JPH0646876B2 - Synchronous control device - Google Patents

Synchronous control device

Info

Publication number
JPH0646876B2
JPH0646876B2 JP63042565A JP4256588A JPH0646876B2 JP H0646876 B2 JPH0646876 B2 JP H0646876B2 JP 63042565 A JP63042565 A JP 63042565A JP 4256588 A JP4256588 A JP 4256588A JP H0646876 B2 JPH0646876 B2 JP H0646876B2
Authority
JP
Japan
Prior art keywords
phase
encoders
output
difference
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63042565A
Other languages
Japanese (ja)
Other versions
JPH01218378A (en
Inventor
浩二 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63042565A priority Critical patent/JPH0646876B2/en
Publication of JPH01218378A publication Critical patent/JPH01218378A/en
Publication of JPH0646876B2 publication Critical patent/JPH0646876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、誘導電動機により駆動される2台の機械を
インバータ装置を介して同期運転する同期制御装置に関
する。
TECHNICAL FIELD The present invention relates to a synchronous control device for synchronously operating two machines driven by an induction motor via an inverter device.

〔従来の技術〕[Conventional technology]

従来のこの種の同期制御装置としては第2図の制御ブロ
ック図に例示するものが知られている。第3図は第2図
におけるシンクロ電機の出力波形及び相対位置関係図で
ある。第2図において1aと1bとはそれぞれ2aと2
bとの誘導電動機により駆動され同期運転される機械で
あり、図示の場合1aが先行機1bが追従機である。2
0aと20bとはそれぞれ前記機械1aと1bとに結合
され回転駆動されるシンクロ電機であり、図示の場合2
0aが発信機20bが受信機であり、互に対をなす。該
発受信両機それぞれの固定子と回転子間の相対角度の差
に応じた正弦波電圧が前記受信機20bの固定子側に出
力される。21は該正弦波出力電圧を受け前記発受信両
機回転子間の回転角度差の大きさと極性とを判別する変
位検出回路である。22は該検出回路の出力を受け前記
両回転子間の回転角度差を零となすように前記追従機用
電動機2bを加減制御する電動機駆動回路である。まだ
第3図(イ)は前記正弦波出力電圧の波形を示し、同図
(ロ)は該出力電圧の横軸位相角すなわち前記回転角度
差に対応し前記発信機回転子位置を基準とした場合の前
記受信機回転子位置の相対関係を示す。
2. Description of the Related Art As a conventional synchronous control device of this type, one illustrated in the control block diagram of FIG. 2 is known. FIG. 3 is an output waveform and relative positional relationship diagram of the synchro electric machine in FIG. In FIG. 2, 1a and 1b are 2a and 2 respectively.
It is a machine that is driven by an induction motor with b and is operated synchronously. In the case shown, 1a is a preceding machine and 1b is a follower machine. Two
Reference numerals 0a and 20b denote synchro electric machines which are connected to the machines 1a and 1b and are rotationally driven, respectively.
0a is a transmitter and 20b is a receiver, and pair with each other. A sine wave voltage corresponding to the difference in relative angle between the stator and the rotor of each of the transmitter and receiver is output to the stator side of the receiver 20b. Reference numeral 21 is a displacement detection circuit that receives the sine wave output voltage and determines the magnitude and polarity of the rotation angle difference between the transmitter and receiver rotors. Reference numeral 22 is an electric motor drive circuit that controls the follower electric motor 2b so as to make the rotational angle difference between the rotors zero by receiving the output of the detection circuit. Still, FIG. 3 (a) shows the waveform of the sine wave output voltage, and FIG. 3 (b) corresponds to the horizontal axis phase angle of the output voltage, that is, the rotation angle difference, and is based on the transmitter rotor position. The relative relationship of the said receiver rotor position in a case is shown.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら上記従来方式においては、前記先行追従両
機の位置偏差検出用の前記シンクロ受信機の出力電圧は
正弦波状に変化し、該正弦波の位相角θの2π(ra
d)以上と以下に相当する位置偏差の識別はできず、従
って整数nに対しsinθとsin(2πn+θ)の識別用の
n検出手段を設けるか或いは常に0≦θ<2πとなす運
転が必要となる。このため前記先行追従両機の始動点合
せ後の同時起動、更に前記両機械とそれぞれのシンクロ
電機との原点一致の結合等の操作の複雑化、或いはまた
制御回路の複雑化を招いていた。これに鑑み本発明は、
ロータリ・エンコーダ出力パルスの係数演算により上記
諸問題を解決する同期制御装置を提供することを目的と
する。
However, in the above-mentioned conventional method, the output voltage of the synchro receiver for detecting the positional deviation between the preceding and following units changes sinusoidally, and the phase angle θ of the sine wave is 2π (ra).
d) It is not possible to discriminate position deviations corresponding to above and below, and therefore it is necessary to provide n detection means for discriminating between sin θ and sin (2πn + θ) with respect to the integer n, or to perform an operation that always satisfies 0 ≦ θ <2π. Become. For this reason, simultaneous start-up of the preceding and following follow-up machines after the start-up points are aligned, operation of the machines such as coupling of the origin coincidence with both machines and the like, or complication of the control circuit is caused. In view of this, the present invention is
It is an object of the present invention to provide a synchronous control device that solves the above problems by calculating a coefficient of a rotary encoder output pulse.

〔課題を解決するための手段〕[Means for Solving the Problems]

前記追従機速度制御用インバータの設定速度として、前
記先行機速度と、該先行及び追従両機の速度差と、該両
機によりそれぞれ駆動されるエンコーダの原点間位相差
角の所要補正量と該補正量に対する時間的追従角量との
差の三者の和を演算する諸手段を設けるものである。す
なわち誘導電動機により駆動される2台の機械の一方を
先行機とし他方を該先行機に対する追従機として追従同
期運転させる前記2台の機械の同期制御装置において、
前記2台の機械にそれぞれ結合されて回転しその回転速
度に応じて相互に90度の位相差を有するA相とB相と
の2相パルス信号とその1回転毎に1パルスの原点信号
すなわちZ相信号を出力する2組のエンコーダと、該両
エンコーダの前記2相パルス信号より該信号の4倍周波
パルス信号を出力すると共に対応するエンコーダそれぞ
れの回転方向を判別する2組の周波数てい倍方向判別回
路と、前記両エンコーダそれぞれの前記A相又はB相パ
ルス信号より対応するエンコーダの回転速度を演算する
2組の速度検出回路と、前記両エンコーダそれぞれのZ
相パルス信号と前記先行機のエンコーダに対応する前記
4倍周波パルス信号とにより前記追従機に対する同期制
御開始時点における前記両エンコーダの原点間位相差角
を演算する位相差検出回路と、前記両エンコーダに対応
する前記4倍周波パルス信号それぞれの積算値間の差を
その符号を含めて演算し該積算値差を初期セット値とし
て与えられた前記位相差検出回路の出力値より減算する
偏差カウンタ回路と、前記両速度検出回路の出力差を演
算する第1の加減演算器と、前記先行機に対応する速度
検出回路の出力と前記偏差カウンタ回路の出力と前記第
1の加減演算器の出力との和を演算する第2の加減演算
器と、前記両誘導電動機をそれぞれ速度制御する2組の
インバータ装置とを設け、前記第2の加減演算器の出力
を以って前記追従機の誘導電動機速度調整用インバータ
装置の設定速度信号となすことを特徴とするものであ
る。
As the set speed of the inverter for controlling the following machine, the preceding machine speed, the speed difference between the preceding machine and the following machine, the required correction amount of the phase difference angle between the origins of the encoders driven by the both machines, and the correction amount. Various means are provided for calculating the sum of the three differences in the temporal tracking angle amount with respect to. That is, in the synchronous control device for the two machines, one of the two machines driven by the induction motor is a preceding machine, and the other is a follower for the preceding machine to perform follow-up synchronous operation.
A two-phase pulse signal of A-phase and B-phase, which are respectively coupled to the two machines and rotate and have a phase difference of 90 degrees depending on the rotation speed, and an origin signal of one pulse for each rotation, that is, Two sets of encoders that output a Z-phase signal, and two sets of frequency doublers that output a quadruple frequency pulse signal of the two-phase pulse signals of both encoders and determine the rotation direction of each corresponding encoder. A direction discriminating circuit, two sets of speed detecting circuits for calculating the rotational speed of the corresponding encoder from the A-phase or B-phase pulse signal of each of the encoders, and Z of each of the encoders.
A phase difference detection circuit for calculating the phase difference angle between the origins of the two encoders at the start of synchronous control for the follower by using a phase pulse signal and the quadruple frequency pulse signal corresponding to the encoder of the preceding machine, and the two encoders Deviation counter circuit for calculating the difference between the integrated values of the quadruple frequency pulse signals corresponding to the above, including the sign, and subtracting the integrated value difference from the output value of the phase difference detection circuit given as an initial set value. A first addition / subtraction calculator for calculating an output difference between the two speed detection circuits, an output of the speed detection circuit corresponding to the preceding machine, an output of the deviation counter circuit, and an output of the first addition / subtraction calculator. A second adder / subtractor calculator for calculating the sum of the two and two sets of inverter devices for controlling the speeds of the induction motors respectively, and the follow-up is performed by using the output of the second adder / subtractor calculator. It is characterized in that formed between the set speed signal of the induction motor speed control inverter device.

〔作用〕[Action]

一般に2台の機械の同期運転においては、該両機械の同
期対象移動部間の等速化と該両移動部における所要特定
位置間の合致とが必要である。従って前記両機械を先行
機と、該先行機に対して同期すべき追従機とに順序付け
れば前記両機械の同期制御は、前記追従機に対する適当
な加減速制御による前記先行機との等速化制御と該先行
追従両機の所要特定位置間偏差を零となす制御との2種
類の制御を内容とするものとなる。本発明は前記両機械
の駆動源を誘導電動機とする場合を対象とし、該両電動
機をそれぞれインバータにより可変速制御して同期制御
するものであり、前記追従機制御用インバータの速度設
定値を前記先行機の速度検出値と、該先行追従両機の速
度検出値差と、該両機の所要特定位置間偏差との三者の
和となして前記追従機の前記先行機に対する速度及び位
置両面の追従制御を行ない前記速度設定値における速度
差項と位置偏差項とを共に零となすように制御するもの
である。なお前記速度差項と位置編差項とは電動機速度
制御系に最適な時間特性にて入力されるようにそれぞれ
比例・積分(PI)調整器を介して前記インバータに加
えられる。ここで前記位置偏差項は、前記追従機に対す
る同期制御開始時点における前記先行追従両機それぞれ
の基準位置間偏差と該両機の速度差に従ってその時間的
積算値を増大させる前記基準位置間偏差に対する位置追
従補正値との差であり、時間的変化項である。また本発
明において前記速度及び位置諸元の決定は、前記2台の
機械とそれぞれ特定の位置関係で結合されて回転駆動さ
れる2組のエンコーダからそれぞれ出力され該各エンコ
ーダの規定回転角毎に相互に90度の位相差をもって発
するA相とB相との2相パルス信号と前記各エンコーダ
の1回転毎に1パルスの割合で発する基準原点信号すな
わちZ相パルス信号と前記2相パルス信号より合成演算
される該信号の4倍周波パルス信号とのデイジタル的諸
演算により行なう。すなわち前記速度の検出は前記A相
或いはB相のパルス信号周期とクロック信号とを比較す
る速度検出回路にて行ない、前記位置間偏差は前記両エ
ンコーダのZ相パルス信号の発生時点差内に含まれる前
記先行機エンコーダによる4倍周波パルス数の計数を行
なう位相差検出回路にて角度対応パルス数として検出さ
れる。更に前記位置追従補正値は、前記先行追従両機の
エンコーダ信号に対応する前記両4倍周波パルス信号の
時間的積算値間の差として演算され、その値は前記両機
の速度差に比例し、その正負極性は該両機速度の遅速関
係を表はす。
Generally, in the synchronous operation of two machines, it is necessary to make the moving parts to be synchronized of both the machines uniform in speed and to match required specific positions in both the moving parts. Therefore, if both machines are ordered as a preceding machine and a follower machine to be synchronized with the preceding machine, the synchronous control of the two machines will be performed at a constant speed with the preceding machine by appropriate acceleration / deceleration control for the follower machine. Two types of control are provided, namely, the generalization control and the control for making the required specific position deviation between the preceding and following machines zero. The present invention is directed to a case where an induction motor is used as a drive source for both the machines, and the two motors are respectively controlled by an inverter to perform variable speed control for synchronous control, and the speed set value of the follower machine control inverter is set to the preceding value. Speed detection value of the following machine, the speed detection value difference between the preceding and following machines, and the required specific position deviation between the two machines, which is the sum of the three, and the following control of the speed and position both sides of the following machine with respect to the preceding machine Is performed so that the speed difference term and the position deviation term in the speed set value are both controlled to be zero. The speed difference term and the position difference term are added to the inverter via a proportional / integral (PI) adjuster so as to be input to the electric motor speed control system with optimum time characteristics. Here, the position deviation term is a position tracking for the reference position deviation that increases the temporal integrated value according to the reference position deviation of each of the preceding tracking machines and the speed difference between the preceding tracking machines at the time of starting the synchronous control for the follower. It is the difference from the correction value and is a term that changes with time. Further, in the present invention, the determination of the speed and position specifications is output from each of the two sets of encoders that are rotationally driven by being coupled with the two machines in a specific positional relationship, for each specified rotation angle of each encoder. From the two-phase pulse signals of the A phase and the B phase, which are generated with a phase difference of 90 degrees from each other, and the reference origin signal, that is, the Z phase pulse signal and the two phase pulse signal, which are emitted at a rate of one pulse for each rotation of each encoder. The calculation is performed by various digital operations with the quadruple frequency pulse signal of the combined operation signal. That is, the speed is detected by a speed detection circuit that compares the A-phase or B-phase pulse signal period with a clock signal, and the position-to-position deviation is included in the time difference between the Z-phase pulse signals generated by both encoders. The phase difference detection circuit for counting the number of quadruple frequency pulses by the preceding machine encoder is detected as the number of angle-corresponding pulses. Further, the position tracking correction value is calculated as a difference between the temporal integrated values of the both quadruple frequency pulse signals corresponding to the encoder signals of the preceding tracking machines, and the value is proportional to the speed difference between the two machines. The positive and negative polarities express the slow speed relationship between the two machine speeds.

〔実施例〕〔Example〕

以下この発明の実施例を図面により説明する。第1図は
この発明の実施例を示す制御ブロック図である。第1図
において1aと1bとは誘導電動機2aと2bとにより
それぞれ駆動され同期運転される機械であり、図示の場
合1aが先行機1bが追従機である。以下各構成要素に
付す添字aとbとは該要素がそれぞれ前記機械1aと1
bとに対応する信号処理を行なうものであることを示
す。3aと3bとは対応する前記各機械に結合されて回
転し、その回転角度に応じて相互に90度の位相差を有
するA相とB相との2相パルス信号と、その1回転毎に
1パルスの原点信号すなわちZ相信号を出力するエンコ
ーダである。4aと4bとは絶縁回路、5aと5bとは
該絶縁回路を経由する前記A,B,Z各相パルス信号波
形の整形回路である。6aと6bとは周波数てい倍方向
判別回路であり、それぞれ前記A相とB相とのパルス信
号を受け該両信号の4倍周波パルス信号(A+B)を合
成し出力することにより該信号1パルス当りの角度分解
能を向上させ、更に前記A相及びB相各パルス信号間9
0度位相差の進み遅れの相対関係より対応するエンコー
ダの回転方向の判別を行なうものである。7aと7bと
は速度検出回路であり、図示の場合、前記A相パルス信
号を入力としそのパルス周期とクロック信号とを比較し
対応するエンコーダの回転速度fpとfcとをそれぞれ
検出するものである。なお前記B相パルス信号を入力と
する場合も同様に速度検出ができる。8は前記エンコー
ダ3aと3bそれぞれの原点間の位相差検出回路であ
り、該両エンコーダ3aと3bとの各Z相パルス信号を
それぞれクリア及びラッチ信号とし該両信号の発生時点
の差期間内に含まれる前記は周波数てい倍方向判別回路
6aからの4倍周波パルス信号のパルス数を計数するこ
とにより、前記エンコーダ3aの回転状態を基準とし
て、前記両エンコーダ原点間位相差αを下記の如く検出
するものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a control block diagram showing an embodiment of the present invention. In FIG. 1, 1a and 1b are machines that are driven by induction motors 2a and 2b, respectively, and are synchronously operated. In the case shown, 1a is a preceding machine and 1b is a follower machine. The subscripts a and b given to the respective constituent elements below refer to the machine elements 1a and 1 respectively.
It is shown that signal processing corresponding to b and b is performed. 3a and 3b are coupled to the respective corresponding machines to rotate, and a two-phase pulse signal of A phase and B phase having a phase difference of 90 degrees with each other according to the rotation angle, and for each one rotation thereof. The encoder outputs a one-pulse origin signal, that is, a Z-phase signal. Reference numerals 4a and 4b are insulating circuits, and 5a and 5b are shaping circuits for the A, B, and Z phase pulse signal waveforms that pass through the insulating circuits. 6a and 6b are frequency doubling direction discriminating circuits, which receive the pulse signals of the A phase and B phase, respectively, and synthesize and output a quadruple frequency pulse signal (A + B) of both signals to output one pulse of the signal. The angular resolution per hit is improved, and further, between the A-phase and B-phase pulse signals 9
The rotation direction of the corresponding encoder is determined based on the relative relationship between the lead and lag of the 0 degree phase difference. Reference numerals 7a and 7b are speed detection circuits, and in the case shown in the figure, the phase A pulse signal is input and the pulse period is compared with a clock signal to detect the rotational speeds fp and fc of the corresponding encoders, respectively. . The speed can be similarly detected when the B-phase pulse signal is input. Reference numeral 8 is a phase difference detection circuit between the origins of the encoders 3a and 3b, and uses the Z-phase pulse signals of the encoders 3a and 3b as clear and latch signals, respectively, within the difference period between the generation points of these signals. By counting the number of pulses of the quadruple frequency pulse signal from the frequency multiplication direction discriminating circuit 6a included, the phase difference α between the two encoder origins is detected as described below with reference to the rotation state of the encoder 3a. To do.

但しNd:位相差検出回路8の計数パルス数 Ne:エンコーダ3aの1回転当りパルス数 前記位相差αは前記両機械の同期制御開始時点における
該両機械の同期対象基準点間位置偏差に対応する各エン
コーダの両基準点間の角度差であり、同期のための所要
補正角を示す。9は偏差カウンタ回路であり、前記エン
コーダ3aと3bとにそれぞれ対応する前記両4倍周波
パルス信号(A+B)間のパルス数差を計数し、該パル
ス数差を初期セット値として入力される前記位相差検出
回路8からの所要補正角に対応するパルス数より減算す
るものである。ここで前記両4倍周波パルス信号のパル
ス数差は前記両エンコーダ従って前記両機械の回転速度
差に比例するものであり、1パルス当りの回転角度が決
定されているために、前記パルス数差の時間的積算値は
その積算期間内の総変位角を示す。該総変位角は前記所
要補正角に対する追従補正角を示し、従って該両角の差
である前記偏差カウンタ回路9の出力角度βは前記パル
ス差計数時点における所要補正角の残量を示すことにな
り、下記の如く与えられる。
However, Nd: the number of counting pulses of the phase difference detection circuit 8 Ne: the number of pulses per one rotation of the encoder 3a The phase difference α corresponds to the positional deviation between the synchronization target reference points of the two machines at the time of starting the synchronization control of the two machines. It is an angle difference between both reference points of each encoder and indicates a required correction angle for synchronization. Reference numeral 9 denotes a deviation counter circuit, which counts a pulse number difference between the both quadruple frequency pulse signals (A + B) corresponding to the encoders 3a and 3b, and inputs the pulse number difference as an initial set value. It is to be subtracted from the number of pulses corresponding to the required correction angle from the phase difference detection circuit 8. Here, the pulse number difference between the both quadruple frequency pulse signals is proportional to the rotational speed difference between the both encoders and therefore both machines, and since the rotation angle per pulse is determined, the pulse number difference is The temporal integrated value of indicates the total displacement angle within the integrated period. The total displacement angle indicates a follow-up correction angle with respect to the required correction angle. Therefore, the output angle β of the deviation counter circuit 9, which is the difference between the both angles, indicates the remaining amount of the required correction angle at the time of counting the pulse difference. , Given below.

但しNc:偏差カウンタ回路9の出力パルス数 Ne:エンコーダ3aの1回転当りパルス数 10と11とは比例・積分(PI)調整器であり、前記
角度βと前記両エンコーダの回転速度差fp-fcを演算す
る加減演算器15の出力とをそれぞれ入力とする。前記
エンコーダ3aの回転速度fpと前記両PI調整器10
と11との出力との三者の和が加減演算器14にて演算
され、その出力fsは前記追従機の誘導電動機2bに対
する速度設定信号としてインバータ装置16に入力さ
れ、前記電動機2bに対する加減速制御が行なはれる。
前記速度設定信号の角度補正項である前記調整器10の
出力と速度補正項である前記調整器11の出力とは前記
同期制御の進行と共に零に至り、前記追従機の回転速度
fcは前記先行機の回転速度fpと等しくなり前記同期
制御は完了する。
However, Nc: the number of output pulses of the deviation counter circuit 9 Ne: the number of pulses per rotation of the encoder 3a 10 and 11 are proportional-integral (PI) adjusters, and the angle β and the rotational speed difference fp- The output of the adder / subtractor calculator 15 for calculating fc is input. The rotation speed fp of the encoder 3a and both PI adjusters 10
The sum of the three of the outputs 11 and 11 is calculated by the acceleration / deceleration calculator 14, and the output fs is input to the inverter device 16 as a speed setting signal for the induction motor 2b of the follower to accelerate / decelerate the motor 2b. Control is done.
The output of the adjuster 10, which is the angle correction term of the speed setting signal, and the output of the adjuster 11, which is the speed correction term, reach zero with the progress of the synchronous control, and the rotational speed fc of the follower is the preceding speed. The rotation speed of the machine becomes equal to fp, and the synchronous control is completed.

〔発明の効果〕〔The invention's effect〕

この発明によれば、同期運転される2台の機械にそれぞ
れ結合されたエンコーダの原点信号であるZ相パルス信
号を基準とし、該両エンコーダにおいて規定の回転角毎
に発せられるA相或いはB相パルス信号の計数演算によ
り前記両エンコーダの原点間位置偏差とそれぞれの速度
とその偏差とを決定し、該原点間位置偏差を零となすよ
うに追従側機械の速度制御を行なうことにより前記両機
械起動時の基準点合わせを不用とし同期所要時間の短縮
と同期操作の簡易化を計ると共に同期運転中の外乱によ
る同期づれに対する補正制御も確実且つ即応的に行なう
ことができる。
According to the present invention, the Z-phase pulse signal, which is the origin signal of the encoders respectively coupled to the two machines that are synchronously operated, is used as a reference, and the A-phase or B-phase generated by each of the encoders at a specified rotation angle. The position deviation between the origins of the two encoders, the respective speeds and their deviations are determined by the counting calculation of the pulse signals, and the speed control of the follower machine is performed so that the position deviation between the origins becomes zero. This makes it possible to shorten the time required for synchronization and simplify the synchronization operation by making reference point alignment unnecessary at the time of start-up, and to reliably and promptly perform correction control for synchronization deviation due to disturbance during synchronous operation.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示す制御ブロック図、第2
図は従来技術の実施例を示す制御ブロック図、第3図は
第2図におけるシンクロ電機の出力波形及び相対位置関
係図である。 1a…機械(先行機)、1b…機械(追従機)、2a,
2b…誘導電動機、3a,3b…エンコーダ、4a,4
b…絶縁回路、5a,5b…整形回路、6a,6b…周
波数てい倍方向判別回路、7a,7b…速度検出回路、
8…位相差検出回路、、9…偏差カウンタ回路、10,
11…比例・積分(PI)調整器、14,15…加減演算
器、16…インバータ装置、20a…シンクロ電機(発
信機)、20b…シンクロ電機(受信機)、21…変位
検出回路、22…電動機駆動回路。
FIG. 1 is a control block diagram showing an embodiment of the present invention, and FIG.
FIG. 3 is a control block diagram showing an embodiment of the prior art, and FIG. 3 is an output waveform and relative positional relationship diagram of the synchro electric machine in FIG. 1a ... Machine (preceding machine), 1b ... Machine (following machine), 2a,
2b ... Induction motor, 3a, 3b ... Encoder, 4a, 4
b ... Insulation circuit, 5a, 5b ... Shaping circuit, 6a, 6b ... Frequency multiplication direction determination circuit, 7a, 7b ... Speed detection circuit,
8 ... Phase difference detection circuit, 9 ... Deviation counter circuit, 10,
11 ... Proportional / integral (PI) adjuster, 14, 15 ... Addition / subtraction calculator, 16 ... Inverter device, 20a ... Synchronous electric machine (transmitter), 20b ... Synchronous electric machine (receiver), 21 ... Displacement detection circuit, 22 ... Motor drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】誘導電動機により駆動される2台の機械の
一方を先行機とし他方を該先行機に対する追従機として
追従同期運転させる前記2台の機械の同期制御装置にお
いて、前記2台の機械にそれぞれ結合されて回転しその
回転角度に応じて相互に90度の位相差を有するA相と
B相との2相パルス信号とその1回転毎に1パルスの原
点信号すなわちZ相信号を出力する2組のエンコーダ
と、該両エンコーダの前記2相パルス信号より該信号の
4倍周波パルス信号を出力すると共に対応するエンコー
ダそれぞれの回転方向を判別する2組の周波数てい倍方
向判別回路と、前記両エンコーダそれぞれの前記A相又
はB相パルス信号より対応するエンコーダの回転速度を
演算する2組の速度検出回路と、前記両エンコーダそれ
ぞれのZ相パルス信号と前記先行機のエンコーダに対応
する前記4倍周波パルス信号とにより前記追従機に対す
る同期制御開始時点における前記両エンコーダの原点間
位相差角を演算する位相差検出回路と、前記両エンコー
ダに対応する前記4倍周波パルス信号それぞれの積算値
間の差をその符号を含めて演算し該積算値差を初期セッ
ト値として与えられた前記位相差検出回路の出力値より
減算する偏差カウンタ回路と、前記両速度検出回路の出
力差を演算する第1の加減演算器と、前記先行機に対応
する速度検出回路の出力と前記偏差カウンタ回路の出力
と前記第1の加減演算器の出力との和を演算する第2の
加減演算器と、前記両誘導電動機をそれぞれ速度制御す
る2組のインバータ装置とを設け、前記第2の加減演算
器の出力を以って前記追従機の誘導電動機速度調整用イ
ンバータ装置の設定速度信号となすことを特徴とする同
期制御装置。
1. A synchronous control device for the two machines, wherein one of the two machines driven by an induction motor is a preceding machine and the other is a follower for the preceding machine, and the two machines are synchronously controlled. Outputs a two-phase pulse signal of A phase and B phase having a phase difference of 90 degrees depending on the rotation angle and each origin and one pulse origin signal, that is, Z phase signal. Two sets of encoders, and two sets of frequency multiplication direction discriminating circuits that output a quadruple frequency pulse signal of the two-phase pulse signals of both encoders and discriminate the rotation direction of each corresponding encoder, Two sets of speed detection circuits for calculating the rotational speeds of the corresponding encoders from the A-phase or B-phase pulse signals of both encoders, and Z-phase pulse signals of both encoders. And a phase difference detection circuit for calculating the phase difference angle between the origins of the two encoders at the time of starting the synchronous control for the follower, by using the quadruple frequency pulse signal corresponding to the encoder of the preceding machine, and corresponding to both encoders. A deviation counter circuit for calculating a difference between integrated values of the quadruple frequency pulse signals including their signs and subtracting the integrated value difference from an output value of the phase difference detection circuit given as an initial set value; A first addition / subtraction calculator for calculating an output difference between both speed detection circuits, a sum of an output of the speed detection circuit corresponding to the preceding machine, an output of the deviation counter circuit, and an output of the first addition / subtraction calculator. A second adder / subtractor calculator for calculation and two sets of inverter devices for controlling the speeds of the two induction motors are provided, and the output of the second adder / subtractor calculator is used to induce induction of the follower. Synchronous control apparatus characterized by forming a set speed signal of the machine speed adjusting inverter device.
JP63042565A 1988-02-25 1988-02-25 Synchronous control device Expired - Lifetime JPH0646876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042565A JPH0646876B2 (en) 1988-02-25 1988-02-25 Synchronous control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042565A JPH0646876B2 (en) 1988-02-25 1988-02-25 Synchronous control device

Publications (2)

Publication Number Publication Date
JPH01218378A JPH01218378A (en) 1989-08-31
JPH0646876B2 true JPH0646876B2 (en) 1994-06-15

Family

ID=12639578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042565A Expired - Lifetime JPH0646876B2 (en) 1988-02-25 1988-02-25 Synchronous control device

Country Status (1)

Country Link
JP (1) JPH0646876B2 (en)

Also Published As

Publication number Publication date
JPH01218378A (en) 1989-08-31

Similar Documents

Publication Publication Date Title
EP0302493B1 (en) Torque control apparatus for rotating motor machine
EP0109075B1 (en) Rotary drive system positioning apparatus by means of resolvers
USRE40165E1 (en) Method and device for synchronization control
JPH0646876B2 (en) Synchronous control device
JP2629784B2 (en) Synchronous control device
JP2000253694A (en) Synchronized controller
US7228294B2 (en) Electronic cam device and method of preparing cam data in electronic cam device
JP4638094B2 (en) Multi-axis control device and synchronization method therefor
JPH01186190A (en) Synchronous controller
JP2001095276A (en) Device for detecting deviation of rotational position
JPH01251112A (en) Absolute servo control system
JPH09174819A (en) Machine origin matching method for rotary press
SU1317634A2 (en) Variable-frequency synchronous electric drive
JPS59191606A (en) Synchronizing operation system
JPS63273114A (en) Constant position stop controller
JPS6211911A (en) Position controller for motor mounted on satellite
SU968883A1 (en) Cophasal electric drive
JPS6399793A (en) Method of controlling synchronous motor
JPS59113795A (en) Controller for vibration machine
SU902189A1 (en) Device for matching angular position of synchronously rotating shafts of electric motors
JPS6055880A (en) Position controller of synchronous motor
JPS63218818A (en) Resolver type rotation angle detector
SU1653074A1 (en) Method for distributing real power load between synchronous generators running in parallel
JPS6181185A (en) Digital servo controlling method
JPH0352580A (en) Computer for control voltage of motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 14