JPH0647386B2 - 4-wheel steering system for vehicles - Google Patents

4-wheel steering system for vehicles

Info

Publication number
JPH0647386B2
JPH0647386B2 JP2158096A JP15809690A JPH0647386B2 JP H0647386 B2 JPH0647386 B2 JP H0647386B2 JP 2158096 A JP2158096 A JP 2158096A JP 15809690 A JP15809690 A JP 15809690A JP H0647386 B2 JPH0647386 B2 JP H0647386B2
Authority
JP
Japan
Prior art keywords
wheel steering
vehicle speed
steering
front wheel
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2158096A
Other languages
Japanese (ja)
Other versions
JPH0374284A (en
Inventor
啓隆 金沢
輝彦 高谷
直人 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2158096A priority Critical patent/JPH0647386B2/en
Publication of JPH0374284A publication Critical patent/JPH0374284A/en
Publication of JPH0647386B2 publication Critical patent/JPH0647386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前輪の転舵に応じて後輪をも転舵するように
した車両の4輪操舵装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel steering system for a vehicle, which also steers rear wheels in response to front wheel steering.

(従来の技術) 従来より、この種の車両の4輪操舵装置として種々のも
のが知られている。例えば、特開昭55−91457号
公報に開示されているものでは、低車速域では後輪を前
輪とは逆位相とし、中,高車速域では同位相としてい
る。また、特開昭56−167562号公報に開示され
るものでは低車速域では転舵比を零とし、中,高車速域
では後輪を前輪と同位相としている。すなわち、何れに
おいても中,高車速域では後輪を前輪と同位相としてレ
ーンチェンジ等を良好に行うようにしたものである。
(Prior Art) Various types of four-wheel steering devices for vehicles of this type have been conventionally known. For example, in the one disclosed in Japanese Patent Application Laid-Open No. 55-91457, the rear wheel has the opposite phase to the front wheel in the low vehicle speed range, and the same phase in the middle and high vehicle speed ranges. Further, in the one disclosed in JP-A-56-167562, the steering ratio is zero in the low vehicle speed range, and the rear wheels are in phase with the front wheels in the medium and high vehicle speed ranges. That is, in both cases, the rear wheels are in phase with the front wheels in the middle and high vehicle speed ranges so that lane changes and the like can be performed well.

(発明が解決しようとする課題) ところで、中,高車速域のうち特に応答性が必要とされ
る中車速域でレーンチェンジを行う場合に、これを応答
性良くするためには、通常、大きな横方向加速度(以
下、横Gという)を発生させる必要がある。いま、この
横Gの発生過程をステアリング操作開始から順を追って
仔細にみると、先ずステアリング操作により前輪にすべ
り角が発生し、続いて該前輪に横力(コーナリングフォ
ース)が発生してヨーレートが発生する。このため、続
いて後輪にすべり角が発生し、このことにより該後輪に
横力が発生して横Gが発生することになる。
(Problems to be Solved by the Invention) By the way, in the case of performing a lane change in a medium vehicle speed range in which the responsiveness is particularly required in the middle and high vehicle speed ranges, in order to improve the responsiveness, it is usually large. It is necessary to generate lateral acceleration (hereinafter referred to as lateral G). Now, looking at the generation process of the lateral G in detail from the start of the steering operation, first, the steering operation causes a slip angle on the front wheels, and then the lateral force (cornering force) is generated on the front wheels to increase the yaw rate. Occur. Therefore, a slip angle is subsequently generated in the rear wheel, which causes a lateral force in the rear wheel and a lateral G.

しかるに、上記従来のものでは、前輪転舵開始と同時に
後輪をそれに応じて同位相に転舵している関係上、ヨー
レートの発生量は少なく、しかもこのヨーレートの発生
時期は前輪転舵開始時より若干遅れる。このためレーン
チェンジの際には、前輪転舵の開始時に車両の前部はこ
の前輪転舵の開始に合せて素早く向きを変更せず、車両
の回頭性が悪いという欠点があった。
However, in the above-mentioned conventional one, since the rear wheels are steered in the same phase at the same time when the front wheels are started to be steered, the amount of yaw rate generated is small, and the yaw rate is generated when the front wheels are steered. A little later. For this reason, at the time of lane change, the front part of the vehicle does not quickly change its direction at the start of the front wheel steering, and there is a drawback that the turning performance of the vehicle is poor.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、前輪転舵の開始初期には後輪転舵特性に基いて後
輪を前輪転舵方向とは反対の逆位相に転舵し、その後、
後輪を前輪転舵方向と同じ同位相に転舵させることによ
り、ヨーレートの発生量を大きくし、且つその発生時期
を早めて、前輪転舵開始時の車両の回頭性を顕著に向上
させることにある。
The present invention has been made in view of such a point, and an object thereof is to steer the rear wheels in the opposite phase to the front wheel steering direction based on the rear wheel steering characteristics at the initial stage of the front wheel steering. And then
By steering the rear wheels in the same phase as the front-wheel steering direction, the yaw rate is increased and the timing is increased to significantly improve the turning performance of the vehicle at the start of front-wheel steering. It is in.

さらに、前輪転舵の際に上記のように後輪を逆位相から
同位相に転舵制御する場合に、その逆位相から同位相へ
の後輪転舵特性を一定とすると、レーンチェンジ時での
運転者のステアリング操舵状態に正確に合致した後輪転
舵制御とは若干異なる制御が行われることになる憾みが
生じるため、本発明では、更に、前輪転舵の際にその前
輪転舵角の大きさを所定サンプリング内での前輪転舵角
信号等の変化の絶対量の大きさにより予測し、この予測
結果に基いて上記後輪の逆位相から同位相への後輪転舵
特性を変更することにより、レーンチェンジ時での運転
者のステアリング操舵状態に一層正確に合致した後輪の
転舵制御を行って、車両の運転操作感を一層向上させる
ことをも本発明の目的とする。
Further, when the rear wheels are steered from the opposite phase to the same phase when steering the front wheels as described above, if the rear wheel steering characteristic from the opposite phase to the same phase is made constant, at the time of lane change, The present invention is further confused that a control slightly different from the rear wheel steering control that exactly matches the steering state of the driver is performed. Therefore, in the present invention, the front wheel steering angle is further increased during the front wheel steering. Of the rear wheel steering characteristics from the opposite phase to the same phase of the rear wheels based on the result of this prediction based on the magnitude of the absolute amount of change in the front wheel steering angle signal, etc. within a predetermined sampling. Accordingly, it is another object of the present invention to further improve the driving operation feeling of the vehicle by performing steering control of the rear wheels that more accurately matches the steering state of the driver during lane change.

(課題の解決するための手段) 上記の目的を達成するため、本発明の構成は、前輪を転
舵するステアリング装置と、後輪を転舵する後輪転舵装
置と、車速を検出する車速検出手段と、前輪の転舵状態
を検出する前輪転舵状態検出手段と、上記車速検出手段
の信号を受け、中車速域において前輪転舵開始初期に後
輪を前輪転舵方向とは反対の逆位相に転舵し、その後、
前輪転舵方向と同じ同位相に転舵する後輪転舵特性に基
いて上記後輪転舵装置を制御する制御装置とを設ける。
そして、上記制御装置を、上記中車速域における前輪転
舵時に、上記前輪転舵状態検出手段の出力信号の所定サ
ンプリング時間内での変化の絶対量を算出し、この変化
の絶対量の大きさにより前輪転舵角の大きさを予測し、
この予測結果に応じて上記後輪転舵特性を変更するよう
上記後輪転舵装置を制御する構成としたものである。
(Means for Solving the Problem) In order to achieve the above object, the configuration of the present invention has a steering device that steers front wheels, a rear wheel steering device that steers rear wheels, and a vehicle speed detection device that detects a vehicle speed. Means, a front wheel turning state detecting means for detecting the turning state of the front wheels, and a signal from the vehicle speed detecting means, and in the middle vehicle speed range, the rear wheels are opposite to the front wheel turning direction at the beginning of the front wheel turning start. Steer to phase, then
A control device for controlling the rear wheel steering device based on the rear wheel steering characteristic of steering in the same phase as the front wheel steering direction is provided.
Then, when the front wheels are steered in the medium vehicle speed range, the control device calculates the absolute amount of change in the output signal of the front wheel steering state detecting means within a predetermined sampling time, and the magnitude of the absolute amount of this change. Predict the size of the front wheel steering angle by
The configuration is such that the rear wheel steering device is controlled so as to change the rear wheel steering characteristic according to the prediction result.

(作用) 以上の構成により、本発明では、中車速域においてレー
ンチェンジすべく前輪の転舵が開始されると、後輪転舵
特性に基いて先ず後輪が前輪とは逆位相に転舵され、そ
の後に従来と同様に前輪転舵方向と同じ同位相に転舵さ
れる。このことにより、後輪の上記逆位相への転舵に伴
いヨーレートの発生量が大になり且つその発生時期が早
くなるので、その前輪の転舵開始時には、車両の前部が
素早く前輪の転舵方向に向きを変えて、車両の回頭性が
良くなると共に、その後は、後輪の前輪とは同位相の転
舵により、後輪に横力が作用して、車両のレーンチェン
ジが良好に行われる。
(Operation) With the above configuration, in the present invention, when the front wheels are steered to change the lane in the medium vehicle speed range, the rear wheels are steered in the opposite phase to the front wheels based on the rear wheel steering characteristics. After that, the steering wheel is steered to the same phase as the front wheel steering direction as in the conventional case. As a result, the amount of yaw rate generated increases with the steering of the rear wheels to the opposite phase, and the timing of the generation of yaw rate increases, so that when the steering of the front wheels is started, the front part of the vehicle is swung quickly. By turning to the rudder direction, the turning performance of the vehicle improves, and after that, by steering in the same phase as the front wheels of the rear wheels, lateral force acts on the rear wheels and the lane change of the vehicle is improved. Done.

しかも、上記レーンチェンジ時での後輪の逆位相から同
位相への後輪転舵特性は、そのレーンチェンジ時での前
輪転舵状態検出手段の出力信号の所定サンプリング時間
内での変化の絶対量の大きさにより判断した前輪転舵角
の大きさの予測結果に応じて変更されるので、例えば所
定サンプリング時間での前輪転舵状態検出手段の出力信
号の変化の絶対量が大きくて前輪転舵角が大きいと予測
された素早いレーンチェンジの要求時では、後輪の逆位
相への最大転舵角を小さく設定するよう後輪転舵特性を
変更すれば、後輪の逆位相への転舵による大きなヨーレ
ートの発生を確保しつつ、横力を早期に発生させること
ができるので、運転者のステアリング操作に良好に合致
した一層良好なレーンチェンジを行わせることができ
る。
Moreover, the rear wheel steering characteristic from the reverse phase to the same phase of the rear wheels at the time of the lane change is the absolute amount of change in the output signal of the front wheel steering state detection means at the time of the lane change within the predetermined sampling time. Is changed according to the prediction result of the size of the front wheel steering angle determined by the size of the front wheel steering angle, for example, the absolute amount of change in the output signal of the front wheel steering state detection means at a predetermined sampling time is large and the front wheel steering angle is large. When a quick lane change is predicted that the angle is large, if the rear wheel steering characteristics are changed so that the maximum steering angle of the rear wheels to the opposite phase is set to a small value, the rear wheels will be steered to the opposite phase. Since it is possible to generate the lateral force at an early stage while ensuring the generation of a large yaw rate, it is possible to perform a better lane change that is in good agreement with the steering operation of the driver.

(発明の効果) 以上説明したような本発明の車両の4輪操舵装置によれ
ば、中車速域で前輪転舵の開始初期に後輪を後輪転舵特
性に基いて逆位相に転舵し、その後、後輪を同位相に転
舵するようにしたので、前輪の転舵開始時に大きなヨー
レートの素早い発生を促すことができ、レーンチェンジ
初期での車両を回頭性の向上を図ることができる。
(Effects of the Invention) According to the four-wheel steering system for a vehicle of the present invention as described above, the rear wheels are steered in the opposite phase based on the rear wheel steering characteristics at the initial stage of starting the front wheel steering in the medium vehicle speed range. After that, since the rear wheels are steered in the same phase, it is possible to promptly generate a large yaw rate at the start of steering the front wheels, and it is possible to improve the turning ability of the vehicle in the early stage of the lane change. .

しかも、上記後輪の逆位相から同位相への後輪転舵特性
を、所定サンプリング時間内での前輪転舵状態検出手段
の出力信号の変化の絶対量の大きさにより判断した前輪
転舵角の大きさの予測結果に応じて変更したので、運転
者のステアリング操舵状態に合致した一層に良好な車両
のレーンチェンジを行わせることができる。
Moreover, the rear wheel steering characteristic from the opposite phase to the same phase of the rear wheels is determined by the absolute amount of change in the output signal of the front wheel steering state detection means within a predetermined sampling time. Since the size is changed according to the predicted result, it is possible to perform a better lane change of the vehicle that matches the steering state of the driver.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の第1実施例を示す車両の4輪操舵装置
の全体構成を示し、1は左右の前輪2a,2bを転舵す
るステアリング装置であって、該ステアリング装置1は
ステアリング3と、ラック&ピニオン機構4と、左右の
タイロッド5,5と、左右のナックルアーム6,6とか
ら成る。
FIG. 1 shows the overall construction of a four-wheel steering system for a vehicle showing a first embodiment of the present invention. Reference numeral 1 denotes a steering system for steering left and right front wheels 2a, 2b. A rack and pinion mechanism 4, left and right tie rods 5, 5, and left and right knuckle arms 6, 6.

また、7は左右の後輪8a,8bを転舵する後輪転舵装
置であって、該後輪転舵装置7は、両端が左右の後輪8
a,8bにナックルアーム9,9およびタイロッド1
0,10を介して連結された車体横方向に延びるロッド
11を備えている。該ロッド11は、ロッド11に形成
したラック12に噛合するピニオン13の回転動により
車体横方向に移動するもので、上記ピニオン13はピニ
オン軸14および一対の傘歯車15a,15bよりなる
伝動機構15を介してピニオン駆動用パルスモータ16
に回転動可能に連結されている。また、上記ロッド11
には、該ロッド11を操作ロッドとするパワーシリンダ
17が接続されている。該パワーシリンダ17は、ロッ
ド11に固着したピニオン17aにより車体横方向に仕
切られた左転用油圧室17bおよび右転用油圧室17c
を備えているとともに、該各油圧室17b,17cはそ
れぞれ油圧通路17d,17eを介して、パワーシリン
ダ17への油供給方向および油圧を制御するコントロー
ルバルブ18に連通し、該コントロールバルブ18には
油供給通路19および油戻し路20を介して油圧ポンプ
21が接続されている。上記コントロールバルブ18
は、ピニオン軸14の回転方向を検出して後輪8a,8
bの左方向転舵(図中反時計方向への転舵)時には油供
給通路19を左転用油圧室17bに連通すると共に右転
用油圧室17cを油戻し路20に連通する一方、後輪8
a,8bの右方向転舵(図中時計方向への転舵)時には
上記とは逆の連通状態とし、同時に油圧ポンプ21から
の油圧をピニオン軸14の回転負荷を応じた圧力に減圧
するものであり、ピニオン13によるロッド11の車体
横方向移動時にパワーシリンダ17への圧油供給により
上記ロッド11の車体横方向移動を助勢するようにして
いる。
Reference numeral 7 denotes a rear wheel steering device that steers the left and right rear wheels 8a and 8b.
Knuckle arms 9 and 9 and tie rods 1 on a and 8b
It is provided with a rod 11 extending in the lateral direction of the vehicle body, which is connected via 0 and 10. The rod 11 is moved in the lateral direction of the vehicle body by the rotational movement of a pinion 13 that meshes with a rack 12 formed on the rod 11. The pinion 13 has a transmission mechanism 15 including a pinion shaft 14 and a pair of bevel gears 15a and 15b. Through the pinion drive pulse motor 16
Is rotatably connected to. In addition, the rod 11
A power cylinder 17 having the rod 11 as an operating rod is connected to the. The power cylinder 17 includes a left-turning hydraulic chamber 17b and a right-turning hydraulic chamber 17c that are partitioned in the lateral direction of the vehicle body by a pinion 17a fixed to the rod 11.
And each hydraulic chamber 17b, 17c communicates with a control valve 18 for controlling the oil supply direction to the power cylinder 17 and the hydraulic pressure via the hydraulic passages 17d, 17e, respectively. A hydraulic pump 21 is connected via an oil supply passage 19 and an oil return passage 20. The control valve 18
Detects the rotation direction of the pinion shaft 14 to detect the rear wheels 8a, 8
When b is turned to the left (turned counterclockwise in the figure), the oil supply passage 19 is connected to the left turning hydraulic chamber 17b and the right turning hydraulic chamber 17c is connected to the oil return passage 20, while the rear wheel 8
When a and 8b are steered to the right (steering in the clockwise direction in the figure), the communication state opposite to the above is established, and at the same time, the hydraulic pressure from the hydraulic pump 21 is reduced to a pressure corresponding to the rotational load of the pinion shaft 14. When the rod 11 laterally moves by the pinion 13, the pressure oil is supplied to the power cylinder 17 to assist the lateral movement of the rod 11.

さらに、22は車速を検出する車速検出手段としての車
速センサ、23はステアリング3の操舵量を検出して前
記転舵角を検出する前輪転舵角センサ、24は後輪転舵
装置7のロッド11の変位量を検出して後輪転舵角を検
出する後輪転舵角センサであって、上記各センサ22〜
24からの車速信号,前輪転舵角信号および後輪転舵角
信号はそれぞれコントローラ25に入力されている。
Further, 22 is a vehicle speed sensor as a vehicle speed detecting means for detecting a vehicle speed, 23 is a front wheel steering angle sensor for detecting a steering amount of the steering wheel 3 to detect the steering angle, and 24 is a rod 11 of the rear wheel steering device 7. Is a rear-wheel steering angle sensor that detects the amount of displacement of the rear-wheel steering angle by detecting the rear-wheel steering angle.
The vehicle speed signal, the front wheel turning angle signal, and the rear wheel turning angle signal from 24 are input to the controller 25, respectively.

上記コントローラ25は、上記油圧ポンプ21駆動用の
モータ26およびパルスモータ16を作業制御する制御
装置を構成すると共に、上記前輪転舵角センサ23の出
力信号の極く短い所定サンプリング時間内での変化の絶
対量を検出する機能を有する。
The controller 25 constitutes a control device for working control of the motor 26 for driving the hydraulic pump 21 and the pulse motor 16, and changes of the output signal of the front wheel turning angle sensor 23 within a very short predetermined sampling time. It has a function to detect the absolute amount of.

そして、上記コントローラ25の内部には、予め、前輪
の転舵角と車速との双方に依存する後輪転舵特性が記憶
されている。
Then, inside the controller 25, the rear wheel steering characteristics that depend on both the front wheel steering angle and the vehicle speed are stored in advance.

上記後輪転舵特性の前輪転舵角依存性を第3図に基いて
説明する。第3図は高車速域における前輪転舵角依存性
を示し、細実線及び細一点鎖線で示すように前輪転舵角
が時間に対して漸次増大する傾向に対し、後輪8a,8
bの転舵角を、太実線及び太一点鎖線で示す如く、前輪
転舵の開始時から所定遅れ時間Δt1,Δt2の間は、
その当初で前輪2a,2bの転舵角とは逆位相側に増大
させた後、減少させて、所定遅れ時間Δt1,Δt2の
経過の時点で零の転舵角とし、その後は、零の後輪転舵
角から前輪転舵角の増大に応じて同位相で漸次増大する
特性である。更に、前輪転舵時での前輪転舵角が設定値
よりも大きい又は小さいとの予測結果に応じて、本実施
例では、前輪転舵角が設定値よりも小さいと予測される
図中細実線で示す前輪転舵角特性の場合には、同図に太
実線で示す後輪転舵角特性のように、後輪が同位相に転
舵されるまでの所定遅れ時間Δt1が長く設定される。
一方、前輪転舵角が設定値よりも大きいと予測される図
中細一点鎖線で示す前輪転舵角特性の場合には、同図に
太一点鎖線で示す後輪転舵特性のように所定遅れ時間Δ
t2は上記所定遅れ時間Δt1よりも短く設定される。
The dependence of the rear wheel steering characteristics on the front wheel steering angle will be described with reference to FIG. FIG. 3 shows the dependence of the front wheel turning angle in the high vehicle speed range. As shown by the thin solid line and the thin chain line, the front wheel turning angle tends to gradually increase with time, while the rear wheels 8a, 8
As indicated by the thick solid line and the thick dash-dotted line, the turning angle of b is from the start of the front wheel turning for a predetermined delay time Δt1, Δt2,
Initially, the steering angle is increased to the phase opposite to the steering angle of the front wheels 2a and 2b, and then decreased to a steering angle of zero at the elapse of the predetermined delay times Δt1 and Δt2. The characteristic is that the wheel steering angle gradually increases in the same phase as the front wheel steering angle increases. Furthermore, according to the prediction result that the front wheel turning angle at the time of turning the front wheels is larger or smaller than the set value, in the present embodiment, the front wheel turning angle is predicted to be smaller than the set value. In the case of the front wheel steering angle characteristic shown by the solid line, the predetermined delay time Δt1 until the rear wheels are steered to the same phase is set to be long as in the rear wheel steering angle characteristic shown by the thick solid line in the figure. .
On the other hand, in the case of the front wheel steering angle characteristic shown by the thin chain line in the figure, where the front wheel steering angle is predicted to be larger than the set value, a predetermined delay occurs as in the rear wheel steering characteristic shown by the thick chain line in the figure. Time Δ
t2 is set to be shorter than the predetermined delay time Δt1.

更に、後輪転舵特性の中車速域における前輪転舵角依存
性を第4図に基いて説明する。同図において、細実線及
び細一点鎖線で示すように前輪転舵角が時間に対して漸
次増大する傾向に対し、後輪8a,8bの転舵角を、太
実線及び太一点鎖線で示すように、前輪転舵の開始時か
ら所定遅れ時間の間は、その当初で前輪2a,2bの転
舵角とは逆位相側に増大させた後、減少させて、所定遅
れ時間の経過の時点で零の転舵角とし、その後は、零の
後輪転舵角から前輪転舵角の増大に応じて同位相で漸次
増大する特性である。更に、前輪の転舵角が設定値より
も大きい又は小さいとの予測結果に応じて、本実施例で
は、前輪転舵角が設定値よりも小さいと予測される図中
細実線で示す前輪転舵角特性の場合には、同図に太実線
で示す後輪転舵角特性のように、後輪8a,8bを逆位
相に転舵する最大転舵角a1が大きく設定される。一
方、前輪転舵角が設定値よりも大きいと予測される図中
細一点鎖線で示す前輪点舵角特性の場合には、同図に太
一点鎖線で示す後輪転舵特性のように最大逆位相転舵角
a2は上記最大逆位相転舵角a1よりも小さく設定され
る。
Further, the front wheel turning angle dependency in the middle vehicle speed range of the rear wheel turning characteristics will be described with reference to FIG. In the same figure, as indicated by the thin solid line and the thin dashed-dotted line, the steered angles of the rear wheels 8a and 8b are shown by the thick solid line and the thick-dotted line, while the front-wheel steering angle gradually increases with time. During the predetermined delay time from the start of steering of the front wheels, it is initially increased to the phase opposite to the steering angle of the front wheels 2a and 2b and then decreased, and at the time when the predetermined delay time elapses. The steering angle is set to zero, and thereafter, the characteristic gradually increases from zero rear wheel steering angle in the same phase as the front wheel steering angle increases. Further, according to the prediction result that the turning angle of the front wheels is larger or smaller than the set value, in the present embodiment, the front wheel turning shown by the thin solid line in the figure, in which the front wheel turning angle is predicted to be smaller than the set value, is shown. In the case of the steering angle characteristic, the maximum steering angle a1 for steering the rear wheels 8a and 8b in opposite phases is set to be large, as in the rear wheel steering angle characteristic shown by the thick solid line in the figure. On the other hand, in the case of the front wheel point steering angle characteristic shown by the thin chain line in the figure where the front wheel steering angle is predicted to be larger than the set value, the maximum reverse The phase steering angle a2 is set smaller than the maximum antiphase steering angle a1.

続いて、上記後輪転舵特性の車速依存性を第2図に基い
て説明する。第2図において、中,高車速域にて、細線
で示すように前輪転舵角が時間に対して漸次増大する傾
向に対し、前輪の転舵角が設定値よりも大きいと予測さ
れる場合には、上記第3図及び第4図と同様に、後輪8
a,8bの転舵角を、太実線及び太一点鎖線で示す如
く、前輪転舵の開始時から所定遅れ時間Δt1,Δt2
の間は、その当初で前輪2a,2bとは逆位相側で増大
し、その逆位相側での最大転舵角が、車両に中,高車速
域別に適切な値のヨーレートを発生させるに要する設定
最大舵角aに一致した後は、この逆位相の転舵角を減少
させ、所定遅れ時間Δt1,Δt2の経過の時点で零の
転舵角とし、その後は、零の後輪転舵角から前輪転舵角
の増大に応じて同位相で漸次増大する特性とする。更
に、同図に太一点鎖線で示す高車速域での後輪転舵角特
性の所定遅れ時間Δt2は、太実線で示す中車速域での
後輪転舵角特性の所定遅れ時間Δt1よりも短く設定さ
れる。
Next, the vehicle speed dependence of the rear wheel steering characteristic will be described with reference to FIG. In the middle and high vehicle speed range in FIG. 2, when the front wheel turning angle tends to gradually increase with time as shown by the thin line, but the front wheel turning angle is predicted to be larger than the set value. In the same manner as in FIGS. 3 and 4 above, the rear wheel 8
The steered angles a and 8b are indicated by a thick solid line and a thick dash-dotted line as shown in FIG.
During that period, the wheel initially increases on the opposite phase side to the front wheels 2a and 2b, and the maximum steering angle on the opposite phase side is required for the vehicle to generate a yaw rate of an appropriate value for each of the middle and high vehicle speed ranges. After matching the set maximum steering angle a, the steering angle of the opposite phase is reduced to a steering angle of zero when the predetermined delay times Δt1 and Δt2 have elapsed, and thereafter, from the rear wheel steering angle of zero. The characteristic is such that it gradually increases in phase with the increase in the steered angle of the front wheels. Further, the predetermined delay time Δt2 of the rear wheel steering angle characteristic in the high vehicle speed range shown by the thick dashed line in the figure is set shorter than the predetermined delay time Δt1 of the rear wheel steering angle characteristic in the medium vehicle speed range shown by the thick solid line. To be done.

そして、上記コントローラ25は、上記車速センサ22
からの車速信号及び前輪転舵角センサ23からの前輪舵
角信号に基いて中,高車速域での前輪転舵の開始時を判
別検出し、この検出時に、前輪転舵角センサ23からの
前輪転舵角信号の所定サンプリング時間内での変化の絶
対量の算出し、この変化の絶対量の大きさを所定値と比
較することにより、前輪転舵角が設定値よりも大きいか
小さいかを予測し、この予測結果、及び上記車速センサ
22からの車速信号に応じて、上記第3図及び第4図に
示す前輪の転舵角依存性と図2に示す車速依存性との双
方を有する後輪転舵角特性となるように、後輪転舵角セ
ンサ24からの後輪転舵角信号で確認しながら両モータ
16,26を作動制御することにより、中車速域及び高
速域では、所定遅れ時間Δt1(又はΔt2)の間は後
輪8a,8bを最大逆位相転舵角a1(又はa2)以下
に逆位相に転舵し、この所定遅れ時間Δt1(又はΔt
2)の経過後は前輪2a,2bと同位相に転舵する後輪
転舵特性に基いて後輪転舵装置7を作動制御すると共
に、図4に示す通り、上記中速域で前輪2a,2bが転
舵された場合には、その前輪の転舵角の大小予測結果に
応じて、後輪8a,8bを逆位相に転舵する最大転舵角
aを変化させることにより上記後輪8a,8bの逆位相
から同位相への後輪転舵特性を変更して、前輪の転舵角
が設定値よりも小さいと予測される場合には最大逆位相
転舵角a1とし、前輪の転舵角が設定値よりも大きいと
予測される場合には上記最大逆位相転舵角a1よりも小
さい最大逆位相転舵角a2とし、更に図3に示す通り、
高速域で前輪2a,2bが転舵された場合には、その前
輪の転舵角の大小の予測結果に応じて、後輪8a,8b
が前輪と同位相に転舵されるまでの所定遅れ時間を変化
させることにより、上記後輪8a,8bの逆位相から同
位相への後輪転舵特性を変更して、前輪の転舵角が設定
値よりも小さいと予測される場合には長い所定遅れ時間
Δt1とし、前輪の転舵角が設定値よりも大きいと予測
される場合には短い所定遅れ時間Δt2とするよう、後
輪転舵装置7を作動制御するように構成されている。
Then, the controller 25 controls the vehicle speed sensor 22.
Based on the vehicle speed signal from the front wheel steering angle sensor 23 and the front wheel steering angle signal from the front wheel steering angle sensor 23, the start time of the front wheel steering in the medium and high vehicle speed range is discriminated and detected. Whether the front wheel steering angle is larger or smaller than the set value is calculated by calculating the absolute amount of change in the front wheel steering angle signal within a predetermined sampling time and comparing the magnitude of this absolute amount with a predetermined value. According to the prediction result and the vehicle speed signal from the vehicle speed sensor 22, both the turning angle dependence of the front wheels shown in FIGS. 3 and 4 and the vehicle speed dependence shown in FIG. 2 are determined. By controlling the operation of both motors 16 and 26 while checking the rear wheel steering angle signal from the rear wheel steering angle sensor 24 so as to have the rear wheel steering angle characteristic, a predetermined delay occurs in the medium vehicle speed range and the high speed range. During the time Δt1 (or Δt2), the rear wheels 8a, 8b are at maximum The steering is performed in the opposite phase below the opposite-phase steering angle a1 (or a2), and the predetermined delay time Δt1 (or Δt
After 2), the operation of the rear wheel steering device 7 is controlled on the basis of the rear wheel steering characteristics of steering in the same phase as the front wheels 2a, 2b, and as shown in FIG. Is steered, by changing the maximum steering angle a for steering the rear wheels 8a, 8b in the opposite phase according to the magnitude prediction result of the steering angle of the front wheels, the rear wheels 8a, When the rear wheel steering characteristic from the opposite phase of 8b to the same phase is changed and the steering angle of the front wheels is predicted to be smaller than the set value, the maximum antiphase steering angle a1 is set, and the steering angle of the front wheels is set. Is larger than the set value, the maximum anti-phase steering angle a2 is smaller than the maximum anti-phase steering angle a1, and as shown in FIG.
When the front wheels 2a, 2b are steered in the high speed range, the rear wheels 8a, 8b are selected according to the predicted result of the turning angle of the front wheels.
By changing the predetermined delay time until the vehicle is steered to the same phase as the front wheels, the rear wheel steering characteristic from the opposite phase of the rear wheels 8a and 8b to the same phase is changed, and the steered angle of the front wheels is changed. The rear wheel steering device sets a long predetermined delay time Δt1 when it is predicted to be smaller than the set value and a short predetermined delay time Δt2 when the steered angle of the front wheels is predicted to be larger than the set value. It is configured to control the operation of 7.

したがって、上記実施例においては、中,高車速域での
前輪転舵の開始時、当初の所定遅れ時間Δt1又はΔt
2のあいだは、パルスモータ16および油圧ポンプ駆動
用モータ26は、コントローラ25により、前輪転舵角
及び車速に依存した後輪転舵特性(第2図、第3図及び
第4図参照)に基いて作動制御されて、後輪8a,8b
は前輪2a,2bとは逆位相に転舵されるので、後輪8
a,8bのすべり角は前輪2a,2bのすべり角とは逆
符号となり、これに応じた分だけヨーレートの発生量は
大となり且つ発生時期は早くなる。その結果、この前輪
2a,2bの転舵開始時には、車両の前部は前輪2a,
2bの転舵方向に素早く向くので、車両の回頭性が良く
なる。
Therefore, in the above-described embodiment, when the front wheel steering is started in the medium and high vehicle speed ranges, the initial predetermined delay time Δt1 or Δt.
During 2, the pulse motor 16 and the hydraulic pump drive motor 26 are controlled by the controller 25 based on the rear-wheel steering characteristics (see FIGS. 2, 3, and 4) that depend on the front-wheel steering angle and the vehicle speed. The rear wheels 8a, 8b
Is steered in a phase opposite to that of the front wheels 2a and 2b.
The slip angles of a and 8b have opposite signs to the slip angles of the front wheels 2a and 2b, and the amount of yaw rate generated correspondingly increases and the timing of occurrence increases. As a result, when the steering of the front wheels 2a, 2b is started, the front part of the vehicle is
Since the vehicle turns quickly in the turning direction of 2b, the turning performance of the vehicle is improved.

そして、この状態で所定遅れ時間Δt1又はΔt2を過
ぎると、上記コントローラ25によるパルスモータ16
および油圧ポンプ駆動用モータ26の作動制御により、
後輪8a,8bは零の転舵角から前輪転舵角の増大に応
じて前輪と同位相に転舵されるので、後輪8a,8bの
すべり角は上記ヨーレートの増大に伴い前輪2a,2b
のすべり角とは同符号となる。その結果、後輪8a,8
bには横力が作用して、横Gが発生するので、車両のレ
ーンチェンジが良好に行われる。
Then, when the predetermined delay time Δt1 or Δt2 is passed in this state, the pulse motor 16 by the controller 25 is
And by controlling the operation of the hydraulic pump drive motor 26,
Since the rear wheels 8a and 8b are steered from the steering angle of zero to the same phase as the front wheels in accordance with the increase of the front wheel steering angle, the slip angles of the rear wheels 8a and 8b increase as the yaw rate increases. 2b
The slip angle has the same sign. As a result, the rear wheels 8a, 8
Lateral force acts on b to generate lateral G, so that the lane change of the vehicle is favorably performed.

しかも、前輪転舵角センサ23の前輪転舵角信号の所定
サンプリング内での変化の絶対量が所定値よりも大きく
て前輪の転舵角が設定値よりも大きいと予測される場合
には、運転者がより素早いレーンチェンジを要求してい
る状況であるが、この前輪の転舵角が設定値よりも大き
いと予測される場合には、中車速域でのレーンチェンジ
時において、第4図のように後輪転舵特性の最大逆位相
転舵角a2が、前輪の転舵角が設定値よりも小さいと予
測される場合の最大逆位相転舵角a1よりも小さく設定
されるよう後輪転舵特性が変更されるので、その逆位相
から同位相に転舵されるまでの所定遅れ時間の間での逆
位相転舵による大きなヨーレートの発生を確保しつつ、
上記最大逆位相転舵角a2が小さい分だけ車両に車両旋
回中心向きの横力を大きく発生させることができるの
で、運転者の素早いステアリング操作に合致した良好な
車両のレーンチェンジを行うことができる。
Moreover, when it is predicted that the absolute amount of change in the front wheel turning angle signal of the front wheel turning angle sensor 23 within the predetermined sampling is larger than the predetermined value and the front wheel turning angle is larger than the set value, Although the driver is requesting a quicker lane change, if it is predicted that the steering angle of the front wheels is larger than the set value, the lane change in the medium vehicle speed range is performed as shown in FIG. As described above, the maximum reverse phase steering angle a2 of the rear wheel steering characteristics is set to be smaller than the maximum reverse phase steering angle a1 when the front wheel steering angle is predicted to be smaller than the set value. Since the rudder characteristic is changed, while ensuring the generation of a large yaw rate due to the antiphase steering during the predetermined delay time from the antiphase to the same phase steering,
Since the lateral force toward the vehicle turning center can be greatly generated in the vehicle by the amount that the maximum antiphase steering angle a2 is small, it is possible to perform a good lane change of the vehicle in accordance with a quick steering operation of the driver. .

また、高車速域では、第3図のように後輪転舵特性の所
定遅れ時間Δtが、前輪転舵角が設定値よりも大きいと
予測される場合には短い所定遅れ時間Δt2に設定さ
れ、前輪転舵角が設定値よりも小さいと予測される場合
には比較的長い所定遅れ時間Δt1に設定されるので、
高車速時に運転者がレーンチェンジを素早く行う時、即
ち前輪転舵角が設定値よりも大きい場合であると予測さ
れるときには、前輪転舵角が設定値よりも小さいと予測
される場合に比べて、その遅れ時間Δt2が短い分だけ
早期に同位相に転舵される。その結果、所定遅れ時間Δ
t2の間での逆位相転舵による大きなヨーレートの発生
を確保しつつ、前輪転舵角が設定値よりも大きいと予測
される場合には前輪転舵角が設定値よりも小さいと予測
される場合に比して早期に後輪に横力を発生させること
ができ、高車速時におけるステアリング操舵の状態に応
じたレーンチェンジをより一層良好に行うことができ
る。
Further, in the high vehicle speed range, the predetermined delay time Δt of the rear wheel steering characteristic is set to a short predetermined delay time Δt2 when the front wheel steering angle is predicted to be larger than the set value as shown in FIG. When it is predicted that the front wheel turning angle is smaller than the set value, the relatively long predetermined delay time Δt1 is set.
When the driver makes a quick lane change at high vehicle speed, that is, when it is predicted that the front wheel steering angle is larger than the set value, compared to when it is predicted that the front wheel steering angle is smaller than the set value. Therefore, the delay time Δt2 is steered to the same phase earlier because the delay time Δt2 is shorter. As a result, the predetermined delay time Δ
When it is predicted that the front wheel steering angle is larger than the set value while ensuring the generation of a large yaw rate due to the antiphase steering during t2, the front wheel steered angle is predicted to be smaller than the set value. The lateral force can be generated on the rear wheels earlier than in the case, and the lane change corresponding to the steering steering state at high vehicle speed can be more favorably performed.

また、第5図は本発明の第2実施例を示し、上記第1実
施例では後輪転舵装置7の駆動源として、パルスモータ
16によるピニオン13の回転動と、別途に設けた油圧
ポンプ21によるパワーシリンダ17の作動との組合せ
を用いたのに代え、予め設けられたパワーステアリング
装置の油圧源を利用して後輪転舵装置を駆動するように
したものである。
Further, FIG. 5 shows a second embodiment of the present invention. In the first embodiment, as a drive source of the rear wheel steering system 7, the rotation of the pinion 13 by the pulse motor 16 and the hydraulic pump 21 provided separately. Instead of using the combination with the operation of the power cylinder 17 described above, the hydraulic pressure source of the power steering device provided in advance is used to drive the rear wheel steering device.

すなわち、第5図において30はパワーステアリング装
置31の油圧ポンプ、32は該油圧ポンプ30の圧油を
ステアリング装置31と後輪転舵装置7′とに分配する
圧油分配装置、33は後輪転舵装置7′のパワーシリン
ダ、34は該パワーシリンダ33への圧油供給方向およ
び油圧を制御するコントロールバルブである。そして、
コントロール35は、その内部に、上記第2図、第3図
及び第4図を用いて説明した前輪転舵角依存性及び車速
依存性の双方を有する後輪転舵特性が予め記憶されてい
るとともに、中,高車速域での前輪転舵時にはこの前輪
転舵角及び車速に依存する後輪転舵特性に基いた転舵特
性となるように上記コントロールバルブ34を作動制御
するように構成されている。尚、上記パワーシリンダ3
3には油圧非作用時にロッド11を中立位置に付勢する
リターンスプリング36a,36bが備えられている。
その他の構成は上記実施例と同様であり、同一の部分に
は同一の符号を付してその説明を省略する。
That is, in FIG. 5, 30 is a hydraulic pump of the power steering device 31, 32 is a pressure oil distribution device for distributing the pressure oil of the hydraulic pump 30 to the steering device 31 and the rear wheel steering device 7 ', and 33 is a rear wheel steering device. A power cylinder, 34 of the device 7 ′ is a control valve for controlling the pressure oil supply direction and the oil pressure to the power cylinder 33. And
The control 35 prestores therein the rear wheel steering characteristic having both the front wheel steering angle dependency and the vehicle speed dependency described with reference to FIGS. 2, 3, and 4 above. When the front wheels are steered in the middle and high vehicle speed ranges, the control valve 34 is operated and controlled so that the steering characteristics are based on the rear wheel steering characteristics depending on the front wheel steering angle and the vehicle speed. . The above power cylinder 3
3 is provided with return springs 36a and 36b for urging the rod 11 to the neutral position when the hydraulic pressure is not applied.
Other configurations are similar to those of the above-described embodiment, and the same portions are denoted by the same reference numerals and the description thereof is omitted.

したがって、本実施例においてはコントローラ35によ
るコントロールバルブ34の上記前輪転舵角及び車速に
依存する後輪転舵特性に基いた作動制御により上記実施
例と同様の作動を行うことができるので、中,高車速域
での前輪の転舵開始時に大きなヨーレートを素早く発生
させて、車両の回頭性を顕著に向上させることができ
る。しかも、運転者がステアリング操作を素早く行った
車両のレーンチェンジをより速く行うべき状況では、後
輪は早期に前輪と同位相に転舵されるので、後輪に早期
に横力を発生されることができ、レーンチェンジを一層
良好に行うことができる。
Therefore, in the present embodiment, the operation similar to that of the above-described embodiment can be performed by the operation control based on the rear-wheel steering characteristics of the control valve 34 depending on the front-wheel steering angle and the vehicle speed by the controller 35. A large yaw rate can be quickly generated at the start of steering the front wheels in the high vehicle speed range, and the turning performance of the vehicle can be significantly improved. Moreover, in a situation where the driver has to perform a quick steering operation to change the lane of the vehicle more quickly, the rear wheels are steered in the same phase as the front wheels early, so that a lateral force is generated early on the rear wheels. Therefore, the lane change can be performed more favorably.

尚、後輪8a,8bを逆位相に転舵する設定時間Δt
は、前輪の転舵角が設定値よりも小さいと予測される場
合には中車速時及び高車速時共に比較的大きく設定され
る。また、後輪8a,8bを逆位相に転舵する最大転舵
角aは、適宜大きさのヨーレートを発生させる必要上、
車速と前輪転舵角(又はステアリング操舵角)とに応じ
て可変に設定され、前輪の転舵角が設定値よりも小さい
と予測される場合には、高車速域では中車速時に比して
小さく設定され、前輪の転舵角が設定値よりも大きいと
予測される場合には、高車速域では中車速時と同様に小
さく設定される。
The set time Δt for turning the rear wheels 8a and 8b in opposite phases
When the steering angle of the front wheels is predicted to be smaller than the set value, is set to be relatively large at both the medium vehicle speed and the high vehicle speed. Further, the maximum steering angle a for steering the rear wheels 8a, 8b in opposite phases is necessary because a yaw rate of an appropriate amount is generated.
It is set variably according to the vehicle speed and the front wheel steering angle (or steering angle), and when the front wheel steering angle is predicted to be smaller than the set value, it is higher in the high vehicle speed range than in the middle vehicle speed. When it is set small and it is predicted that the steered angle of the front wheels is larger than the set value, it is set small in the high vehicle speed range as in the middle vehicle speed.

また、上記第1実施例では、後輪転舵角センサ24を設
けて、後輪8a,8bの転舵角を前輪転舵角及び車速に
依存する後輪転舵特性に基づく適切角に一致するように
制御したが、本発明では後輪転舵角センサ24は本来必
要でない。しかし、これを設ける方が後輪8a,8bの
転舵制御を精度良く行うことができ、より好ましい。
Further, in the first embodiment described above, the rear wheel steering angle sensor 24 is provided so that the steering angles of the rear wheels 8a and 8b match the proper angle based on the front wheel steering angle and the rear wheel steering characteristics that depend on the vehicle speed. However, in the present invention, the rear wheel steering angle sensor 24 is essentially unnecessary. However, it is more preferable to provide this because steering control of the rear wheels 8a and 8b can be performed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示し、第1図は第1実施例を示
す全体概略構成図、第2図は後輪転舵角特性の車速依存
性の説明図、第3図は高車速域における後輪転舵角特性
の前輪舵角依存性の説明図、第4図は後輪転舵角特性の
中車速域における前輪転舵角依存性の説明図、第5図は
第2実施例を示す全体概略構成図である。 1……ステアリング装置、7,7′……後輪転舵装置、
13……ピニオン、17,33……パワーシリンダ、1
8,34……コントロールバルブ、22……車速センサ
(車速検出手段)、23……前輪転舵角センサ、25,
35……コントローラ(制御装置)。
FIG. 1 shows an embodiment of the present invention, FIG. 1 is an overall schematic configuration view showing the first embodiment, FIG. 2 is an explanatory view of vehicle speed dependence of rear wheel turning angle characteristics, and FIG. 3 is in a high vehicle speed range. FIG. 4 is an explanatory diagram of front wheel steering angle dependency of rear wheel steering angle characteristics, FIG. 4 is an explanatory diagram of front wheel steering angle dependency in the middle vehicle speed range of rear wheel steering angle characteristics, and FIG. It is a schematic block diagram. 1 ... Steering device, 7, 7 '... Rear wheel steering device,
13 ... Pinion, 17, 33 ... Power cylinder, 1
8, 34 ... Control valve, 22 ... Vehicle speed sensor (vehicle speed detecting means), 23 ... Front wheel steering angle sensor, 25,
35 ... Controller (control device).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−164477(JP,A) 特開 昭57−15066(JP,A) 昭和54年度(第9回)交通安全公害研究 所発表会講演概要、昭和54年12月18日発 行、交通安全公害研究所,P.16−32 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-164477 (JP, A) JP-A-57-15066 (JP, A) 1979 (9th) Road Safety Pollution Research Institute Presentation Lecture Outline, December 18, 1979, Road Safety and Pollution Research Institute, P.P. 16-32

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】前輪を転舵するステアリング装置と、後輪
を転舵する後輪転舵装置と、車速を検出する車速検出手
段と、前輪の転舵状態を検出する前輪転舵状態検出手段
と、上記車速検出手段の信号を受け、中車速域において
前輪転舵開始初期に後輪を前輪転舵方向とは反対の逆位
相に転舵し、その後、前輪転舵方向と同じ同位相に転舵
する後輪転舵特性に基いて上記後輪転舵装置を制御する
制御装置とを備え、該制御装置は、上記中車速域におけ
る前輪転舵時に、上記前輪転舵状態検出手段の出力信号
の所定サンプリング時間内での変化の絶対量を算出し、
この変化の絶対量の大きさにより前輪転舵角の大きさを
予測し、この予測結果に応じて上記後輪転舵特性を変更
するよう上記後輪転舵装置を制御することを特徴とする
車両の4輪操舵装置。
1. A steering device for steering the front wheels, a rear wheel steering device for steering the rear wheels, a vehicle speed detecting means for detecting a vehicle speed, and a front wheel steering state detecting means for detecting a steering state of the front wheels. In response to the signal from the vehicle speed detection means, the rear wheels are steered in the opposite phase to the front wheel steering direction at the beginning of the front wheel steering in the middle vehicle speed range, and then in the same phase as the front wheel steering direction. A control device for controlling the rear wheel steering device based on the steered rear wheel steering characteristic, wherein the control device, when the front wheel is steered in the medium vehicle speed range, has a predetermined output signal of the front wheel steered state detecting means. Calculate the absolute amount of change within the sampling time,
The magnitude of the absolute amount of this change is used to predict the magnitude of the front wheel steering angle, and the rear wheel steering device is controlled to change the rear wheel steering characteristics according to the prediction result. 4-wheel steering system.
JP2158096A 1990-06-15 1990-06-15 4-wheel steering system for vehicles Expired - Lifetime JPH0647386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158096A JPH0647386B2 (en) 1990-06-15 1990-06-15 4-wheel steering system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158096A JPH0647386B2 (en) 1990-06-15 1990-06-15 4-wheel steering system for vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3633483A Division JPS59186773A (en) 1983-03-04 1983-03-04 Steering gear for four wheels of vehicle

Publications (2)

Publication Number Publication Date
JPH0374284A JPH0374284A (en) 1991-03-28
JPH0647386B2 true JPH0647386B2 (en) 1994-06-22

Family

ID=15664219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158096A Expired - Lifetime JPH0647386B2 (en) 1990-06-15 1990-06-15 4-wheel steering system for vehicles

Country Status (1)

Country Link
JP (1) JPH0647386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227082B2 (en) * 2008-05-22 2013-07-03 トヨタ自動車株式会社 Vehicle steering control device equipped with a four-wheel steering mechanism

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186773A (en) * 1983-03-04 1984-10-23 Mazda Motor Corp Steering gear for four wheels of vehicle
JPS6045268U (en) * 1983-09-06 1985-03-30 三菱自動車工業株式会社 rear steering control device
JPS61205560A (en) * 1985-03-07 1986-09-11 Toyota Motor Corp Rear wheel steering controller for vehicle
JPS6218367A (en) * 1985-07-18 1987-01-27 Mazda Motor Corp Four-wheel steering gear of vehicle
JPS62139757A (en) * 1985-12-13 1987-06-23 Fuji Heavy Ind Ltd Control device in front and rear wheel steering apparatus for automobile
JPH0224272A (en) * 1988-07-12 1990-01-26 Mazda Motor Corp Device for steering rear wheel of vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和54年度(第9回)交通安全公害研究所発表会講演概要、昭和54年12月18日発行、交通安全公害研究所,P.16−32

Also Published As

Publication number Publication date
JPH0374284A (en) 1991-03-28

Similar Documents

Publication Publication Date Title
JPS60259571A (en) 4-wheel steering apparatus for automobile
JP2742696B2 (en) Car rear wheel steering system
JPH0134185B2 (en)
JPS61295175A (en) Four-wheel steering gear of vehicle
JPH0647386B2 (en) 4-wheel steering system for vehicles
JP3931690B2 (en) Vehicle steering control device
JPS59128053A (en) Four-wheel steering gear of vehicle
JPH0523989B2 (en)
JPH03114972A (en) Four-wheel steering device for vehicle
JP2722897B2 (en) Power steering device for vehicles
JPH043352B2 (en)
JPH092319A (en) Auxiliary steering means of vehicle
JPS621675A (en) Four-wheel steering gear for vehicles
JPS62255282A (en) Running road state discriminator
JPH08156816A (en) Yawing momentum control devce for vehicle
JPS6328767A (en) Four-wheel steering device for vehicle
JP2532106B2 (en) Steering control device for four-wheel steering vehicle
JPS62227873A (en) Four wheel steering device for vehicle
JPH0470185B2 (en)
JPS62225466A (en) Four-wheel steering device for vehicle
JPH075086B2 (en) 4-wheel steering system for vehicles
JP2765292B2 (en) 4-wheel steering system
JPH05330444A (en) Four-wheel steering device for vehicle
JP2874079B2 (en) Rear wheel steering method
JPH075085B2 (en) 4-wheel steering system for vehicles

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203