JPH0647895U - Mock-up test device for integrated pressurized water reactor - Google Patents

Mock-up test device for integrated pressurized water reactor

Info

Publication number
JPH0647895U
JPH0647895U JP085078U JP8507892U JPH0647895U JP H0647895 U JPH0647895 U JP H0647895U JP 085078 U JP085078 U JP 085078U JP 8507892 U JP8507892 U JP 8507892U JP H0647895 U JPH0647895 U JP H0647895U
Authority
JP
Japan
Prior art keywords
pressure
pressure vessel
tank
water
circulation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP085078U
Other languages
Japanese (ja)
Inventor
潔 加藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP085078U priority Critical patent/JPH0647895U/en
Publication of JPH0647895U publication Critical patent/JPH0647895U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】 【目的】 炉心を電気ヒータで模擬して、一体型加圧水
炉についての実証試験を行う。 【構成】 この考案のモックアップ試験装置は、予め炉
心部に電気ヒータ14を内蔵した圧力容器11に、循環
ポンプ12および蒸気発生器13を閉ループ状に接続し
て形成された冷却水循環模擬系10と、圧力容器11内
の電気ヒータ14下方に炉停止液貯蔵タンク21の下端
部を連通させると共に当該タンク21の上端部に循環ポ
ンプ12の吐出圧により作動する水圧作動弁23を設置
して形成された炉停止液注入模擬系20とを備えてい
る。
(57) [Summary] [Purpose] A demonstration test is conducted on an integrated pressurized water reactor by simulating the core with an electric heater. According to the mock-up test apparatus of the present invention, a cooling water circulation simulation system 10 is formed by connecting a circulation pump 12 and a steam generator 13 in a closed loop to a pressure vessel 11 in which an electric heater 14 is built in a core portion in advance. And the lower end of the furnace stop liquid storage tank 21 is connected to the lower side of the electric heater 14 in the pressure vessel 11, and a water pressure operating valve 23 that operates by the discharge pressure of the circulation pump 12 is installed at the upper end of the tank 21. And a simulated system 20 for injecting the reactor stop solution.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、一体型加圧水炉のモックアップ試験装置に関する。 The present invention relates to a mock-up test device for an integrated pressurized water reactor.

【0002】[0002]

【従来の技術】[Prior art]

安全系および炉システムの簡素化等の観点から、制御棒をなくしかつ主冷却系 を一体化した一体型加圧水炉(SPWR:System-Integrated Pressrized water Reacter)が提案されている。 From the viewpoint of simplifying the safety system and the reactor system, an integrated pressurized water reactor (SPWR) has been proposed that eliminates the control rod and integrates the main cooling system.

【0003】 かかる一体型加圧水炉においては、図3に示すように、圧力容器1の内部に、 炉停止液たる硼酸水を貯蔵したポイズンタンク3、炉内の一次冷却水を循環させ る循環ポンプ4、循環する一次冷却水と外部からの二次冷却水とを熱交換させて 蒸気を取り出す蒸気発生器5が設けられ、随時、炉心2で加熱された一次冷却水 を循環ポンプ4によって蒸気発生器5に圧送し、そこで二次冷却水に熱を与えた 後、タンク3外周側の通路6を通じて炉心2の下方に戻すようになっている。In such an integrated pressurized water reactor, as shown in FIG. 3, inside a pressure vessel 1, a poison tank 3 storing boric acid water as a reactor stop solution, and a circulation pump for circulating primary cooling water in the reactor 4. A steam generator 5 is provided to take out steam by exchanging heat between the circulating primary cooling water and the secondary cooling water from the outside. At any time, the circulation pump 4 generates the primary cooling water heated in the core 2 to generate steam. After being pressure-fed to the vessel 5, heat is given to the secondary cooling water there, it is returned to the lower side of the core 2 through the passage 6 on the outer peripheral side of the tank 3.

【0004】 一方、ポイズンタンク3の上部には、前記循環ポンプ4の吐出圧が低下するよ うな異常時に炉を停止させるべく水圧作動弁7が設置されている。水圧作動弁7 は、炉の正常な運転時には閉弁状態とされるが、循環ポンプ4の吐出圧低下時に は自動的に開弁してタンク3内の硼酸水を炉心2に注入する。On the other hand, a water pressure operating valve 7 is installed above the poison tank 3 in order to stop the furnace when there is an abnormality such that the discharge pressure of the circulation pump 4 decreases. The water pressure operated valve 7 is closed during normal operation of the furnace, but automatically opens when the discharge pressure of the circulation pump 4 drops, and boric acid water in the tank 3 is injected into the core 2.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、前述のような一体型加圧水炉の建設に当たっては、あらかじめ炉の 概念が成立することを実証しなければならず、本出願人は、先に、炉心2を電気 ヒータで模擬した実物大のモックアップ試験装置を提案した。しかし、実物大モ デルで試験装置を製作すると、電気ヒータには膨大な電気出力 (30万kw程度 ) が必要となり、実現不可能であることがわかった。 By the way, in constructing the integrated pressurized water reactor as described above, it is necessary to prove in advance that the concept of the reactor is established. A mockup test device was proposed. However, it was found that if a test device was manufactured using a full-scale model, the electric heater would require an enormous electric output (about 300,000 kW), which is not feasible.

【0006】 そこで、現実に得られる電気出力(0.3万kw程度) に応じて試験装置に寸法制 限を加えることが考えられる。しかしながら、実機と同様の自然対流を得るため には、試験装置内における冷却水等のヘッド差 (圧力差) を実機と同一に設定し なければならず、この場合の試験装置は、高さ寸法が実機と同一で、径寸法のみ を縮小した構造となり、施工上、蒸気発生器、ポイズンタンク等を組み込むこと ができなくなってしまう。Therefore, it is conceivable to limit the size of the test device according to the electric output (about 330,000 kw) actually obtained. However, in order to obtain the same natural convection as the actual machine, the head difference (pressure difference) of the cooling water, etc. in the test equipment must be set to the same as that of the actual machine. However, the structure is the same as the actual machine, but only the diameter is reduced, and it becomes impossible to incorporate a steam generator, poison tank, etc. in construction.

【0007】 仮に、現実に得られる電気出力を実物大モデルで必要な電気出力の1/100 (3 0万kw→ 0.3万kw) とした場合、試験装置の直径を実機の1/10 (流路断面 積を実機の1/100)にしなければならない。いま、実機の直径を6mとすると、試 験装置の直径は60cmとなり、到底、前述のような各種の機器を組み込むことは できない。Assuming that the electric output actually obtained is 1/100 (300,000 kw → 30 thousand kw) of the electric output required for the full-scale model, the diameter of the test apparatus is 1/10 (flow rate) of the actual machine. The road cross-sectional area must be 1/100 of the actual machine). Now, assuming that the diameter of the actual machine is 6 m, the diameter of the test equipment will be 60 cm, and it is impossible to incorporate the above-mentioned various devices at all.

【0008】 この考案の目的は、炉心を電気ヒータで模擬した場合でも、一体型加圧水炉に ついての実証試験を行うことができるモックアップ試験装置を提供することにあ る。An object of the present invention is to provide a mockup test apparatus capable of conducting a verification test on an integrated pressurized water reactor even when the core is simulated by an electric heater.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

前記目的を達成するために、この考案のモックアップ試験装置は、従来計画中 の一体型の試験装置において圧力容器内に組み込むべき循環ポンプ、蒸気発生器 および炉停止液貯蔵タンクを圧力容器外に取り出し、これらを配管により結んで 構成したものである。即ち、予め炉心部に電気ヒータを内蔵した圧力容器に、循 環ポンプおよび蒸気発生器を閉ループ状に接続して形成された冷却水循環模擬系 と、前記圧力容器内の電気ヒータ下方に炉停止液貯蔵タンクの下端部を連通させ ると共に当該タンクの上端部に前記循環ポンプの吐出圧により作動する水圧作動 弁を設置して形成された炉停止液注入模擬系とを備えたものである。 In order to achieve the above-mentioned object, the mock-up test apparatus of the present invention has a circulation pump, a steam generator, and a reactor stop solution storage tank which are to be installed in a pressure vessel in the previously planned integrated test apparatus. It is taken out and connected by piping. That is, a cooling water circulation simulation system formed by connecting a circulation pump and a steam generator in a closed loop to a pressure vessel having an electric heater built in the core in advance, and a reactor stop solution below the electric heater in the pressure vessel. The reactor bottom liquid injection simulation system is formed by connecting the lower end of the storage tank to the upper end of the storage tank and installing a water pressure operation valve that operates by the discharge pressure of the circulation pump at the upper end of the tank.

【0010】[0010]

【作用】[Action]

この考案によれば、蒸気発生器、炉停止液貯蔵タンク等を個別に設置すること により、これら蒸気発生器等を圧力容器内に設置する必要がなくなり、圧力容器 内の径方向寸法を大幅に縮小することができる。このため、炉心を電気ヒータで 模擬した場合にも、この電気ヒータを現実的な電気出力でもって通電して実証試 験を行うことができる。 According to this invention, by separately installing the steam generator, the reactor shutdown liquid storage tank, etc., it is not necessary to install these steam generators, etc. in the pressure vessel, and the radial dimension in the pressure vessel is greatly increased. Can be reduced. Therefore, even when the core is simulated with an electric heater, it is possible to conduct a verification test by energizing this electric heater with a realistic electric output.

【0011】[0011]

【実施例】【Example】

以下、本考案の実施例を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

【0012】 図1に、本考案のモックアップ試験装置の一実施例を示す。このモックアップ 試験装置は、実機(SPWR)における一次冷却水の循環流れを模擬する冷却水 循環模擬系10と、循環ポンプ4 (図3) の吐出圧が低下した時の炉停止系を模 擬する炉停止液注入模擬系20と、圧力容器1内の水位が低下した時の炉停止系 を模擬する均圧注入模擬系30とから主に構成されている。FIG. 1 shows an embodiment of the mockup test apparatus of the present invention. This mock-up test device simulates a cooling water circulation simulation system 10 that simulates the circulation flow of primary cooling water in an actual machine (SPWR), and a reactor shutdown system when the discharge pressure of the circulation pump 4 (Fig. 3) decreases. It mainly comprises a reactor stop liquid injection simulating system 20 and a pressure equalizing injection simulating system 30 simulating the reactor stop system when the water level in the pressure vessel 1 is lowered.

【0013】 冷却水循環模擬系10は、図示するように、圧力容器11、循環ポンプ12お よび蒸気発生器13を閉ループ状に接続して形成される。ここで、圧力容器11 内の空間は、一次冷却水の流路11aとされ、その流路11aの高さ方向の寸法 は実機と同一に、径方向の寸法 (容器11の内径) は実機の約1/10 にそれぞれ 設定されている。この圧力容器11内の空間即ち流路11aには、容器11の所 定高さ位置より分岐された吸込ライン16を介して循環ポンプ12の吸込口が連 通され、循環ポンプ12の吐出口には、吐出ライン17を介して蒸気発生器13 の吸水口が接続されている。一方、圧力容器11内の底部には、炉心を模擬する 電気ヒータ14が設置され、このヒータ14の下方に前記蒸気発生器13の排水 口が帰還ライン18により接続されている。As shown in the figure, the cooling water circulation simulation system 10 is formed by connecting a pressure vessel 11, a circulation pump 12 and a steam generator 13 in a closed loop. Here, the space inside the pressure vessel 11 is the flow path 11a of the primary cooling water, the dimension of the flow path 11a in the height direction is the same as the actual machine, and the dimension in the radial direction (the inner diameter of the vessel 11) is the same as that of the real machine. Each is set to about 1/10. The suction port of the circulation pump 12 is connected to the space inside the pressure container 11, that is, the flow path 11a, through a suction line 16 branched from a predetermined height position of the container 11, and is connected to the discharge port of the circulation pump 12. Is connected to the water inlet of the steam generator 13 via a discharge line 17. On the other hand, an electric heater 14 simulating a reactor core is installed at the bottom of the pressure vessel 11, and the drain port of the steam generator 13 is connected below the heater 14 by a return line 18.

【0014】 前記炉停止液注入模擬系20は、圧力容器11にポイズンタンク(炉停止液貯 蔵タンク)21を接続して形成されている。ポイズンタンク21は、圧力容器1 1と同様に、その高さ寸法が実機と同一に、内径は実機の約1/10にそれぞれ設定 されている。ポイズンタンク21の下端部は、注入ライン22を介して圧力容器 11内のヒータ14下方に連通され、ポイズンタンク21の上端部には、前記循 環ポンプ12の吐出圧低下時に作動する水圧作動弁23が設置されている。水圧 作動弁23は、導圧ライン24を通じて印加される循環ポンプ12の吐出圧が低 下した時に自動的に開弁して、圧力容器11内の冷却水を注入ライン25を通じ てポイズンタンク21内に注入する。ここに、ポイズンタンク21内には、前記 圧力容器11内の冷却水よりも比重の大きな硼酸水が充填されており、前記水圧 作動弁23の開弁によりそのタンク21内の硼酸水は注入ライン22を通じて圧 力容器11内に注入される。なお、循環ポンプ12より導圧ライン24を通じて 水圧作動弁23に導かれた冷却水は、帰還ライン26を通じて圧力容器11内に 戻される。The furnace stop solution injection simulation system 20 is formed by connecting a poison tank (furnace stop solution storage tank) 21 to the pressure vessel 11. Like the pressure vessel 11, the poison tank 21 has the same height dimension as that of the actual machine and the inner diameter thereof is set to about 1/10 of that of the actual machine. The lower end of the poison tank 21 is communicated with the lower portion of the heater 14 in the pressure vessel 11 via an injection line 22, and the upper end of the poison tank 21 is a hydraulic valve that operates when the discharge pressure of the circulation pump 12 decreases. 23 are installed. The water pressure operation valve 23 is automatically opened when the discharge pressure of the circulation pump 12 applied through the pressure guiding line 24 is lowered, and the cooling water in the pressure vessel 11 is injected through the injection line 25 into the poison tank 21. Inject. Here, the poison tank 21 is filled with boric acid water having a larger specific gravity than the cooling water in the pressure vessel 11, and by opening the hydraulically operated valve 23, the boric acid water in the tank 21 is injected into the injection line. It is injected into the pressure vessel 11 through 22. The cooling water introduced from the circulation pump 12 to the hydraulic pressure actuating valve 23 through the pressure guiding line 24 is returned to the pressure vessel 11 through the return line 26.

【0015】 図2は、水圧作動弁23の一例を示したものである。この水圧作動弁23にお いては、互いに液密状態で区画された上部水圧室23aと下部水圧室23bとを 有し、正常運転時には、導圧ライン24を通して上部水圧室23aに導かれた吐 出圧によりピストン23cを押し上げて弁体23dを弁座23eに着座させ、下 部水圧室23bをポイズンタンク21内と遮断するようになっている。また、循 環ポンプ12の吐出圧が低下した時には、ウェイト23fの重量によりピストン 23cを引き下げて弁体23dを開き、下部水圧室23bをポイズンタンク21 内と連通させる。ここに、下部水圧室23bには、圧力容器11内の冷却水がラ イン25により導かれているため、前記弁体23dの開弁と同時に、ポイズンタ ンク21内に冷却水が導入されることとなる。FIG. 2 shows an example of the hydraulically operated valve 23. The water pressure operation valve 23 has an upper water pressure chamber 23a and a lower water pressure chamber 23b which are partitioned in a liquid-tight state with each other, and in normal operation, the discharge water introduced to the upper water pressure chamber 23a through the pressure transmission line 24. The piston 23c is pushed up by the output pressure so that the valve body 23d is seated on the valve seat 23e, and the lower hydraulic chamber 23b is shut off from the inside of the poison tank 21. Further, when the discharge pressure of the circulation pump 12 decreases, the weight of the weight 23f pulls down the piston 23c to open the valve body 23d, so that the lower hydraulic chamber 23b communicates with the inside of the poison tank 21. Since the cooling water in the pressure vessel 11 is guided to the lower hydraulic chamber 23b by the line 25, the cooling water is introduced into the poison tank 21 at the same time as the valve body 23d is opened. Becomes

【0016】 前記均圧注入模擬系30は、図1に示すように、圧力容器11に閉ループ状に 接続された均圧タンク33を有し、圧力容器11内の水位が所定レベル以下に低 下した時に均圧タンク33内の硼酸水を圧力容器11内に注入する。即ち、均圧 タンク33と圧力容器11とを結ぶ注入ライン31および均圧ライン32には、 それぞれ水圧作動弁34,35が介設され、これら水圧作動弁34,35には、 弁駆動ポンプ36の吐出圧が導圧ライン37を通じて印加される。弁駆動ポンプ 36の吸込口は、圧力容器11内に所定高さレベルAで連通しており、圧力容器 11内の水位がレベルA以下に低下した時に水圧作動弁34,35に印加される 吐出圧がなくなるようになっている。なお、弁駆動ポンプ36から導圧ライン3 7を通じて水圧作動弁34,35に導かれた冷却水は、帰還ライン38により圧 力容器11内に戻される。As shown in FIG. 1, the pressure equalization injection simulation system 30 has a pressure equalization tank 33 connected to the pressure vessel 11 in a closed loop shape, and the water level in the pressure vessel 11 is lowered to a predetermined level or lower. At that time, the boric acid water in the pressure equalizing tank 33 is injected into the pressure vessel 11. That is, water injection valves 34 and 35 are respectively provided in the injection line 31 and the pressure equalization line 32 that connect the pressure equalizing tank 33 and the pressure vessel 11, and the water pressure operating valves 34 and 35 are provided with a valve drive pump 36. The discharge pressure is applied through the pressure guiding line 37. The suction port of the valve drive pump 36 communicates with the pressure vessel 11 at a predetermined height level A, and is applied to the water pressure actuated valves 34 and 35 when the water level in the pressure vessel 11 drops below the level A. There is no pressure. The cooling water led from the valve drive pump 36 to the hydraulic pressure actuating valves 34, 35 through the pressure guiding line 37 is returned to the pressure vessel 11 by the return line 38.

【0017】 次に、上記構成のモックアップ試験装置の動作について説明する。Next, the operation of the mockup test apparatus having the above configuration will be described.

【0018】 圧力容器11内の一次冷却水は、随時、電気ヒータ14で加熱されて上昇し、 循環ポンプ12を経て蒸気発生器13に圧送される。蒸気発生器13に送られた 冷却水は、そこで二次冷却水に熱を与えた後、帰還ライン18を通って圧力容器 11内に戻され、再び電気ヒータ14で加熱され、以上の経路を循環することと なる。この冷却水の循環中、循環ポンプ12から吐出される冷却水の一部は、導 圧ライン24を通じて水圧作動弁23に導かれ、帰還ライン26を通じて圧力容 器11内に戻される。いま、循環ポンプ12が正常に駆動しているときには、そ のポンプ12の吐出圧により水圧作動弁23は閉弁状態に維持されているが、循 環ポンプ12の停止等ポンプ12の吐出圧が低下するような事態を生じさせると 、水圧作動弁23は開弁状態となる。これにより、圧力容器11内の冷却水が注 入ライン25を通ってポイズンタンク21内に注入される一方、ポイズンタンク 21の硼酸水が注入ライン22を通って圧力容器11内に注入される。The primary cooling water in the pressure vessel 11 is heated by the electric heater 14 at any time to rise, and is sent under pressure to the steam generator 13 via the circulation pump 12. The cooling water sent to the steam generator 13 gives heat to the secondary cooling water there, and then returns to the inside of the pressure vessel 11 through the return line 18 and is heated again by the electric heater 14 to go through the above path. It will circulate. During the circulation of the cooling water, a part of the cooling water discharged from the circulation pump 12 is guided to the hydraulically operated valve 23 through the pressure guiding line 24 and returned to the pressure vessel 11 through the return line 26. Now, when the circulation pump 12 is operating normally, the hydraulic pressure operated valve 23 is maintained in the closed state due to the discharge pressure of the pump 12, but the discharge pressure of the pump 12 due to the stop of the circulation pump 12, etc. When a situation in which the water pressure is lowered occurs, the hydraulically operated valve 23 is opened. As a result, the cooling water in the pressure vessel 11 is injected into the poison tank 21 through the injection line 25, while the boric acid water in the poison tank 21 is injected into the pressure vessel 11 through the injection line 22.

【0019】 また、配管破断等を想定して、例えば吐出ライン17より冷却水を漏洩させる と、圧力容器11内の水位が低下していくことになる。いま、圧力容器11内の 水位が設定レベルA以下に低下すると、弁駆動ポンプ36への冷却水の吸い込み がなくなり、ポンプ36より水圧作動弁34,35に印加される吐出圧がなくな る。このとき、圧力容器11内の圧力に対して均圧タンク33内の圧力の方が格 段に小さいことから、まず、一方の水圧作動弁34が開弁状態となり、圧力容器 11内の蒸気が均圧ライン31を通じて均圧タンク33に送られる。その後、均 圧タンク33と圧力容器11とが均圧状態となると、他方の水圧作動弁35も開 弁状態となり、均圧タンク33内の硼酸水が注入ライン32を通って圧力容器1 1内に注入される。If the cooling water is leaked from the discharge line 17 on the assumption that the pipe is broken, the water level in the pressure vessel 11 will be lowered. Now, when the water level in the pressure vessel 11 drops below the set level A, the cooling water is no longer sucked into the valve drive pump 36, and the discharge pressure applied from the pump 36 to the hydraulically operated valves 34, 35 disappears. At this time, since the pressure in the pressure equalizing tank 33 is much smaller than the pressure in the pressure vessel 11, first, one of the water pressure actuated valves 34 is opened to prevent the steam in the pressure vessel 11 from being opened. It is sent to the pressure equalizing tank 33 through the pressure equalizing line 31. After that, when the pressure equalizing tank 33 and the pressure vessel 11 are brought into a pressure equalizing state, the other water pressure actuating valve 35 is also opened, and the boric acid water in the pressure equalizing tank 33 passes through the injection line 32 and enters the pressure vessel 11. Is injected into.

【0020】 以上、本実施例によれば、循環ポンプ12、蒸気発生器13およびポイズンタ ンク21を圧力容器11外に設置し、これらを配管で結んでモックアップ装置を 構成したことにより、圧力容器11内に蒸気発生器13等を組み込む必要がなく 、圧力容器11を大幅に縮径することが可能となる。したがって、炉心部に電気 ヒータ14を適用した場合、そのヒータ14用の電源として既存のものを用いて 、実機と同様の熱流動を得ることができようになり、よって実機に対する実証試 験を健全に行うことができる。As described above, according to the present embodiment, the circulation pump 12, the steam generator 13, and the poison tank 21 are installed outside the pressure vessel 11, and these are connected by piping to form a mock-up device. It is not necessary to incorporate the steam generator 13 or the like into the pressure vessel 11, and it is possible to significantly reduce the diameter of the pressure vessel 11. Therefore, when the electric heater 14 is applied to the core part, it becomes possible to obtain the same heat flow as the actual machine by using the existing power source for the heater 14, so that the verification test for the actual machine is sound. Can be done.

【0021】 また、本実施例によれば、循環ポンプ12、蒸気発生器13等を圧力容器11 外に設置したことにより、実証試験に使用する濃度計、温度計、圧力計等の各種 センサを前記機器の外側より取り付けることができる。即ち、従来の一体型の試 験装置にあっては、各種センサも圧力容器内に組み込まなければならず、取付・ 交換等作業が煩雑となるが、圧力容器11等の外周面上に各種センサを取り付け ることができれば、取付・交換等作業が極めて簡単となる。Further, according to the present embodiment, by installing the circulation pump 12, the steam generator 13 and the like outside the pressure vessel 11, various sensors such as a densitometer, a thermometer and a pressure gauge used in the verification test can be provided. It can be attached from the outside of the device. That is, in the conventional integrated test apparatus, various sensors have to be incorporated in the pressure vessel, and the work such as mounting and replacement is complicated, but various sensors are mounted on the outer peripheral surface of the pressure vessel 11 or the like. If it can be installed, the work such as installation and replacement will be extremely easy.

【0022】 また、本実施例によれば、ポイズンタンク21を圧力容器11と別体としたこ とにより、ポイズンタンク21用の断熱材として通常 (市販) のものを使用する ことができる。通常、実機のポイズンタンクには、硼酸水の自然循環を確保する ために断熱材を設けて、硼酸水の温度を冷却水の温度よりも低く保つことが望ま れる。この場合、従来の一体型試験装置にあっては、実機と同様の水中断熱材を 使用する必要が生じるが、本実施例の試験装置にあっては、ポイズンタンク21 の外周側に断熱材を取り付けることで、水中断熱材を使用しなくてすむようにな る。Further, according to this embodiment, since the poison tank 21 is formed separately from the pressure vessel 11, a normal (commercially available) heat insulating material for the poison tank 21 can be used. Usually, it is desirable that the poison tank of the actual equipment is provided with a heat insulating material in order to ensure natural circulation of boric acid water to keep the temperature of boric acid water lower than the temperature of cooling water. In this case, in the conventional integrated test apparatus, it is necessary to use the same underwater heat insulating material as the actual machine, but in the test apparatus of this embodiment, the heat insulating material is provided on the outer peripheral side of the poison tank 21. By installing it, you can avoid using underwater insulation.

【0023】[0023]

【考案の効果】[Effect of device]

以上要するに本考案によれば、炉心を電気ヒータで模擬したモックアップ試験 装置によって一体型加圧水炉の実証試験を行うことができる。 In short, according to the present invention, the demonstration test of the integrated pressurized water reactor can be performed by the mock-up test device simulating the core with the electric heater.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例のモックアップ試験装置を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a mockup test apparatus according to an embodiment of the present invention.

【図2】モックアップ試験装置に適用される水圧作動弁
の一例を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a hydraulically operated valve applied to a mockup test device.

【図3】一体型加圧水炉の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of an integrated pressurized water reactor.

【符号の説明】[Explanation of symbols]

10 冷却水循環模擬系 11 圧力容器 12 循環ポンプ 13 蒸気発生器 14 電気ヒータ 20 炉停止液注入模擬系 21 ポイズンタンク (炉停止液貯蔵タンク) 23 水圧作動弁 30 均圧注入模擬系 10 Cooling Water Circulation Simulation System 11 Pressure Vessel 12 Circulation Pump 13 Steam Generator 14 Electric Heater 20 Reactor Stop Solution Injection Simulation System 21 Poison Tank (Reactor Stop Solution Storage Tank) 23 Water Pressure Operated Valve 30 Equal Pressure Injection Simulation System

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 予め炉心部に電気ヒータを内蔵した圧力
容器に、循環ポンプおよび蒸気発生器を閉ループ状に接
続して形成された冷却水循環模擬系と、前記圧力容器内
の電気ヒータ下方に炉停止液貯蔵タンクの下端部を連通
させると共に当該タンクの上端部に前記循環ポンプの吐
出圧により作動する水圧作動弁を設置して形成された炉
停止液注入模擬系とを備えたことを特徴とする一体型加
圧水炉のモックアップ試験装置。
1. A cooling water circulation simulation system which is formed by connecting a circulation pump and a steam generator in a closed loop to a pressure vessel having an electric heater built in the core in advance, and a furnace below the electric heater in the pressure vessel. And a reactor stop solution injection simulation system formed by connecting a lower end of the stop solution storage tank to the upper end of the tank and installing a hydraulically operated valve that operates by the discharge pressure of the circulation pump at the upper end of the tank. Mock-up test equipment for integrated pressurized water reactor.
JP085078U 1992-12-10 1992-12-10 Mock-up test device for integrated pressurized water reactor Pending JPH0647895U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP085078U JPH0647895U (en) 1992-12-10 1992-12-10 Mock-up test device for integrated pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP085078U JPH0647895U (en) 1992-12-10 1992-12-10 Mock-up test device for integrated pressurized water reactor

Publications (1)

Publication Number Publication Date
JPH0647895U true JPH0647895U (en) 1994-06-28

Family

ID=13848590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP085078U Pending JPH0647895U (en) 1992-12-10 1992-12-10 Mock-up test device for integrated pressurized water reactor

Country Status (1)

Country Link
JP (1) JPH0647895U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315938A (en) * 2006-05-26 2007-12-06 Toshiba Corp Method of testing flow force vibration in natural circulation type boiling water reactor
KR101456575B1 (en) * 2013-03-05 2014-10-31 한국원자력연구원 In vessel boron injection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315938A (en) * 2006-05-26 2007-12-06 Toshiba Corp Method of testing flow force vibration in natural circulation type boiling water reactor
JP4675829B2 (en) * 2006-05-26 2011-04-27 株式会社東芝 Hydrodynamic vibration test method for natural circulation boiling water reactor
KR101456575B1 (en) * 2013-03-05 2014-10-31 한국원자력연구원 In vessel boron injection system

Similar Documents

Publication Publication Date Title
KR101215323B1 (en) A nuclear reactor assembly including a nuclear reactor, an emergency cooling system for the nuclear reactor, and an emergency cooling method of the nuclear reactor
EP0232186B1 (en) Passive safety system for a pressurized water nuclear reactor
CN107293338B (en) Nuclear reactor safety system
KR101389836B1 (en) Separate type safety injection tank
CN104269196B (en) Device and method for carrying out tests for stimulating environment in high energy pipeline rupture accident in nuclear power plant
KR101651466B1 (en) Verification test device for passive residual heat removal system of a research reactor
Kumar et al. Experimental and computational simulation of thermal stratification in large pools with immersed condenser
EP0188861B1 (en) Training device for nuclear power plant operators
CN102693673A (en) Simulation running apparatus for passive safety master system of pressurized water reactor nuclear island
US4702879A (en) Nuclear reactor with passive safety system
JPH0647895U (en) Mock-up test device for integrated pressurized water reactor
US5120490A (en) Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
US4828787A (en) Apparatus for simulation of the operation of a pressurized water nuclear reactor
KR101307744B1 (en) Apparatus and method for resupplying reactor coolant
JP2007101332A (en) Aqueous boric acid solution injector and aqueous boric acid solution injection method
CN105741887B (en) The passive Reactor cavity flooding system and method for nuclear power station
CN108257691B (en) Device for researching influence of power failure of whole plant and large-break accident in shell on containment
CN106323624B (en) A kind of performance of safety valve experimental rig that can be boosted and test method
JPH0643282A (en) Hydrothermal force mock-up test device for integral pressurized water reactor
CN104751907A (en) Passive water replenishment system for spent fuel pool in nuclear power plant
CN106205750A (en) A kind of nuclear power station passive cooling system apparatus for demonstrating
Mull et al. Safety cases for design-basis accidents in LWRs featuring passive systems
Ozdemir et al. Thermal stratification modeling in suppression pool with GOTHIC 8.0
Pla et al. Simulation of steam generator plugging tubes in a PWR to analyze the operating impact
KR101697593B1 (en) Nuclear power plant