例を示す側断面図
であり、この第7図に示されている光−光変換素子にお
いて1,2はガラス板、3,4は透明電極、5,6,1
1は端子、7は光導電層部材、12は遮光層、8は誘電
体ミラー、9は印加された電界の強度分布に応じて光の
状態を変化させる光学部材(光変調材層部材…例えばネ
マチック液晶層)、WLは書込み光、RLは読出し光、
ELは消去光である。
FIG. 5 is a side sectional view showing a configuration example of a conventional light-light converting element. In the light-light converting element shown in FIG. 7, 1 and 2 are glass plates, and 3 and 4 are transparent electrodes. , 5, 6, 1
1 is a terminal, 7 is a photoconductive layer member, 12 is a light shielding layer, 8 is a dielectric mirror, 9 is an optical member that changes the state of light according to the intensity distribution of an applied electric field (light modulation material layer member ... (Nematic liquid crystal layer), WL is writing light, RL is reading light,
EL is the erasing light.

第5図に示す光−光変換素子において、それの端子5,
6間に電源10と切換スイッチSWとからなる回路を接
続し、切換スイッチSWにおける切換制御信号の入力端
子11に供給された切換制御信号により、切換スイッチ
SWの可動接点を固定接点WR側に切換えた状態にし、
前記した透明電極3,4間に電源10の電圧を与えて、
印加された電界の強度分布に応じて光の状態を変化させ
る光学部材9(例えばネマチック液晶層であってもよ
く、以下の説明ではネマチック液晶層9のように記載さ
れることもある)の両端間に電界が加わるようにしてお
き、また、光−光変換素子におけるガラス板1側から書
込光WLを入射させて、その入射した書込み光WLをガ
ラス板1と透明電極3とに透過させて光導電層部材7に
到達させると、光導電層部材7の電気抵抗値はそれに到
達した入射光による光学像と対応して変化するために、
光導電層部材7と遮光層12との境界面には光導電層部
材7に到達した入射光による光学像と対応した電荷像が
生じる。
In the light-to-light conversion element shown in FIG.
A circuit composed of a power source 10 and a changeover switch SW is connected between 6 and the movable contact of the changeover switch SW is switched to the fixed contact WR side by the changeover control signal supplied to the input terminal 11 of the changeover control signal in the changeover switch SW. And put
By applying the voltage of the power source 10 between the transparent electrodes 3 and 4 described above,
Both ends of an optical member 9 (for example, a nematic liquid crystal layer which may be a nematic liquid crystal layer, and may be described as a nematic liquid crystal layer 9 in the following description) that changes the state of light according to the intensity distribution of an applied electric field. An electric field is applied between them, and the writing light WL is made incident from the glass plate 1 side of the light-light conversion element, and the incident writing light WL is transmitted to the glass plate 1 and the transparent electrode 3. When reaching the photoconductive layer member 7, the electric resistance value of the photoconductive layer member 7 changes corresponding to the optical image by the incident light reaching the photoconductive layer member 7.
At the boundary surface between the photoconductive layer member 7 and the light shielding layer 12, a charge image corresponding to the optical image due to the incident light reaching the photoconductive layer member 7 is generated.

前記のように切換スイッチSWの可動接点が固定接点W
R側に切換えられている状態において、電源10の電圧
が端子5,6を介して印加されている透明電極1,2間
に、前記した光導電層部材7に対して遮光層12と誘電
体ミラー8などとともに直列的な関係に設けられている
ネマチック液晶層9には、入射光による光学像と対応し
た強度分布の電界が加わり、ネマチック液晶層9中の液
晶は、それの分子の光学軸が極板と平行でなくなってガ
ラス板2側に読出し光RLが投射された場合には、ネマ
チック液晶の電気光学効果により液晶層9に加わる電界
強度に応じた画像情報を含んでいる状態の反射光が生じ
て、ガラス板2側には被写体の光学像に対応した光学像
が現われることになる。
As described above, the movable contact of the changeover switch SW is the fixed contact W.
In the state of being switched to the R side, between the transparent electrodes 1 and 2 to which the voltage of the power source 10 is applied via the terminals 5 and 6, the light shielding layer 12 and the dielectric are provided for the photoconductive layer member 7 described above. An electric field having an intensity distribution corresponding to an optical image by incident light is applied to the nematic liquid crystal layer 9 provided in series with the mirror 8 and the like, and the liquid crystal in the nematic liquid crystal layer 9 has an optical axis of its molecule. When the read light RL is projected on the glass plate 2 side because the light is no longer parallel to the polar plate, reflection in a state including image information according to the electric field strength applied to the liquid crystal layer 9 due to the electro-optical effect of the nematic liquid crystal. Light is generated, and an optical image corresponding to the optical image of the subject appears on the glass plate 2 side.

すなわちガラス板2側に投射された読出し光RLは、透
明電極4→ネマチック液晶層9→誘電体ミラー8→遮光
層12のように進行し、その光の大部分は誘電体ミラー
8によりガラス板2側に反射光として戻って行くが、そ
の反射光はネマチック液晶の電気光学効果により液晶層
9に加わる電界強度に応じた画像情報を含んでいる状態
のものになっているので、ガラス板2側には被写体の光
学像に対応した光学像が現われることになる。
That is, the readout light RL projected on the glass plate 2 side proceeds in the order of the transparent electrode 4 → nematic liquid crystal layer 9 → dielectric mirror 8 → light-shielding layer 12, and most of the light is transmitted by the dielectric mirror 8 to the glass plate. Although it returns to the 2 side as reflected light, the reflected light is in a state of containing image information according to the electric field intensity applied to the liquid crystal layer 9 due to the electro-optical effect of the nematic liquid crystal, so that the glass plate 2 An optical image corresponding to the optical image of the subject appears on the side.

そして、前記のようにガラス板2側に投射され、透明電
極4→ネマチック液晶層9→誘電体ミラー8→遮光層1
2のように進行して行く読出し光RLの内で誘電体ミラ
ー8で反射されなかった光は遮光層12により光導電層
部材7側には進行しないように遮光されるために、読出
し光RLがガラス板2側に投射されても、それにより光
導電層部材7の電気抵抗値が変化するようなことはない
から、読出し光RLの投射によっても光導電層部材7と
遮光層12との境界面に入射光による光学像と対応して
生じている電荷像を変化させることがない。
Then, it is projected on the glass plate 2 side as described above, and the transparent electrode 4 → nematic liquid crystal layer 9 → dielectric mirror 8 → light-shielding layer 1
In the read light RL which travels as shown in 2, light not reflected by the dielectric mirror 8 is shielded by the light shielding layer 12 so as not to travel to the photoconductive layer member 7 side, so that the read light RL is Is not projected on the glass plate 2 side, the electric resistance value of the photoconductive layer member 7 does not change. Therefore, the projection of the reading light RL causes the photoconductive layer member 7 and the light shielding layer 12 to be separated from each other. The charge image generated on the boundary surface in correspondence with the optical image by the incident light is not changed.

ところで、前記した第5図示のような構成の光−光変換
素子において、書込み光WLにより光−光変換素子に書
込まれた情報を消去する際には、前記した切換スイッチ
SWにおける切換制御信号の入力端子11に切換制御信
号を供給して切換スイッチSWの可動接点を固定接点E
側に切換え、光−光変換素子における端子5,6の電位
を同じにして透明電極3,4間に電界が生じないように
してから、書込み光WLの入射側とされている前記した
ガラス板1側から一様な強度分布の消去光ELを入射さ
せることにより、前記した消去光ELをガラス板1と透
明電極3とを介して光導電層部材7に与え、光導電層部
材7の電気抵抗値を低下させた状態にして光導電層部材
7と遮光層12との境界面に生じていた電荷像を消去さ
せるのであるが、このように書込み光の入射側から消去
光を入射させなければならないということは、光−光変
換素子を、例えば、書込み光WLが入射される側に撮像
光学系を設けることが必要とされているような構成の撮
像装置、その他、書込み光WLが入射される側に消去光
の入射装置を設けることが困難な事情のある構成態様の
装置に用いるような場合に大きな問題になる。
By the way, in the light-to-light conversion element having the structure as shown in the fifth illustration, when the information written in the light-to-light conversion element by the writing light WL is erased, the changeover control signal in the above-mentioned changeover switch SW is used. A changeover control signal is supplied to the input terminal 11 of the switch SW to change the movable contact of the changeover switch SW to the fixed contact E.
To the side where the writing light WL is incident after the electric potentials of the terminals 5 and 6 in the light-to-light conversion element are made the same so that an electric field is not generated between the transparent electrodes 3 and 4. By inputting the erasing light EL having a uniform intensity distribution from the 1 side, the erasing light EL described above is given to the photoconductive layer member 7 through the glass plate 1 and the transparent electrode 3, and the electrical conductivity of the photoconductive layer member 7 is increased. The electric charge image generated on the boundary surface between the photoconductive layer member 7 and the light shielding layer 12 is erased in a state where the resistance value is reduced. In this way, the erase light must be incident from the incident side of the write light. That is, the light-to-light conversion element, for example, an image pickup apparatus having a configuration in which it is necessary to provide an image pickup optical system on the side where the writing light WL is incident, and the writing light WL is incident. Provide an erasing light injection device on the side where It becomes a big problem when the like used in the device configuration aspect of the difficult circumstances.

それで、前記の問題点が解決できるようにした光−光変
換素子として、第6図に例示されているような構成の光
−光変換素子、すなわち、透明電極と、光導電層部材
と、読出光の波長域の光を反射させるとともに、消去光
の波長域の光を透過させうるような波長選択性を有する
反射鏡部材と、印加された電界の強度分布に応じて光の
状態を変化させる光学部材と、透明電極とを積層してな
る光−光変換素子を提案している。
Therefore, as a light-to-light conversion element capable of solving the above-mentioned problems, a light-to-light conversion element having a structure as illustrated in FIG. 6, that is, a transparent electrode, a photoconductive layer member, and a read-out device. A reflecting mirror member having a wavelength selectivity capable of reflecting light in the wavelength region of light and transmitting light in the wavelength region of erasing light, and changing the state of light according to the intensity distribution of the applied electric field A light-to-light conversion element is proposed, which is formed by laminating an optical member and a transparent electrode.

第6図において1,2はガラス板、3,4は透明電極、
5,6は端子、7は光導電層部材であり、また、8Rは
読出光の波長域の光を反射させるとともに、消去光の波
長域の光を透過させうるような波長選択性を有する誘電
体ミラーであって、この誘電体ミラー8Rとしては例え
ばSiO2の薄膜とTiO2の薄膜との多層膜によるダイクロイ
ック・フィルタによって構成させたものが使用される。
In FIG. 6, 1 and 2 are glass plates, 3 and 4 are transparent electrodes,
Reference numerals 5 and 6 are terminals, 7 is a photoconductive layer member, and 8R is a dielectric having wavelength selectivity capable of reflecting light in the wavelength range of read light and transmitting light in the wavelength range of erase light. As the dielectric mirror 8R, for example, a dielectric mirror 8R configured by a dichroic filter having a multilayer film of a SiO2 thin film and a TiO2 thin film is used.

また、9は印加された電界の強度分布に応じて光の状態
を変化させる光学部材(光変調材層部材…例えば、ニオ
ブ酸リチウム単結晶や硅酸化ビスマスのような電気光学
効果結晶、あるいはネマチック液晶層によって構成させ
た光学部材であるが、以下の説明においては単にニオブ
酸リチウム単結晶9のように記載されることもある)で
あり、図中でWLは書込み光、RLは読出し光、ELは
消去光をそれぞれ示している。
Reference numeral 9 denotes an optical member that changes the state of light according to the intensity distribution of the applied electric field (optical modulation material layer member ... For example, an electro-optical effect crystal such as lithium niobate single crystal or bismuth silicate oxide, or a nematic. Although it is an optical member composed of a liquid crystal layer, it may be simply described as lithium niobate single crystal 9 in the following description), in which WL is writing light, RL is reading light, EL indicates the erasing light.

第7図は、前記した読出光の波長域の光を反射させると
ともに、消去光の波長域の光を透過させうるような波長
選択性を有する誘電体ミラー8Rの波長選択性を例示し
た曲線図であり、第7図に例示した特性を有する誘電体
ミラー8Rは光学的低域通過濾波器として構成されてい
ることを表わしているが、前記した誘電体ミラー8Rは
例えば光学的高域通過濾波器の特性、光学的帯域通過濾
波器の特性、光学的帯域消去濾波器の特性を有するもの
として構成されてもよい。
FIG. 7 is a curve diagram exemplifying the wavelength selectivity of the dielectric mirror 8R having wavelength selectivity capable of reflecting the light in the wavelength range of the read light and transmitting the light in the wavelength range of the erasing light. 7 shows that the dielectric mirror 8R having the characteristics illustrated in FIG. 7 is configured as an optical low pass filter. The dielectric mirror 8R described above, for example, is an optical high pass filter. It may be configured as having the characteristics of an optical filter, the characteristics of an optical bandpass filter, and the characteristics of an optical bandstop filter.

光−光変換素子における誘電体ミラー8Rの波長選択特
性が第7図に示されるものであったとすると、光−光変
換素子に入射させるべき読出し光としては誘電体ミラー
8Rにおける光の透過率の低い波長領域の光(例えば第
7図中の波長λ1の光)を用い、また、それに入射させ
るべき消去光としては誘電体ミラー8Rにおける光の透
過率の高い波長領域の光(例えば第7図中の波長λ2の
光)を用いることにより、第6図示の光−光変換素子に
おいては読出し光の入射側から消去光を入射させるよう
にすることが可能となるのである。
If the wavelength selection characteristic of the dielectric mirror 8R in the light-to-light conversion element is as shown in FIG. 7, the read light to be incident on the light-to-light conversion element is the light transmittance of the dielectric mirror 8R. Light in a low wavelength region (for example, light having a wavelength λ1 in FIG. 7) is used, and as erase light to be incident on it, light in a wavelength region having a high light transmittance in the dielectric mirror 8R (for example, FIG. 7). In the light-to-light conversion element shown in FIG. 6, it is possible to cause the erasing light to enter from the incident side of the reading light by using the light of the middle wavelength λ2).

さて、第6図に示されている構成を有する光−光変換素
子に光学的な情報の書込みを行う場合には、光−光変換
素子の端子5,6に接続された電源10と切換スイッチ
SWとからなる回路の切換スイッチSWを、切換制御信
号の入力端子11に供給された切換制御信号で切換え制
御して、切換スイッチSWの可動接点を固定接点WR側
に切換えた状態にし、前記した透明電極3,4間に電源
10の電圧を与えて、光導電層部材7の両端間に電界が
加わるようにしておいて、光−光変換素子におけるガラ
ス板1側から書込光WLを入射させることにより光−光
変換素子に対する光学的情報の書込みが行われるのであ
る。
When optical information is written in the light-to-light conversion element having the structure shown in FIG. 6, the power source 10 and the changeover switch connected to the terminals 5 and 6 of the light-to-light conversion element. The changeover switch SW of the circuit consisting of SW is controlled by the changeover control signal supplied to the input terminal 11 of the changeover control signal to bring the movable contact of the changeover switch SW to the fixed contact WR side, and the above-mentioned operation is performed. The voltage of the power supply 10 is applied between the transparent electrodes 3 and 4 so that an electric field is applied between both ends of the photoconductive layer member 7, and the writing light WL is incident from the glass plate 1 side of the light-to-light conversion element. By doing so, the optical information is written to the light-light conversion element.

すなわち、前記のように光−光変換素子に入射した書込
み光WLがガラス板1と透明電極3とを透過して光導電
層部材7に到達すると、光導電層部材7の電気抵抗値が
それに到達した入射光による光学像と対応して変化する
ために、光導電層部材7と誘電体ミラー8Rとの境界面
には光導電層部材7に到達した入射光による光学像と対
応した電荷像が生じる。
That is, as described above, when the writing light WL that has entered the light-to-light conversion element passes through the glass plate 1 and the transparent electrode 3 and reaches the photoconductive layer member 7, the electric resistance value of the photoconductive layer member 7 is changed to that. The charge image corresponding to the optical image formed by the incident light reaching the photoconductive layer member 7 is formed on the boundary surface between the photoconductive layer member 7 and the dielectric mirror 8R because it changes corresponding to the optical image formed by the incident light. Occurs.

前記のようにして入射光による光学像と対応する電荷像
の形で書込みが行われた光学的情報を光−光変換素子か
ら再生するのには、切換スイッチSWの可動接点を固定
接点WR側に切換えた状態として、電源10の電圧が端
子5,6を介して透明電極1,2間に印加されている状
態にしておいて、ガラス板2側より図示されていない光
源からの一定の光強度の読出し光RLを投射することに
よって行うことができる。
In order to reproduce the optical information written in the form of the charge image corresponding to the optical image by the incident light from the light-to-light conversion element as described above, the movable contact of the changeover switch SW is fixed to the fixed contact WR side. With the voltage of the power source 10 being applied between the transparent electrodes 1 and 2 via the terminals 5 and 6 in a state of being switched to, the constant light from the light source (not shown) from the glass plate 2 side is This can be done by projecting an intense reading light RL.

すなわち、既述のように入射光による光情報の書込みが
行われた光−光変換素子における光導電層部材7と誘電
体ミラー8Rとの境界面には光導電層部材7に到達した
入射光による光学像と対応した電荷像が生じているか
ら、前記した光導電層部材7に対して誘電体ミラー8R
とともに直列的な関係に設けられている光学部材9(例
えばニオブ酸リチウム単結晶9)には、入射光による光
学像と対応した強度分布の電界が加わっている状態にな
されている。
That is, as described above, the incident light reaching the photoconductive layer member 7 is formed on the boundary surface between the photoconductive layer member 7 and the dielectric mirror 8R in the light-to-light conversion element in which the optical information is written by the incident light. Since a charge image corresponding to the optical image due to is generated, the dielectric mirror 8R is formed on the photoconductive layer member 7 described above.
The optical member 9 (for example, the lithium niobate single crystal 9) provided in series is also in a state in which an electric field having an intensity distribution corresponding to the optical image by the incident light is applied.

そして、前記したニオブ酸リチウム単結晶9の屈折率は
電気光学効果により電界に応じて変化するから、入射光
による光学像と対応した強度分布の電界が加わっている
状態に前記した光導電層部材7に対して誘電体ミラー8
Rとともに直列的な関係に設けられているニオブ酸リチ
ウム単結晶9の屈折率は、既述した入射光による光情報
の書込みにより光−光変換素子における光導電層部材7
と誘電体ミラー8Rとの境界面に光導電層部材7に到達
した入射光による光学像と対応して生じた電荷像に応じ
て変化しているものになる。
Since the refractive index of the lithium niobate single crystal 9 changes according to the electric field due to the electro-optical effect, the photoconductive layer member described above is in a state in which the electric field having the intensity distribution corresponding to the optical image by the incident light is applied. Dielectric mirror 8 for 7
The refractive index of the lithium niobate single crystal 9 provided in series relationship with R is the same as that of the photoconductive layer member 7 in the light-to-light conversion element due to the writing of optical information by the incident light described above.
And the dielectric mirror 8R at the interface between the dielectric mirror 8R and the dielectric mirror 8R are changed according to the optical image formed by the incident light reaching the photoconductive layer member 7 and the corresponding charge image.

それで、ガラス板2側に読出し光RLが投射された場合
には、前記のようにガラス板2側に投射された読出し光
RLが、透明電極4→ニオブ酸リチウム単結晶9→誘電
体ミラー8R→のように進行して行く。
Therefore, when the reading light RL is projected on the glass plate 2 side, the reading light RL projected on the glass plate 2 side as described above is transparent electrode 4 → lithium niobate single crystal 9 → dielectric mirror 8R. → Proceed as follows.

前記した読出し光RLは読出光の波長域の光を反射させ
るとともに、消去光の波長域の光を透過させうるような
波長選択性を有する誘電体ミラー8Rによって反射して
ガラス板2側に反射光として戻って行くが、ニオブ酸リ
チウム単結晶9の屈折率は電気光学効果によって電界に
応じて変化するから、読出し光RLの反射光はニオブ酸
リチウム単結晶9の電気光学効果によりニオブ酸リチウ
ム単結晶9に加わる電界の強度分布に応じた画像情報を
含むものとなって、ガラス板2側に入射光による光学像
に対応した再生光学像を生じさせる。
The read light RL is reflected by the dielectric mirror 8R having a wavelength selectivity that allows the light in the wavelength range of the read light to be reflected and the light in the wavelength range of the erase light to be transmitted, and is reflected to the glass plate 2 side. Although returning as light, the refractive index of the lithium niobate single crystal 9 changes according to the electric field due to the electro-optical effect, so that the reflected light of the read light RL is lithium niobate due to the electro-optical effect of the lithium niobate single crystal 9. Image information corresponding to the intensity distribution of the electric field applied to the single crystal 9 is included, and a reproduced optical image corresponding to the optical image by the incident light is generated on the glass plate 2 side.

前記した再生動作においてガラス板2側から投射された
読出し光RLは、既述のように、透明電極4→ニオブ酸
リチウム単結晶9→誘電体ミラー8R→のように光導電
層部材7の方に進行して行くが、前記の読出し光RLは
それが光導電層部材7に到達する以前に前記の誘電体ミ
ラー8Rによって反射されることにより、ニオブ酸リチ
ウム単結晶9→透明電極4→ガラス板2のような光路を
辿るから、前記した読出し光RLが光導電層部材7に到
達して書込まれた入射光による電荷像に悪影響を与える
ようなことはない。
The readout light RL projected from the glass plate 2 side in the above-described reproducing operation is directed toward the photoconductive layer member 7 as in the transparent electrode 4 → lithium niobate single crystal 9 → dielectric mirror 8R →, as described above. The read-out light RL is reflected by the dielectric mirror 8R before reaching the photoconductive layer member 7, so that the lithium niobate single crystal 9 → transparent electrode 4 → glass. Since the optical path is the same as that of the plate 2, the reading light RL does not adversely affect the charge image due to the incident light written to the photoconductive layer member 7.

このように、第6図示の光−光変換素子では、ガラス板
1側から書込み光WLを入射させることにより書込み動
作が行われ、また、ガラス板2側に読出し光RLを入射
させることにより光学像の再生が行われる。
As described above, in the light-light conversion element shown in FIG. 6, the writing operation is performed by making the writing light WL incident from the glass plate 1 side, and the optical operation is made by making the reading light RL incident on the glass plate 2 side. The image is reproduced.

次に、第6図示の光−光変換素子に書込まれた情報を消
去する場合には、第6図に示されている光−光変換素子
の端子5,6間に接続されている切換スイッチSWにお
ける切換制御信号の入力端子11に供給された切換制御
信号により、切換スイッチSWの可動接点を固定接点E
側に切換えた状態にし、前記した透明電極3,4間を電
気的に短絡して透明電極3,4を同電位にし、光導電層
部材7の両端間に電界が加わらないようにしてから、光
−光変換素子におけるガラス板2側から消去光ELを入
射させるのである。
Next, when erasing the information written in the light-to-light conversion element shown in FIG. 6, the switching connected between the terminals 5 and 6 of the light-to-light conversion element shown in FIG. The movable contact of the changeover switch SW is fixed to the fixed contact E by the changeover control signal supplied to the input terminal 11 of the changeover control signal in the switch SW.
After that, the transparent electrodes 3 and 4 are electrically short-circuited so that the transparent electrodes 3 and 4 have the same potential so that an electric field is not applied across the photoconductive layer member 7. The erasing light EL is made incident from the glass plate 2 side of the light-light conversion element.

前記のように光−光変換素子のガラス板2側に入射した
消去光ELは、ガラス板2→透明電極4→ニオブ酸リチ
ウム単結晶9→誘電体ミラー8R→光導電層部材7のよ
うな経路で光導電層部材7に到達して、その消去光EL
により光導電層部材7の電気抵抗値を低下させ、光導電
層部材7と誘電体ミラー8Rとの境界面に形成されてい
た電荷像を消去させる。
As described above, the erasing light EL incident on the glass plate 2 side of the light-to-light conversion element is as in glass plate 2 → transparent electrode 4 → lithium niobate single crystal 9 → dielectric mirror 8R → photoconductive layer member 7. The photoconductive layer member 7 is reached by a route and the erasing light EL
Thus, the electric resistance value of the photoconductive layer member 7 is reduced, and the charge image formed on the boundary surface between the photoconductive layer member 7 and the dielectric mirror 8R is erased.

このように、第6図示の光−光変換素子では書込み動作
時に光導電層部材7と誘電体ミラー8Rとの境界面に形
成されていた電荷像が、光−光変換素子における読出し
光RLの入射側から光−光変換素子に入射される消去光
ELによって消去させるようにしているから、書込み光
WLが入射される側に撮像光学系を設けることが必要と
されているような構成の撮像装置、その他、書込み光W
Lが入射される側に消去光の入射装置を設けることが困
難な事情のある構成態様の装置にも容易に適用すること
ができ、既述した従来の問題点を良好に解決することが
できる。
In this way, in the light-to-light conversion element shown in FIG. 6, the charge image formed on the boundary surface between the photoconductive layer member 7 and the dielectric mirror 8R at the time of the writing operation becomes the read light RL in the light-to-light conversion element. Since erasing is performed by the erasing light EL that is incident on the light-to-light conversion element from the incident side, imaging having a configuration in which it is necessary to provide an imaging optical system on the side on which the writing light WL is incident. Device, other, writing light W
The present invention can be easily applied to a device having a configuration mode in which it is difficult to provide an erasing light incident device on the side on which L is incident, and can satisfactorily solve the above-mentioned conventional problems. .

(発明が解決しようとする問題点) ところで、既提案の光−光変換素子において、第5図に
例示した構成を有する光−光変換素子における遮光層1
2や誘電体ミラー8及び第6図に例示した構成を有する
光−光変換素子における読出光の波長域の光を反射させ
るとともに、消去光の波長域の光を透過させうるような
波長選択性を有する誘電体ミラー8R(例えばSiO2の薄
膜とTiO2の薄膜との多層膜によるダイクロイック・フィ
ルタ)としては、連続した面状の誘電体ミラーが使用さ
れていたが、既述したように2次元的な電荷像が形成さ
れるべき連続した面状の部材が電気的に良導体であれ
ば、当然のことながらそれの全面が瞬時に同電位になる
ために2次元的な電荷像を走査して時間軸上で直列的な
信号として読出すことが不可能であり、また、前記の連
続した面状の部材における面の拡がり方向における電気
抵抗値が必らずしも充分に大きくない場合にも、高精細
度の信号の読取りを良好に行うことは困難である。
(Problems to be Solved by the Invention) By the way, in the already proposed light-to-light conversion element, the light-shielding layer 1 in the light-to-light conversion element having the structure illustrated in FIG.
2 and the dielectric mirror 8 and the wavelength selectivity such that the light in the wavelength range of the read light in the light-to-light conversion element having the configuration illustrated in FIG. 6 can be reflected and the light in the wavelength range of the erase light can be transmitted. A continuous planar dielectric mirror was used as the dielectric mirror 8R (for example, a dichroic filter including a multilayer film of a thin film of SiO2 and a thin film of TiO2), but as described above, it is two-dimensional. If a continuous planar member on which a different charge image is to be formed is an electrically good conductor, it is natural that the entire surface of the member instantly becomes the same potential, so the two-dimensional charge image is scanned and the It is impossible to read as a serial signal on the axis, and also when the electric resistance value in the spreading direction of the surface of the continuous planar member is not necessarily sufficiently large, Good for reading high-definition signals It is difficult to perform in.

光−光変換素子で使用されている連続した面状の部材に
おいて、例えば誘電体ミラーについてみると、多層膜か
らなる誘電体ミラーにおける面の拡がり方向の電気抵抗
値は金属膜に比べて高い電気抵抗値を有しているといっ
ても無限大ではないから、例えば第6図示の光−光変換
素子における光変調材層部材9と誘電体ミラー8Rとの
部分は第4図のような等価回路で例示されるものにな
る。
In a continuous planar member used in a light-to-light conversion element, for example, when looking at a dielectric mirror, the electric resistance value in the spreading direction of the surface of the dielectric mirror composed of a multilayer film is higher than that of a metal film. Even if it has a resistance value, it is not infinite. Therefore, for example, the portion of the light modulation material layer member 9 and the dielectric mirror 8R in the light-to-light conversion element shown in FIG. 6 is equivalent to that shown in FIG. It will be exemplified by a circuit.

第4図においてR,R…は、面状の多層膜からなる誘電
体ミラー8Rにおける面の拡がりの方向の電気抵抗であ
り、また、C,C…は光−光変換素子を構成している光
変調材層部材9の部分の静電容量値、Coは光導電層部
材7の静電容量をそれぞれ示している。
In FIG. 4, R, R ... Are electrical resistances in the direction in which the surface spreads in the dielectric mirror 8R made of a planar multilayer film, and C, C ... Compose a light-to-light conversion element. The electrostatic capacitance value of the portion of the light modulation material layer member 9 and Co indicate the electrostatic capacitance of the photoconductive layer member 7, respectively.

第4図に示されている等価回路を参照すれば容易に理解
できるように、連続した面状の多層膜からなる誘電体ミ
ラーを反射鏡として使用した光−光変換素子における光
変調材層部材9の部分に、被写体の光学像と対応して生
じた電位分布は、第4図中に示されている抵抗Rと静電
容量Cとによって定まる時定数に従って誘電体ミラーの
表面電位が次第に平均化して行くために、光−光変換素
子の分解能は時間の経過とともに低下して行くので、そ
れの改善策が求められた。
As can be easily understood by referring to the equivalent circuit shown in FIG. 4, a light modulation material layer member in a light-light conversion element using a dielectric mirror composed of a continuous planar multilayer film as a reflecting mirror. The potential distribution generated in the portion 9 corresponding to the optical image of the object is such that the surface potential of the dielectric mirror gradually averages according to the time constant determined by the resistance R and the capacitance C shown in FIG. Since the resolution of the light-to-light conversion element decreases with the lapse of time, the improvement measures have been required.

(問題点を解決するための手段) 本発明は、透明電極と、光導電層部材と、読出光の波長
域の光を反射させるとともに、消去光の波長域の光を透
過させうるような波長選択性を有する反射鏡部材と、印
加された電界の強度分布に応じて光の状態を変化させる
光学部材と、透明電極とを積層してなる光−光変換素子
において、前記した読出光の波長域の光を反射させると
ともに、消去光の波長域の光を透過させうるような波長
選択性を有する反射鏡部材として複数個の微小な反射鏡
が相互に離隔した状態で配列されている構成形態のもの
を用いてなる光−光変換素子を提供するものである。
(Means for Solving Problems) The present invention provides a transparent electrode, a photoconductive layer member, and a wavelength that allows light in the wavelength range of read light to be reflected while transmitting light in the wavelength range of erase light. In the light-to-light conversion element including a reflective mirror member having selectivity, an optical member that changes the state of light according to the intensity distribution of an applied electric field, and a transparent electrode, the wavelength of the read light described above. A configuration in which a plurality of minute reflecting mirrors are arranged in a state of being separated from each other as a reflecting mirror member having a wavelength selectivity capable of reflecting the light in the range and transmitting the light in the wavelength range of the erased light. The present invention provides a light-to-light conversion element using the same.

(実施例) 以下、添付図面を参照して本発明の光−光変換素子の具
体的な内容について詳細に説明する。第1図及び第2図
は本発明の光−光変換素子のそれぞれ異なる実施例を示
す側断面図であり、各図に示されている光−光変換素子
においてGP1,GP2はガラス板、Et1,Et2は透明電極、1
1は端子、PCLは光導電層部材、PMLは印加された
電界の強度分布に応じて光の状態を変化させる光学部材
(例えば、電気光学効果を有するニオブ酸リチュウム単
結晶、あるいは硅酸化ビスマス、もしくはネマチック液
晶の層のような光変調用の材料層などが用いられてよ
い)、Vbは電源、SWは切換スイッチ、WLは書込み
光、RLは読出し光、ELは消去光である。
(Examples) Hereinafter, specific contents of the light-to-light conversion element of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 are side cross-sectional views showing different embodiments of the light-to-light conversion element of the present invention. In the light-to-light conversion element shown in each drawing, GP1 and GP2 are glass plates, and Et1. , Et2 are transparent electrodes, 1
1 is a terminal, PCL is a photoconductive layer member, PML is an optical member that changes the state of light according to the intensity distribution of an applied electric field (for example, lithium niobate single crystal having an electro-optical effect, or bismuth silicate, Alternatively, a material layer for light modulation such as a nematic liquid crystal layer may be used), Vb is a power source, SW is a changeover switch, WL is writing light, RL is reading light, and EL is erasing light.

第1図及び第2図においてDMLrdは読出光RLの波
長域の光を反射させるとともに、消去光ELの波長域の
光を透過させるうるような波長選択性特を有する複数個
の微小な反射鏡Mdr,Mdr…を相互に離隔した状態
で配列させて構成した反射鏡部材である。
In FIG. 1 and FIG. 2, DMLrd is a plurality of minute reflecting mirrors having a wavelength-selective characteristic that reflects light in the wavelength range of the read light RL and transmits light in the wavelength range of the erase light EL. The reflecting mirror member is configured by arranging Mdr, Mdr ... In a state of being separated from each other.

すなわち、本発明の光−光変換素子において、それの構
成部分として使用されている反射鏡部材DMLrdは、
連続した面状の構成形態のものではなく、所定の波長選
択特性を有する微小な大きさに分割された多数の反射鏡
Mdr,Mdr…が相互に離隔して電気的に絶縁された
状態に配列されている構成のものであり、第3図には前
記した複数の反射鏡Mdr,Mdr…の配列の一例態様
が示されているが、前記した反射鏡部材DMLrdを構
成している個々の微小な反射鏡Mdr,Mdr…は、そ
れぞれ例えばSiO2の薄膜とTiO2の薄膜との多層膜による
ダイクロイック・フィルタで構成させた波長選択性を有
する誘電体ミラーが使用されてもよい。
That is, in the light-to-light conversion element of the present invention, the reflecting mirror member DMLrd used as a constituent part of the element is
A large number of reflecting mirrors Mdr, Mdr ... Having a predetermined wavelength selection characteristic, which are not continuous planar structures, are arranged in an electrically insulated state with being separated from each other. FIG. 3 shows an example of the arrangement of the plurality of reflecting mirrors Mdr, Mdr ... As shown in FIG. 3, the individual minute mirrors constituting the reflecting mirror member DMLrd are shown. As the reflective mirrors Mdr, Mdr ..., Dielectric mirrors having wavelength selectivity may be used, each of which is composed of a dichroic filter including a multilayer film of a thin film of SiO2 and a thin film of TiO2.

前記した反射鏡部材DMLrdを構成している個々の微
小な反射鏡Mdr,Mdr…などの個々のものの形状は
任意であってもよく、また、反射鏡部材DMLrdを構
成している個々の微小な反射鏡Mdr,Mdr…などの
大きさ及び配列のピッチは高い分解能の画像が得られる
ようなものにされる。
The shapes of the individual minute reflecting mirrors Mdr, Mdr, etc. forming the reflecting mirror member DMLrd described above may be arbitrary, and the individual minute reflecting mirrors forming the reflecting mirror member DMLrd may have any shape. The sizes of the reflecting mirrors Mdr, Mdr ... And the pitch of the array are set so that an image with high resolution can be obtained.

そして、個々の微小な寸法の反射鏡Mdr,Mdr…の
配列によって反射鏡部材DMLrdを構成したりするこ
とは、周知の薄膜パターンの形成技術の適用によって容
易であり、例えば前記した微小な寸法の反射鏡Mdr,
Mdr…の配列のピッチを4ミクロンとして複数の反射
鏡Mdr,Mdr…を配列して構成した反射鏡部材DM
Lrdを構成部材として用いた光−光変換素子では、2
50本/mmの分解能が得られる。
Further, it is easy to configure the reflecting mirror member DMLrd by arranging the reflecting mirrors Mdr, Mdr ... Of individual minute dimensions by applying a well-known thin film pattern forming technique. Reflector Mdr,
A reflecting mirror member DM configured by arranging a plurality of reflecting mirrors Mdr, Mdr ... With a pitch of 4 m of Mdr.
In the light-light conversion element using Lrd as a constituent member, 2
A resolution of 50 lines / mm can be obtained.

また、複数個の微小な反射鏡が相互に離隔した状態で配
列されている構成形態の反射鏡部材、すなわち、個々の
微小な寸法の反射鏡Mdr,Mdr…の配列によって構
成された反射鏡部材DMLrdにおいて、反射鏡部材D
MLrdにおける前記した微小な寸法の反射鏡Mdr,
Mdr…の相互間の部分を、読出し光を吸収し消去光を
透過させるような光学特性を有するとともに電気抵抗が
極めて大きな遮光性材料を用いて遮光すると、読出し光
RLが光導電層部材PCL側に漏れて画像ににじみを生
じさせるなどの問題点を無くすることができるので、望
ましい実施の態様である。
Further, a plurality of minute reflecting mirrors are arranged in a state of being separated from each other, that is, a reflecting mirror member formed by an arrangement of reflecting mirrors Mdr, Mdr ... In DMLrd, the reflecting mirror member D
In MLrd, the reflecting mirror Mdr having the above-mentioned minute dimensions,
If the light-shielding material that has the optical characteristics of absorbing the reading light and transmitting the erasing light and having an extremely large electric resistance is used to shield the portions between Mdr ..., The reading light RL will be on the photoconductive layer member PCL side. Since it is possible to eliminate problems such as leaking to the image and causing image bleeding, it is a preferable embodiment.

第2図におけるLSLは読出し光に対する遮光層であ
り、この遮光層LSLは前記のように、個々の微小な寸
法の反射鏡Mdr,Mdr…の配列によって構成された
反射鏡部材DMLrdにおける前記した微小な寸法の反
射鏡Mdr,Mdr…の相互間の部分を通過した読出し
光RLが光導電層部材PCL側で画像ににじみを生じさ
せることを防止するために、光導電層部材PCLと反射
鏡部材DMLrdとの境界に設けたものであり、この遮
光層LSLは読出光の波長域の光を吸収しうるととも
に、消去光の波長域の光を透過させうるような波長選択
性を有する遮光部材によって構成される。
LSL in FIG. 2 is a light-shielding layer for read-out light, and this light-shielding layer LSL is, as described above, a minute portion of the reflecting mirror member DMLrd constituted by the array of the reflecting mirrors Mdr, Mdr ... In order to prevent the reading light RL that has passed through the portions between the reflecting mirrors Mdr, Mdr ... Of various sizes from causing the image bleeding on the photoconductive layer member PCL side, the photoconductive layer member PCL and the reflecting mirror member The light-shielding layer LSL is provided at the boundary with the DMLrd, and this light-shielding layer LSL is capable of absorbing light in the wavelength range of the read light and having a wavelength-selective light-shielding member capable of transmitting light in the wavelength range of the erase light. Composed.

さて、第1図及び第2図に示す光−光変換素子に光学的
な情報の書込みを行う場合には、光−光変換素子に接続
された電源Vbと切換スイッチSWとからなる回路の切
換制御信号の入力端子11に供給された切換制御信号で
切換スイッチSWの可動接点を固定接点WR側に切換え
た状態にし、前記した透明電極Et1,Et2間に電源Vbの
電圧を与えて、光導電層部材PCLの両端間に電界が加
わるようにしておいて、光−光変換素子におけるガラス
板GP1側から書込光WLを入射させることにより光−光
変換素子に対する光学的情報の書込みが行われるのであ
る。
When optical information is written in the light-to-light conversion element shown in FIGS. 1 and 2, switching of a circuit including a power supply Vb connected to the light-to-light conversion element and a changeover switch SW is performed. The movable contact of the changeover switch SW is switched to the fixed contact WR side by the changeover control signal supplied to the control signal input terminal 11, and the voltage of the power supply Vb is applied between the transparent electrodes Et1 and Et2 to photoconductive With the electric field applied between both ends of the layer member PCL, the writing light WL is incident from the glass plate GP1 side of the light-to-light conversion element to write the optical information to the light-to-light conversion element. Of.

すなわち、前記のように光−光変換素子に入射した書込
み光WLがガラス板GP1と透明電極Et1とを透過して光導
電層部材PCLに到達すると、光導電層部材PCLの電
気抵抗値がそれに到達した入射光による光学像と対応し
て変化するために、光導電層部材PCLと反射鏡部材D
MLrdとの境界面には光導電層部材PCLに到達した
入射光による光学像と対応した電荷像が生じる。
That is, as described above, when the writing light WL that has entered the light-to-light conversion element passes through the glass plate GP1 and the transparent electrode Et1 and reaches the photoconductive layer member PCL, the electrical resistance value of the photoconductive layer member PCL is changed to that. The photoconductive layer member PCL and the reflecting mirror member D are changed in order to change corresponding to the optical image due to the incident light that has arrived.
A charge image corresponding to the optical image by the incident light reaching the photoconductive layer member PCL is generated at the boundary surface with MLrd.

前記のようにして入射光による光学像と対応する電荷像
の形で書込みが行われた光学的情報を光−光変換素子か
ら再生するのには、切換スイッチSWの可動接点を固定
接点WR側に切換えた状態として、電源Vbの電圧が透
明電極Et1,Et2間に印加されている状態にしておいて、
ガラス板2側より図示されていない光源からの一定の光
強度の読出し光RLを投射することによって行うことが
できる。
In order to reproduce the optical information written in the form of the charge image corresponding to the optical image by the incident light from the light-to-light conversion element as described above, the movable contact of the changeover switch SW is fixed to the fixed contact WR side. With the state switched to, the voltage of the power supply Vb is applied between the transparent electrodes Et1 and Et2,
This can be performed by projecting the reading light RL having a constant light intensity from a light source (not shown) from the glass plate 2 side.

すなわち、既述のように入射光による光情報の書込みが
行われた光−光変換素子における光導電層部材PCLと
反射鏡部材DMLrdとの境界面には光導電層部材PC
Lに到達した入射光による光学像と対応した電荷像が生
じているから、前記した光導電層部材PCLに対して反
射鏡部材DMLrdとともに直列的な関係に設けられて
いる光学部材PML{印加された電界の強度分布に応じ
て光の状態を変化させる光学部材(例えば、電気光学効
果を有するニオブ酸リチュウム単結晶、あるいは硅酸化
ビスマス、もしくはネマチック液晶の層のような光変調
用の材料層などが用いられてよい)以下の説明ではニオ
ブ酸リチュウム単結晶による光変調材層部材PMLのよ
うに記載されることもある}には、入射光による光学像
と対応した強度分布の電界が加わっている状態になされ
ている。
That is, as described above, the photoconductive layer member PC is provided on the boundary surface between the photoconductive layer member PCL and the reflecting mirror member DMLrd in the light-to-light conversion element in which the optical information is written by the incident light.
Since the charge image corresponding to the optical image by the incident light reaching L is generated, the optical member PML {which is provided in series with the reflecting mirror member DMLrd on the photoconductive layer member PCL is applied. Optical member that changes the state of light according to the intensity distribution of the electric field (for example, a lithium niobate single crystal having an electro-optical effect, or a material layer for light modulation such as a layer of bismuth silica oxide or a nematic liquid crystal) May be used.) In the following description, it may be described as a light modulating material layer member PML made of a single crystal of lithium niobate}, and an electric field having an intensity distribution corresponding to an optical image by incident light is added. It is in a state of being.

そして、前記したニオブ酸リチュウム単結晶による光変
調材層部材PMLの屈折率は電気光学効果により電界に
応じて変化するから、入射光による光学像と対応した強
度分布の電界が加わっている状態に前記した光導電層部
材PCLに対して反射鏡部材DMLrdとともに直列的
な関係に設けられているニオブ酸リチュウム単結晶によ
る光変調材層部材PMLの屈折率は、既述した入射光に
よる光情報の書込みにより光−光変換素子における光導
電層部材PCLと反射鏡部材DMLrdとの境界面に光
導電層部材PCLに到達した入射光による光学像と対応
して生じた電荷像に応じて変化しているものになる。
Then, since the refractive index of the light modulation material layer member PML made of the above-mentioned lithium niobate single crystal changes according to the electric field due to the electro-optical effect, the electric field having the intensity distribution corresponding to the optical image by the incident light is applied. The refractive index of the light modulating material layer member PML made of the lithium niobate single crystal provided in series with the photoconductive layer member PCL together with the reflecting mirror member DMLrd is the same as that of the optical information of the incident light described above. It changes according to the charge image generated corresponding to the optical image due to the incident light reaching the photoconductive layer member PCL at the interface between the photoconductive layer member PCL and the reflecting mirror member DMLrd in the light-to-light conversion element by writing. It will be

光−光変換素子に対してガラス板GP2側に読出し光RL
が投射された場合には、ガラス板GP2側に投射された読
出し光RLは、透明電極Et2→ニオブ酸リチウム単結晶
による光変調材層部材PML→反射鏡部材DMLrd→
のように進行して行く。
Read light RL on the glass plate GP2 side with respect to the light-light conversion element
When is projected, the read light RL projected on the glass plate GP2 side is transparent electrode Et2 → light modulation material layer member PML made of lithium niobate single crystal → reflecting mirror member DMLrd →
It progresses like.

前記した読出光RLは読出光の波長域の光を反射させる
とともに、消去光の波長域の光を透過させうるような波
長選択性を有する反射鏡部材DMLrdによって反射し
てガラス板GP2側に反射光として戻って行くが、ニオブ
酸リチウム単結晶による光変調材層部材PMLの屈折率
は電気光学効果によって電界に応じて変化するから、読
出し光RLの反射光はニオブ酸リチウム単結晶による光
変調材層部材PMLの電気光学効果によりニオブ酸リチ
ウム単結晶による光変調材層部材PMLに加わる電界の
強度分布に応じた画像情報を含むものとなって、ガラス
板GP2側に入射光による光学像に対応した再生光学像を
生じさせる。
The read light RL is reflected by the reflecting mirror member DMLrd having wavelength selectivity that allows light in the wavelength range of the read light to pass through and also allows light in the wavelength range of the erase light to pass through, and is reflected to the glass plate GP2 side. Although returning as light, the refractive index of the light modulation material layer member PML made of the lithium niobate single crystal changes according to the electric field due to the electro-optic effect, so that the reflected light of the read light RL is optically modulated by the lithium niobate single crystal. Due to the electro-optical effect of the material layer member PML, image information corresponding to the intensity distribution of the electric field applied to the light modulation material layer member PML by the lithium niobate single crystal is included, and an optical image by the incident light is formed on the glass plate GP2 side. Generate a corresponding reconstructed optical image.

前記した再生動作においてガラス板GP2側から投射され
た読出し光RLは、既述のように、透明電極Et2→ニオ
ブ酸リチウム単結晶による光変調材層部材PML→反射
鏡部材DMLrd→のように光導電層部材PCLの方に
進行して行くが、前記の読出し光RLはそれが光導電層
部材PCLに到達する以前に前記の反射鏡部材DMLr
dによって反射されることにより、ニオブ酸リチウム単
結晶による光変調材層部材PML→透明電極Et2→ガラ
ス板GP2のような光路を辿るから、前記した読出し光R
Lが光導電層部材PCLに到達して書込まれた入射光に
よる電荷像に悪影響を与えるようなことはない。
As described above, the read light RL projected from the glass plate GP2 side in the reproducing operation described above is emitted as the transparent electrode Et2 → the light modulation material layer member PML by the lithium niobate single crystal → the reflecting mirror member DMLrd →. Although traveling toward the conductive layer member PCL, the read-out light RL is transmitted to the reflecting mirror member DMLr before it reaches the photoconductive layer member PCL.
By being reflected by d, the light modulating material layer member PML made of lithium niobate single crystal follows an optical path such as the transparent electrode Et2 → the glass plate GP2.
There is no possibility that L reaches the photoconductive layer member PCL and adversely affects the charge image due to the incident light written.

このように、第1図及び第2図示の光−光変換素子で
は、ガラス板GP1側から書込み光WLを入射させること
により書込み動作が行われ、また、ガラス板GP2側に読
出し光RLを入射させることにより光学像の再生が行わ
れる。
As described above, in the light-light conversion element shown in FIGS. 1 and 2, the writing operation is performed by making the writing light WL incident from the glass plate GP1 side, and the reading light RL is made incident on the glass plate GP2 side. By doing so, the optical image is reproduced.

次に、第1図及び第2図示の光−光変換素子に書込まれ
た情報を消去する場合には、第1図及び第2図に示され
ている光−光変換素子の端子間に接続されている切換ス
イッチSWにおける切換制御信号の入力端子11に供給
された切換制御信号により、切換スイッチSWの可動接
点を固定接点E側に切換えた状態にし、前記した透明電
極Et1,Et2間を電気的に短絡して透明電極Et1,Et2を同
電位にし、光導電層部材PCLの両端間に電界が加わら
ないようにしてから、第1図及び第2図示の光−光変換
素子については、ガラス板GP2側から消去光ELを入射
させることによって行う。
Next, when erasing the information written in the light-to-light conversion element shown in FIGS. 1 and 2, between the terminals of the light-to-light conversion element shown in FIGS. The movable contact of the changeover switch SW is switched to the fixed contact E side by the changeover control signal supplied to the input terminal 11 of the changeover control signal in the connected changeover switch SW, and the transparent electrodes Et1 and Et2 are connected to each other. After electrically short-circuiting the transparent electrodes Et1 and Et2 to the same potential to prevent an electric field from being applied between both ends of the photoconductive layer member PCL, the light-light conversion element shown in FIGS. This is performed by making the erasing light EL enter from the glass plate GP2 side.

第1図及び第2図示の光−光変換素子においては、ガラ
ス板GP2側から入射させた消去光ELが、ガラス板GP2→
透明電極Et2→ニオブ酸リチウム単結晶による光変調材
層部材PML→反射鏡部材DMLrd→光導電層部材P
CLのような経路で光導電層部材PCLに到達して、そ
の消去光ELにより光導電層部材PCLの電気抵抗値を
低下させ、光導電層部材PCLと反射鏡部材DMLrd
との境界面に形成されていた電荷像を消去させる。
In the light-light conversion element shown in FIGS. 1 and 2, the erasing light EL incident from the glass plate GP2 side is the glass plate GP2 →
Transparent electrode Et2 → light modulation material layer member PML made of lithium niobate single crystal → reflecting mirror member DMLrd → photoconductive layer member P
The photoconductive layer member PCL reaches the photoconductive layer member PCL by a route such as CL, and the erasing light EL reduces the electric resistance value of the photoconductive layer member PCL, and the photoconductive layer member PCL and the reflecting mirror member DMLrd.
The charge image formed on the boundary surface between and is erased.

既述のように第1図及び第2図に示す光−光変換素子で
は、読出し光RLの波長域の光を反射させるとともに、
消去光ELの波長域の光を透過させうるような波長選択
性特を有する複数個の微小な反射鏡Mdr,Mdr…を
相互に離隔した状態で配列させて構成した反射鏡部材D
MLrdを備えているから、本発明の光−光変換素子に
おいては、高い分解能の画像が得られるのである。
As described above, in the light-light conversion element shown in FIGS. 1 and 2, while reflecting the light in the wavelength region of the read light RL,
A reflecting mirror member D formed by arranging a plurality of minute reflecting mirrors Mdr, Mdr ... Having a wavelength selective characteristic capable of transmitting light in the wavelength region of the erasing light EL.
Since the light-to-light conversion element of the present invention is provided with the MLrd, an image with high resolution can be obtained.

(発明の効果) 以上、詳細に説明したところから明らかなように、本発
明の光−光変換素子は、透明電極と、光導電層部材と、
読出光の波長域の光を反射させるとともに、消去光の波
長域の光を透過させうるような波長選択性を有する反射
鏡部材と、印加された電界の強度分布に応じて光の状態
を変化させる光学部材と、透明電極とを積層してなる光
−光変換素子において、前記した読出光の波長域の光を
反射させるとともに、消去光の波長域の光を透過させう
るような波長選択性を有する反射鏡部材として複数個の
微小な反射鏡が相互に離隔した状態で配列されている構
成形態のものを用いてなる光−光変換素子であるから、
本発明の光−光変換素子では2次元的な走査によって高
精細度の信号の読取りを良好に行うことも容易であり、
本発明によれば既述した従来の光−光変換素子における
問題点は良好に解決できる。
(Effects of the Invention) As is apparent from the above description, the light-to-light conversion element of the present invention includes a transparent electrode, a photoconductive layer member, and
A reflector member having wavelength selectivity that reflects light in the wavelength range of read light and transmits light in the wavelength range of erase light, and changes the light state according to the intensity distribution of the applied electric field. In a light-to-light conversion element formed by laminating an optical member and a transparent electrode, a wavelength selectivity capable of reflecting light in the wavelength range of the reading light and transmitting light in the wavelength range of the erasing light. Since it is a light-light conversion element using a configuration in which a plurality of minute reflecting mirrors are arranged in a state of being separated from each other as a reflecting mirror member having
In the light-to-light conversion element of the present invention, it is easy to satisfactorily read a high-definition signal by two-dimensional scanning.
According to the present invention, the above-mentioned problems of the conventional light-to-light conversion element can be solved well.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の光−光変換素子のそれぞれ
異なる実施例を示す側断面図、第3図は反射鏡部材の一
部の平面図、第4図は光−光変換素子の問題点を説明す
るための光−光変換素子の一部の等価回路図、第5図及
び第6図は光−光変換素子の従来例の構成を示す側断面
図、第7図は誘電体ミラーの波長選択特性例を示す曲線
図である。 1,2,GP1,GP2…ガラス板、3,4,Et1,Et2…透明
電極、5,6,11…端子、7,PCL…光導電層部
材、9,PML…印加された電界の強度分布に応じて光
の状態を変化させる光学部材、10,Vb…電源、SW
…切換スイッチ、WL…書込み光、RL…読出し光、E
L…消去光、LSL…読出し光に対する遮光層、DML
rd…読出光RLの波長域の光を反射させるとともに、
消去光ELの波長域の光を透過させうるような波長選択
性特を有する複数個の微小な反射鏡Mdrを相互に離隔
した状態で配列させて構成した反射鏡部材、12…遮光
層、8…誘電体ミラー、8R…読出光の波長域の光を反
射させるとともに、消去光の波長域の光を透過させうる
ような波長選択性を有する誘電体ミラー、
1 and 2 are side sectional views showing different embodiments of the light-to-light converting element of the present invention, FIG. 3 is a plan view of a part of the reflecting mirror member, and FIG. 4 is a light-to-light converting element. FIG. 5 and FIG. 6 are side sectional views showing the configuration of a conventional example of the light-to-light conversion element, and FIG. It is a curve figure which shows the wavelength selection characteristic example of a body mirror. 1, 2, GP1, GP2 ... Glass plate, 3, 4, Et1, Et2 ... Transparent electrode, 5, 6, 11 ... Terminal, 7, PCL ... Photoconductive layer member, 9, PML ... Intensity distribution of applied electric field Optical member for changing the state of light in accordance with, 10, Vb ... Power source, SW
... Changeover switch, WL ... Write light, RL ... Read light, E
L ... Erase light, LSL ... Light shield layer for read light, DML
rd ... While reflecting the light in the wavelength range of the read light RL,
A reflecting mirror member constituted by arranging a plurality of minute reflecting mirrors Mdr having a wavelength selective characteristic capable of transmitting light in the wavelength range of the erasing light EL in a state of being separated from each other; ... dielectric mirror, 8R ... dielectric mirror having wavelength selectivity capable of reflecting light in the wavelength range of read light and transmitting light in the wavelength range of erase light,

フロントページの続き (72)発明者 浅倉 伝 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 (56)参考文献 特開 昭49−11149(JP,A) 特開 昭49−77596(JP,A) 特開 昭48−23459(JP,A) 特公 昭44−9517(JP,B1)Front page continuation (72) Inventor Asakura Den 12, 3-12 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa Japan Victor Company of Japan (56) References JP-A-49-11149 (JP, A) JP-A-49- 77596 (JP, A) JP-A-48-23459 (JP, A) JP-B-44-9517 (JP, B1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明電極と、光導電層部材と、読出光の波
長域の光を反射させるとともに、消去光の波長域の光を
透過させうるような波長選択性を有する反射鏡部材と、
印加された電界の強度分布に応じて光の状態を変化させ
る光学部材と、透明電極とを積層してなる光−光変換素
子において、前記した読出光の波長域の光を反射させる
とともに、消去光の波長域の光を透過させうるような波
長選択性を有する反射鏡部材として複数個の微小な反射
鏡が相互に離隔した状態で配列されている構成形態のも
のを用いてなる光−光変換素子
1. A transparent electrode, a photoconductive layer member, and a reflecting mirror member having wavelength selectivity capable of reflecting light in the wavelength region of read light and transmitting light in the wavelength region of erase light.
In a light-to-light conversion element formed by laminating a transparent electrode and an optical member that changes the state of light according to the intensity distribution of an applied electric field, the light in the wavelength range of the above-mentioned reading light is reflected and erased. Light-light using a structure in which a plurality of minute reflecting mirrors are arranged in a state of being separated from each other as a reflecting mirror member having a wavelength selectivity capable of transmitting light in the wavelength range of light Conversion element
【請求項2】複数個の微小な反射鏡が相互に離隔した状
態で配列されている構成形態の反射鏡部材における少な
くとも前記した微小な反射鏡の無い部分に、読出光の波
長域の光に対する遮光手段を設けた請求項1の光−光変
換素子
2. The light in the wavelength range of the reading light is provided at least in a portion of the reflecting mirror member having a structure in which a plurality of minute reflecting mirrors are arranged in a state of being separated from each other, at a portion without the minute reflecting mirrors. The light-to-light conversion element according to claim 1, further comprising a light shielding means.
JP63180563A 1988-07-20 1988-07-20 Light-to-light conversion element Expired - Lifetime JPH0648330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180563A JPH0648330B2 (en) 1988-07-20 1988-07-20 Light-to-light conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180563A JPH0648330B2 (en) 1988-07-20 1988-07-20 Light-to-light conversion element

Publications (2)

Publication Number Publication Date
JPH0229715A JPH0229715A (en) 1990-01-31
JPH0648330B2 true JPH0648330B2 (en) 1994-06-22

Family

ID=16085467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180563A Expired - Lifetime JPH0648330B2 (en) 1988-07-20 1988-07-20 Light-to-light conversion element

Country Status (1)

Country Link
JP (1) JPH0648330B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911149A (en) * 1972-05-29 1974-01-31
JPS4977596A (en) * 1972-11-28 1974-07-26
JPS5823459A (en) * 1981-08-03 1983-02-12 Mitsubishi Electric Corp Plastic molded type semiconductor device

Also Published As

Publication number Publication date
JPH0229715A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
US4281904A (en) TIR Electro-optic modulator with individually addressed electrodes
US4367925A (en) Integrated electronics for proximity coupled electro-optic devices
KR940010415B1 (en) Light conversion element and imaging device
CA1171508A (en) Proximity coupled electro-optic devices
US4450459A (en) Differential encoding for fringe field responsive electro-optic line printers
US4724467A (en) Light blocking stop for electro-optic line printers
US4421387A (en) Extended thin film light modulator/scanner
US4376568A (en) Thick film line modulator
US4389659A (en) Electro-optic line printer
JPH0664268B2 (en) Imaging device
US5054892A (en) Photo-to-photo conversion element and its applied system
US4437106A (en) Method and means for reducing illumination nulls in electro-optic line printers
JPH0648330B2 (en) Light-to-light conversion element
US4920417A (en) Photo-to-photo conversion element and its applied system
JPH01213620A (en) Light/light converter
JPH0463320A (en) Photo-photo conversion element
US3997243A (en) Color image reproduction system
JPH0357455B2 (en)
JPS585718A (en) Information recorder by integrated optical waveguides
JPH068935B2 (en) Light-to-light conversion element
JPH02250029A (en) Light-light converting element and image pickup device
SU959151A1 (en) Relief-graphic apparatus for optical display of data
SU708814A1 (en) Spatial light modulator
JPH0437889A (en) Two-dimensional optical information splitting/combining device
JP2908811B2 (en) Hologram recording device