JPH0644866B2 - Transformant for producing human epidermal growth factor - Google Patents

Transformant for producing human epidermal growth factor

Info

Publication number
JPH0644866B2
JPH0644866B2 JP60176976A JP17697685A JPH0644866B2 JP H0644866 B2 JPH0644866 B2 JP H0644866B2 JP 60176976 A JP60176976 A JP 60176976A JP 17697685 A JP17697685 A JP 17697685A JP H0644866 B2 JPH0644866 B2 JP H0644866B2
Authority
JP
Japan
Prior art keywords
dna
gene
hegf
plasmid
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60176976A
Other languages
Japanese (ja)
Other versions
JPS6240290A (en
Inventor
佳央 谷山
貢一 五十嵐
龍二 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Pharmaceutical Co Ltd filed Critical Takeda Pharmaceutical Co Ltd
Priority to JP60176976A priority Critical patent/JPH0644866B2/en
Priority to CA000492430A priority patent/CA1263619A/en
Priority to US06/784,844 priority patent/US4849350A/en
Priority to EP85112653A priority patent/EP0177915B1/en
Priority to AT85112653T priority patent/ATE59861T1/en
Priority to DE8585112653T priority patent/DE3581255D1/en
Publication of JPS6240290A publication Critical patent/JPS6240290A/en
Publication of JPH0644866B2 publication Critical patent/JPH0644866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF], i.e. urogastrone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒト表皮細胞増殖因子(hEGFと略記)製
造のための組換えDNA技術に関する。より具体的には
hEGFに対応する新規な合成遺伝子を含むDNAで形
質転換した細菌あるいは動物細胞に関する。
TECHNICAL FIELD The present invention relates to recombinant DNA technology for producing human epidermal growth factor (abbreviated as hEGF). More specifically, it relates to a bacterial or animal cell transformed with a DNA containing a novel synthetic gene corresponding to hEGF.

従来の技術 hEGFは主として十二脂腸や顎下線から分泌される5
3個のアミノ酸から成るポリペプチド・ホルモンであ
り、胃酸分泌抑制ならびに表皮細胞増殖促進作用を有す
る。hEGFの胃酸抑制作用はお二指腸腫瘍の治療薬と
しての可能性を示すものである。さらにhEGFは細胞
の膜表面に存在するEGF受容体に結合して、多方面的
な生体反応を惹起せしめることが知られている〔D.G
ospodarowicz,「アニュアル レビュー
オブ フィジオロジー(Ann.Rev.Physio
l.)」,43 251(1981)〕。EGFによつ
て誘起される反応は腫瘍ウイルスの発癌遺伝子産物によ
つて誘発される反応と同一で、EGFの生体内での役割
や細胞増殖調節機構を解明することは発癌機構を探る上
からも興味あることと考えられている。しかし、天然に
存在するhEGFは極めて微量であるため、組換えDN
A技術による生産が注目されるようになった。hEGF
遺伝子をヒトの組織から得る試みは種々の制約によつて
極めて困難なため、未だにhEGFのDNA配列は決定
されていない。
Conventional technology hEGF is secreted mainly from the duodenum and the submandibular line 5
It is a polypeptide hormone consisting of 3 amino acids and has gastric acid secretion inhibitory action and epidermal cell growth promoting action. The gastric acid inhibitory action of hEGF shows its potential as a therapeutic drug for duodenal tumor. Furthermore, it is known that hEGF binds to the EGF receptor present on the cell membrane surface to induce multifaceted biological reactions [D. G
ospodarowicz, “Annual Review
Of Physiology (Ann. Rev. Physio
l. ) ”, 43 251 (1981)]. The response induced by EGF is the same as the response induced by the oncogene product of oncovirus, and elucidation of the role of EGF in vivo and the mechanism of cell growth regulation is also important in order to investigate the mechanism of carcinogenesis. It is considered to be interesting. However, since the amount of naturally occurring hEGF is extremely small, recombinant DN
Production using technology A has come to the fore. hEGF
Since it is extremely difficult to obtain a gene from human tissues due to various restrictions, the DNA sequence of hEGF has not been determined yet.

一方、既に決定されているhEGFのアミノ酸配列
〔H.Gregory,「ネイチャー(Natur
e)」、257,325(’75)〕を基にして、化学
的に合成した構造遺伝子を微生物において発現させる例
は知られている。しかし、EGFは比較的低分子のペプ
チドであり、菌体内で異物として認識され、酵素分解さ
れ易い点を考慮して、融合ペプチドとして発現させてい
る〔J.Smithら,「ヌクレイック アシッズ リ
サーチ(Nucleic Acids Researc
h)」,10 4467(’82)〕。また融合ペプチ
ドから不要部分を除去する方法も提示されているが、極
めて不確実なものにすぎない(スチーブン・ジェームス
・ブルウアーら、特開昭58−216697)。hEG
Fそのものを発現させた例は酵母の系において知られて
いるが〔M.S.Urdeaら、「プロシージング オ
ブ ナショナル アカデミー オブ サイエンス(Pr
oc.Natl.Acad.sci.USA)」,
’7461(’83)〕、その発現量は非常に低く、
酵母の増殖速度が遅いことと相まって大量生産には適し
ていない。
On the other hand, the previously determined amino acid sequence of hEGF [H. Gregory, “Nature
e) ”, 257 , 325 ('75)], a chemically synthesized structural gene is known to be expressed in a microorganism. However, EGF is a peptide having a relatively low molecular weight, and is expressed as a fusion peptide in consideration of the fact that it is recognized as a foreign substance in the bacterial cell and is easily enzymatically decomposed [J. Smith et al., Nucleic Acids Research.
h) ", 10 4467 ('82)]. Also, a method of removing an unnecessary portion from the fusion peptide has been proposed, but it is only extremely uncertain (Stephen James Brewer et al., JP-A-58-216697). hEG
An example of expressing F itself is known in the yeast system, but [M. S. Urdea et al., "Procedures of National Academy of Science (Pr
oc. Natl. Acad. sci. USA) ", 8
0 '7461 ('83)], the expression level is very low,
It is not suitable for mass production due to the slow growth rate of yeast.

発明が解決しようとする問題点 上記のようにhEGF遺伝子のDNA配列は未だ解明さ
れておらず、またhEGFのアミノ酸配列を基にして合
成した対応遺伝子を種々の系で発現させる試みもある
が、融合ペプチドとして発現させる方法ではその操作上
の煩雑さ、不要部分の除去の困難さ等があるし、また融
合ペプチドとせず直接、上記合成遺伝子を発現させた例
では、その生産量は極めて低く、実用的なものではなか
った。
Problems to be Solved by the Invention As described above, the DNA sequence of the hEGF gene has not yet been elucidated, and there have been attempts to express corresponding genes synthesized on the basis of the amino acid sequence of hEGF in various systems. In the method of expressing as a fusion peptide, there is complexity in its operation, difficulty in removing unnecessary portions, etc., and in the case of directly expressing the synthetic gene without using the fusion peptide, the production amount is extremely low, It wasn't practical.

問題点を解決するための手段 本発明者らはhEGFを効率よく生産させる方法を提供
すべく鋭意研究を重ねた結果、この目的に適したhEG
FのDNA配列を見出し、更に該遺伝子の製法、該遺伝
子を含む組換えDNA、該DNAで形質転換した宿主を
確立し、本発明を完成したものである。
Means for Solving the Problems As a result of intensive research conducted by the present inventors to provide a method for efficiently producing hEGF, hEG suitable for this purpose was obtained.
The present invention has been completed by finding the DNA sequence of F, establishing the method for producing the gene, the recombinant DNA containing the gene, and the host transformed with the DNA.

hEGFのDNA配列として従来採用されていたもの
は、大腸菌、酵母等の発現系に適したコドンからなるも
のであったが、このたび本発明者等はこのような人間と
はかなりかけ離れている発現系に適したコドンとは全く
異なった、人間により近いマウスのEGF(mEGF)
の遺伝子に注目して本発明を完成したものである。
What has been conventionally used as a DNA sequence for hEGF consists of codons suitable for expression systems such as Escherichia coli and yeast, but the present inventors have now expressed expression that is considerably different from humans. Mouse EGF (mEGF) closer to humans, completely different from codons suitable for the system
The present invention has been completed by paying attention to the above gene.

hEGFはマウスのそれ〔J.Scottら、「サイエ
ンス(Science)」,221 236(’8
3)〕と比較すると、アミノ酸配列において70%の相
同性があり、アミノ酸の異なっている部分も、その大部
分はコドンのone point mutationに
よつて導びかれるものである。すなわち、hEGF遺伝
子のDNA配列はマウスのそれと極めて良く似ているも
のと推定される。一般にアミノ酸配列からDNA配列を
導くと、コドンの縮重によって多数のDNA配列が可能
となる。そこで合成遺伝子の配列を決定する基準とし
て、発現系の細胞において最も容認されたコドンを採用
するのが通例となっている〔Itakuraら「サイエ
ンス(Science)」,198,1056(197
7)〕。
hEGF is that of mouse [J. Scott et al., "Science", 221 236 ('8).
Compared with 3)], there is 70% homology in the amino acid sequence, and most of the differences in amino acids are also derived by the one point mutation of the codon. That is, the DNA sequence of the hEGF gene is presumed to be very similar to that of mouse. Generally, when a DNA sequence is derived from an amino acid sequence, a large number of DNA sequences are possible due to degeneracy of codons. Therefore, as a standard for determining the sequence of the synthetic gene, it is customary to adopt the most accepted codon in the cells of the expression system [Itakura et al., "Science", 198 , 1056 (197).
7)].

しかし最近の知見によると、原核生物において真核生物
の遺伝子を発現させても何ら支障はなく、ある場合には
発現系に適合させた遺伝子より効率がよい〔M.H.C
aruthers,「ヌクレイック アシッズ リサー
チ,シンポジウム シリーズ(Nucleic Aci
ds Research,Symposium Ser
ies)」11,197(’82)〕。遺伝子の発現を
高めるための因子としては多くのものが挙げられるが、
構造遺伝子に対応するmRNAの安定性ならびに翻訳効
率も重視される。この場合mRNAの塩基配列が決定す
る高次構造が重要な意味を持つと推定される。これらの
点を考慮するとhEGF遺伝子のDNA配列をアミノ酸
配列を変えない範囲でマウスのEGF遺伝子に類似させ
るべきであろう。実際にこの考え方でhEGF遺伝子を
デザインしたところ、マウスのそれに対して90%近い
相同性を持たせることが可能であった。しかし、目的と
する遺伝子を正確に構築するためには、さらにDNA鎖
上における比較的長い自己相補性の存在あるいは二重鎖
DNA間での正常でない相補性を最小限にすべきであ
る。これらの条件を満足させるためにコンピューターを
利用して若干の修正を施し、第1図に示すような、hE
GFの製造に最も適した新規なDNA配列を見出した。
第1図にはDNA配列に加えてアミノ酸配列を示す。
However, recent findings show that eukaryotic genes can be expressed in prokaryotes without any problems and in some cases are more efficient than genes adapted to the expression system [M. H. C
aruthers, "Nucleic Acids Research, Symposium Series (Nucleic Aci
ds Research, Symposium Ser
ies) " 11 , 197 ('82)]. There are many factors for enhancing gene expression,
The stability of the mRNA corresponding to the structural gene and the translation efficiency are also emphasized. In this case, the higher-order structure determined by the base sequence of mRNA is presumed to have an important meaning. Considering these points, the DNA sequence of the hEGF gene should be similar to the mouse EGF gene as long as the amino acid sequence is not changed. In fact, when the hEGF gene was designed based on this idea, it was possible to have a homology close to 90% with that of the mouse. However, in order to construct the target gene accurately, the presence of relatively long self-complementarity on the DNA strand or abnormal complementarity between double-stranded DNAs should be minimized. A computer was used to make some modifications to satisfy these conditions.
We have found a new DNA sequence that is most suitable for the production of GF.
FIG. 1 shows the amino acid sequence in addition to the DNA sequence.

該遺伝子は融合ペプチドとして発現させることもできる
し、融合ペプチドとせず、直接hEGFとして発現する
こともできる。
The gene can be expressed as a fusion peptide, or can be directly expressed as hEGF without being a fusion peptide.

前者の場合は、hEGFの合成遺伝子の5′末端側に開
始コドンATGから始まるhEGF以外の蛋白質をコー
ドするDNAを配し、停止コドン(例えばTAG)で終
るか、または開始コドンATGから始まるhEGF合成
遺伝子の3′末端側にhEGF以外の蛋白質をコードす
るDNAを配し、停止コドン(例えばTAG)で終って
もよい。
In the former case, a DNA coding for a protein other than hEGF starting from the start codon ATG is placed at the 5′-end side of the hEGF synthetic gene, and ends with a stop codon (eg, TAG) or starts with the start codon ATG. A DNA encoding a protein other than hEGF may be placed at the 3'end of the gene and terminated with a stop codon (eg, TAG).

後者の直接発現に用いるには第2図に示すように、hE
GFのポリペプチドをコードする配列に加えて開始コド
ンATG,停止コドン例えばTAGを各々5′側と3′
側に直接配し、また5′末端側と3′末端側はベクター
への挿入のために各々Eco RI,Bam HI付着
末端とし、それ以外にも遺伝子操作上の多様性を持たせ
るために構造遺伝子の後半部にBglIIの認識部位を設
ける。また3′末端の下流にはPst Iの認識部位を
設けることもできる。以上の修正を施すと、マウスのE
GF(mEGF)遺伝子に対して80%の相同性とな
る。
To use the latter for direct expression, hE
In addition to the sequence encoding the polypeptide of GF, a start codon ATG and a stop codon such as TAG are added to the 5'side and 3'side, respectively.
Side, and the 5'-end side and the 3'-end side are Eco RI and Bam HI sticky ends respectively for insertion into the vector. A recognition site for BglII is provided in the latter half of the gene. Further, a Pst I recognition site can be provided downstream of the 3'end. With the above modifications, the mouse E
It has 80% homology to the GF (mEGF) gene.

本発明で用いるhEGF遺伝子の合成に当っては、例え
ば第2図に示すように最終的にはhEGF遺伝子を22
個のフラグメントに分割したが、ここでフラグメントの
自己会合を避けるために、5′あるいは3′末端に自己
相補的配列が出現しないよう注意した。第3図に各DN
Aフラグメントを示す。このフラグメントへの分割の仕
方は上記自己会合を避ける等の注意をすれば、上記のも
のに限定される必要はなく、種々の分け方が可能であ
る。
In the synthesis of the hEGF gene used in the present invention, for example, as shown in FIG.
Although it was divided into individual fragments, care was taken here to avoid the appearance of self-complementary sequences at the 5'or 3'ends to avoid fragment self-association. Each DN is shown in FIG.
A fragment is shown. The method of division into fragments is not limited to the above and can be variously divided if care is taken to avoid the above self-association.

各DNAフラグメント(#1〜#22)は既知の合成法
に従って製造し得る。各フラグメントは必要に応じて
5′末端をポリヌクレオチドキナーゼでリン酸化し、2
乃至3群に分けてハイブリダイズさせDNAガーゼによ
って二重鎖DNAとする。さらに各群を再びDNAリガ
ーゼで連結させることによって完全なhEGF遺伝子が
得られた(第4図参照)。
Each DNA fragment (# 1 to # 22) can be produced according to a known synthetic method. If necessary, each fragment was phosphorylated at the 5'end with a polynucleotide kinase,
It is divided into 3 groups and hybridized to form double-stranded DNA with DNA gauze. Further, complete hEGF gene was obtained by ligating each group again with DNA ligase (see FIG. 4).

これをpBR322のEcoRIおよびBamHIによ
る消化物と結合させ、新規プラスミドpTB361を
得、大腸菌DH1を形質転換する。単離したプラスミド
についてDNAフラグメントの一部をプライマーとして
Sanger法によって塩基配列を決定し、目的とする
hEGF遺伝子の存在を確認する。
This is ligated with a digestion product of pBR322 with EcoRI and BamHI to obtain a new plasmid pTB361, which is transformed into Escherichia coli DH1. The nucleotide sequence of the isolated plasmid is determined by the Sanger method using a part of the DNA fragment as a primer to confirm the presence of the target hEGF gene.

本発明の合成遺伝子を発現するに際しては、プラスミ
ド、バクテリオファージなどのベクターに挿入した組換
えDNAとして用いることが好ましい。
When expressing the synthetic gene of the present invention, it is preferably used as a recombinant DNA inserted into a vector such as a plasmid or bacteriophage.

上記組換えDNAは前記した開始コドンATGの上流に
プロモーターを有しているのが好ましく、該プロモータ
ーは、形質転換体の構造に用いる宿主に対応して適切な
プロモーターであればいかなるものでもよい。
The recombinant DNA preferably has a promoter upstream of the above-mentioned initiation codon ATG, and any promoter may be used as long as it is suitable for the host used for the structure of the transformant.

たとえば、大腸菌(Escherichia col
i;例、294,W3110,DH1,N4830な
ど)ではtrpプロモーター,lacプロモーター,r
ec Aプロモーター,λPプロモーター,lppプロ
モーター,など、枯草菌(Bacillus subt
ilis;例、MI 114など)ではSP01プロモ
ーター,SP02プロモーター,penPプロモーター
など、酵母(Saccharomyces cerev
isiae;例、AH22など)ではPH05プロモー
ター,PGKプロモーター,GAPプロモーター,AD
Hプロモーターなど、動物細胞(例、サル細胞COS−
7,チャイニーズハムスター細胞CHOなど)ではSV
40由来のプロモーターやマウス白血病ウィルス(Mu
LV)由来のLTR領域のプロモーターなどが挙げられ
る。とりわけ宿主が大腸菌の場合はプロモーターがtr
pプロモーターまたはλPプロモーターであることが
好ましく、宿主が動物細胞の場合は、上記プロモーター
に加え、エンハンサーを有することが好ましい。
For example, Escherichia col
i; eg, 294, W3110, DH1, N4830, etc.), trp promoter, lac promoter, r
ec A promoter, λP promoter, lpp promoter, etc., such as Bacillus subtilis
ilis (eg, MI 114, etc.), yeast (Saccharomyces cerev) such as SP01 promoter, SP02 promoter, penP promoter, etc.
isiae; eg AH22), PH05 promoter, PGK promoter, GAP promoter, AD
Animal cells (eg, monkey cells COS-
7, Chinese hamster cells CHO, etc.) SV
40-derived promoter and mouse leukemia virus (Mu
Examples thereof include a promoter of the LTR region derived from LV). Especially when the host is E. coli, the promoter is tr
The promoter is preferably a p promoter or a λP L promoter, and when the host is an animal cell, it preferably has an enhancer in addition to the above promoter.

hEGF合成遺伝子の発現の一例を次に述べる(第5図
参照)。
An example of the expression of the hEGF synthetic gene will be described below (see FIG. 5).

pTB361からEcoRI−PstIで切り出される
172塩基対のDNAを発現用ベクターptrp781
のEcoRI,PstI部位に組込み、Ptrp支配下
の発現用ベクターpTB370を得た。
The 172 base pair DNA cut out from pTB361 with EcoRI-PstI was used as an expression vector ptrp781.
Was incorporated into the EcoRI and PstI sites of E. coli to obtain the expression vector pTB370 under the control of Ptrp.

一方、pTB361のEcoRI−BamHI消化によ
って得られる179塩基対のDNAを発現用ベクターp
TB281のEcoRI−BamHI部位に組込みP
支配下の発現用ベクターpTB372とした。
On the other hand, a 179 base pair DNA obtained by digesting pTB361 with EcoRI-BamHI was used as an expression vector p.
The EcoRI-BamHI site of TB281 built-in P L
The expression vector pTB372 under control was used.

pTB370を用いて大腸菌DH1を形質転換し、生育
するコロニーをアンピシリン感受性を指標にして選別
し、目的hEGF遺伝子を含む株を得た。
Escherichia coli DH1 was transformed with pTB370, and growing colonies were selected using ampicillin sensitivity as an index to obtain a strain containing the target hEGF gene.

pTB372の場合には、温度感受性大腸菌N4830
を用いて形質転換し、テトラサイクリン感受性を指標と
して選別し、クローニングしたpTB372で大腸菌D
H1を形質転換して合成遺伝子の発現を行った。
In the case of pTB372, temperature sensitive E. coli N4830
Escherichia coli D was transformed with pTB372, which was transformed by using Escherichia coli and selected with tetracycline sensitivity as an index.
H1 was transformed to express a synthetic gene.

また、pTB361からEcoRI−BamHIで切り
出されるEGF遺伝子を、動物細胞発現用ベクターpT
B396に組込み、さらにそのSV−40プロモーター
の上流に、マウス白血病ウィルス由来のLTR領域(M
uLV LTR)を含むDNA断片をClaI−Hin
dIIIで切り出して挿入し、動物細胞発現用ベクターp
TB506とした。
In addition, the EGF gene excised from pTB361 with EcoRI-BamHI was used as an animal cell expression vector pT.
Incorporated into B396, and further upstream of its SV-40 promoter, the mouse leukemia virus-derived LTR region (M
uLV LTR) -containing DNA fragment was ClaI-Hin
It is cut out with dIII and inserted, and it is used as an animal cell expression vector p
It was set to TB506.

pTB506で、マウスLA9細胞を共形質転換し、ク
ローニングを行い形質転換体マウスLA9−EGF−3
細胞とした。
Mouse LA9 cells were co-transformed with pTB506 and cloned into transformants mouse LA9-EGF-3.
Cells.

これら形質転換株を培養し、菌体を7Mグアニジン処理
した液中に含まれるhEGFを〔125I〕で標識された
mEGFとの競合反応によるヒト胎児包皮細胞EGF受
容体結合アッセイにより定量したところ、大腸菌DH1
/pTB370によって約2mg/l以上の産生量を示
した(第1表参照)。この発現量は大腸菌におけるhE
GFの直接発現としては注目すべきものである。
When these transformants were cultured and hEGF contained in the solution treated with 7M guanidine was quantified by a human fetal foreskin cell EGF receptor binding assay by a competitive reaction with [ 125 I] -labeled mEGF, E. coli DH1
/ PTB370 showed a production amount of about 2 mg / l or more (see Table 1). This expression level is hE in E. coli.
Notable is the direct expression of GF.

作用 本発明ではhEGF遺伝子のDNA配列として、発現系
の細胞において最も容認されたコドンを採用するのでな
く、むしろhEGFとそのアミノ酸配列において類似し
たmEGFの遺伝子のDNA配列と高い相同性を有する
合成DNA配列を採用することによって、mRNAの安
定性、翻訳効率、mRNAの塩基配列が決定する高次構
造の影響が良好なものとなって、hEGFが効率よく生
産される。また本発明で用いるhEGF発現のための合
成遺伝子では構造遺伝子の後半部にBglII、3′末端
近くにPst Iの認識部位を有することによって、遺
伝子挿入の成否、挿入方向の確認を容易にしたり、数種
類のベクターに乗せることができる等、遺伝子操作上の
有利さ、多様性の発揮し得るものである。
Action In the present invention, the DNA sequence of the hEGF gene does not adopt the most accepted codon in the cells of the expression system, but rather a synthetic DNA having a high homology with the DNA sequence of the mEGF gene which is similar in amino acid sequence to hEGF. By adopting the sequence, the effects of the mRNA stability, the translation efficiency, and the higher-order structure determined by the base sequence of the mRNA are improved, and hEGF is efficiently produced. Further, in the synthetic gene for hEGF expression used in the present invention, by having a recognition site for Pst I near the BglII, 3 ′ end in the latter half of the structural gene, the success or failure of gene insertion and the confirmation of the insertion direction can be facilitated, Since it can be used in several types of vectors, it can exhibit its advantages in gene manipulation and diversity.

そして本発明で用いるhEGF発現用合成遺伝子は新規
なDNA配列を有し、しかも微生物より大巾に人間に近
いマウスのEGF遺伝子のDNA配列と高い相同性を有
するもので、hEGFの高い発現率が期待され、また本
発明の新規hEGF遺伝子を有するDNAで形質転換し
た細菌または哺乳動物細胞により初めてhEGFを効率
よく発現させることが可能となり、また大腸菌を宿主と
した系での直接発現が可能となった。更に本発明のhE
GFに対応する合成遺伝子を用いた組換えDNA技術に
より、hEGFをより効率よく製造することができ、治
療薬としてのhEGFの生産や、hEGFの生体内での
役割や細胞増殖調節機構の解明、ひいては発癌機構の解
明に役立つものである。
The synthetic gene for hEGF expression used in the present invention has a novel DNA sequence and has a high homology with the DNA sequence of the mouse EGF gene, which is much closer to human than a microorganism, and has a high expression rate of hEGF. It is expected that hEGF can be efficiently expressed for the first time by bacteria or mammalian cells transformed with the DNA having the novel hEGF gene of the present invention, and direct expression in a system using Escherichia coli as a host becomes possible. It was Furthermore, hE of the present invention
By recombinant DNA technology using a synthetic gene corresponding to GF, hEGF can be produced more efficiently, production of hEGF as a therapeutic agent, elucidation of the role of hEGF in vivo and cell growth regulation mechanism, As a result, it is useful for elucidating the carcinogenic mechanism.

実施例および効果 次に本発明を実施例により説明する。Examples and Effects Next, the present invention will be described by examples.

なお以下に開示する形質転換体 エシェリヒアコリ(E
scherichia coli)DH1/pTB37
0およびエシェリヒアコリ(Escherichia
coli)DH1/pTB372,pRK248cIt
sは、財団法人発酵研究所(IFO)にそれぞれIFO
−14379およびIFO−14380として、また昭
和59年10月5日から通商産業省工業技術院微生物工
業技術研究所(FRI)にそれぞれFERM BP−8
43およびFERM BP−844として寄託されてい
る。またMouse LA9−EGF−3は財団法人発
酵研究所にIFO−50055として寄託されている。
The transformant Escherichia coli (E
scherichia coli) DH1 / pTB37
0 and Escherichia
coli) DH1 / pTB372, pRK248cIt
s is the IFO of the Fermentation Research Institute (IFO)
-148.3 and IFO-14380, and from October 5, 1984 to the Institute of Microbial Technology (FRI), Ministry of International Trade and Industry, FERM BP-8.
43 and FERM BP-844. Mouse LA9-EGF-3 has been deposited at the Fermentation Research Institute Foundation as IFO-50055.

参考例1.DNAフラグメントの合成 DNAフラグメントはフォスフォトリエステル法による
固相合成〔Ito,H.ら,「ヌクレイック アシッズ
リサーチ(Nucl.Acids Res.)」,10
1755(1982)〕で、各々合成した。また、原料
となるダイマーブロックは、Brokaらの方法〔Br
oka,C.ら,「ヌクレイック アシッズ リサーチ
(Nucl.Acids Res.)」,,5461
(1980)〕に従い合成したもの、あるいは市販品
(和光純薬工業)の完全保護ダイマーを、ピリジン(P
y),トリエチルアミン(TEA),水(3:1:1,
v/v)の混液に溶解させ、シアノエチル基を除去後、
ペンタン,エーテル(1:1,v/v)の混液中で、粉
末としたものを用いた。DNAフラグメントの合成手順
は次の通りである。
Reference example 1. Synthesis of DNA Fragments DNA fragments are synthesized by solid phase synthesis by the phosphorylester method [Ito, H. et al. Et al., Nucleic Acids
Research (Nucl. Acids Res.) ", 10 ,
1755 (1982)]. The dimer block used as a raw material is prepared by the method of Broka et al. [Br
oka, C.I. , "Nucleic Acids Research (Nucl. Acids Res.)", 8 , 5461.
(1980)] or a fully protected dimer of a commercially available product (Wako Pure Chemical Industries, Ltd.) with pyridine (P
y), triethylamine (TEA), water (3: 1: 1,
v / v) to dissolve the mixture and remove the cyanoethyl group,
The powder was used in a mixed solution of pentane and ether (1: 1, v / v). The procedure for synthesizing a DNA fragment is as follows.

ジメトキシトリチルヌクレオシドを付着させた25mg
の1%ポリスチレン(バッケム社)を、次の試薬で順次
処理した。
25 mg with dimethoxytrityl nucleoside attached
1% polystyrene (Backchem) was sequentially treated with the following reagents.

(1)ジクロルメタン中3%(w/v)トリクロロ酢酸
(TCA)〔Tanaka,T,ら,「ヌクレイック ア
シッズ リサーチ(Nucl.Acids Re
s.)」,10,3249(1982)」で1分×2(2
回同じ操作を行ったことを示す) (2)ジクロルメタン ×4 (3)ピリジン ×3 (4)20mgのジヌクレオチドブロック又は30mgの
モノマーブロックを含む0.3mlの乾燥ピリジン (5)上記溶液を減圧下濃縮(ピリジン共沸) (6)25mgのメシチレンスルホニルニトロトリアゾリ
ッド(MSNT)および5mgのニトロトリアゾールを
含む0.3mlの乾燥ピリジンで40℃、20分間 (7)ピリジン ×2 (8)10%(v/v)無水酢酸および0.1Mジメチル
アミノピリジン(DMAP)を含有するピリジン2ml
で2分間 (9)ピリジン ×2 (10)ジクロルメタン ×3 適当なジヌクレオチドあるいはモノヌクレオチドブロッ
クを用いて、この約40分のサイクルを反復し、目的と
するオリゴヌクレオチド鎖を完結させた。合成完了後、
0.5Mの1,1,3,3−テトラメチルグアニジウム
−ピリジン−2−アルドキシム〔Reese,C.B.
ら,「テトラヘドロン レターズ(Tetrahedro
n Lett.)」,2727(1978)〕で40
℃、14時間処理し、重合体担体より目的物を取り出
し、次に濃アンモニア水で60℃、4時間処理して、ジ
メトキシトリチル基以外の保護基をすべて除いた。この
試料を逆相のCシリカゲル(リクロプレップRP−
8,メルク社)のカラム(φ3.0×2.0cm)にか
け、30%アセトニトリルで溶出した分画を、80%酢
酸で室温、15分間処理した。エーテル洗浄後、さらに
イオン交換高速液体クロマトグラフィー(パーティジル
10SAX,ワットマン社)で精製〔Gait,M.
J.ら J.C.S.,「ケミカル コミニュケーショ
ンズ(Chem.Commun.)」,37(198
2)〕を行ない、純粋なDNAフラグメントを得た。こ
の様して合成した22種のDNAフラグメントは第3図
に示した通りである。
(1) 3% (w / v) trichloroacetic acid (TCA) in dichloromethane [Tanaka, T., et al., "Nucleic Acids Research (Nucl. Acids Re
s. ) ”, 10 , 3249 (1982)”, 1 minute x 2 (2
(2) Dichloromethane x 4 (3) Pyridine x 3 (4) 0.3 ml of dry pyridine containing 20 mg of dinucleotide block or 30 mg of monomer block (5) Reduce pressure of the above solution Concentrated under (pyridine azeotrope) (6) 25 mg mesitylenesulfonyl nitrotriazolide (MSNT) and 5 mg nitrotriazole in 0.3 ml dry pyridine at 40 ° C. for 20 minutes (7) pyridine × 2 (8) 10 2 ml of pyridine containing% (v / v) acetic anhydride and 0.1 M dimethylaminopyridine (DMAP)
2 minutes (9) Pyridine x 2 (10) Dichloromethane x 3 Using an appropriate dinucleotide or mononucleotide block, this cycle of about 40 minutes was repeated to complete the desired oligonucleotide chain. After the synthesis is completed,
0.5 M 1,1,3,3-tetramethylguanidinium-pyridine-2-aldoxime [Reese, C .; B.
Et al., “Tetrahedron Letters (Tetrahedro
n Lett. ) ”, 2727 (1978)] 40
The product was treated at 14 ° C. for 14 hours, the desired product was taken out from the polymer carrier, and then treated with concentrated aqueous ammonia at 60 ° C. for 4 hours to remove all protecting groups other than the dimethoxytrityl group. This sample was subjected to reversed-phase C 8 silica gel (Licroprep RP-
(8, Merck) column (φ3.0 × 2.0 cm), and the fraction eluted with 30% acetonitrile was treated with 80% acetic acid at room temperature for 15 minutes. After washing with ether, the product was further purified by ion exchange high performance liquid chromatography (Partilsil 10SAX, Whatman) [Gait, M.
J. Et al. C. S. , "Chemical Communications (Chem. Commun.)", 37 (198).
2)] was carried out to obtain a pure DNA fragment. The 22 kinds of DNA fragments thus synthesized are as shown in FIG.

参考例2 オリゴDNAのリン酸化 各々のDNAフラグメントを25μlのリン酸化反応液
〔オリゴDNA2.5μg,50mM Tris−HC
l,pH7.6,10mM MgCl,10mM 2
−メルカプトエタノール,1mM ATP,2.5ユニ
ットT4ポリヌクレオチドキナーゼ(宝酒造)〕中で、
37℃、1時間反応させ、5′末端をリン酸化した。こ
の反応液をこのまま凍結し、溶解後、次の反応に用い
た。
Reference Example 2 Phosphorylation of oligo DNA 25 μl of phosphorylation reaction solution of each DNA fragment [oligo DNA 2.5 μg, 50 mM Tris-HC
1, pH 7.6, 10 mM MgCl 2 , 10 mM 2
-Mercaptoethanol, 1 mM ATP, 2.5 units T4 polynucleotide kinase (Takara Shuzo)],
The reaction was carried out at 37 ° C for 1 hour to phosphorylate the 5'end. This reaction solution was frozen as it was, thawed and used for the next reaction.

参考例3 DNAフラグメントの連結 hEGF遺伝子の2重鎖構成の1連の段階は第4図に示
した通りである(図中−印は5′末端水酸基がリン酸化
されていることを示す)。たとえばブロックIの連結は
次の様にした。12種(DNAフラグメント1から12
に各々対応する)の参考例2の操作で得たDNAフラグ
メントのリン酸化反応液を5μlずつ加え、60μlと
した。これに1.4ユニットのT4DNAリガーゼ(宝
酒造)を加え、14℃で25時間インキュベートした
後、65℃で10分間処理し、反応をとめた。ここで主
生成物となったブロックIの2量体を、制限エンドヌク
レアーゼEcoRI(宝酒造)で消化するために、この
反応液に次の3成分を50mM NaCl,0.01%牛
血清アルブミン(BSA),7mMMgClになるよ
うに加え、120ユニットのEco RIで37℃、
1.5時間反応させ、6%含有アクリルアミドゲルを用
いて、緩衝液(pH8.3)〔100mM Tris−
HCl,100mMホウ酸,2mM EDTA〕中、2
5mAで1.5時間電気泳動にかけた。泳動後、0.6
mg/lのエチジウムブロマイド(EtBr)でゲルを
染色し、101bpのDNA断片を含むゲル片を透析チ
ューブ内に封入し、泳動用衝撃液内に沈め、DNA断片
をゲルから電気的に溶出した〔(ジャーナル オブ モ
レキュラー バイオロジー(J.Mol.Bio
l.)」,110,119(1977)〕。この透析チ
ューブ内液を0.01M Tris−HCl,(pH
7.6),0.1MNaClおよび0.001M ED
TAで飽和したフェノールで3回抽出し、さらにエーテ
ル抽出した後、NaClを0.2Mとなるように加え
た。続いて2倍量の冷エタノールを加えて、−20℃で
DNAを沈澱させた。以上と同様の操作によってさらに
ブロックII(#13から#22を含む)を調製した。
Reference Example 3 Ligation of DNA Fragment The series of steps in the double chain constitution of the hEGF gene is as shown in FIG. 4 (in the figure, the-mark indicates that the 5'-terminal hydroxyl group is phosphorylated). For example, block I was connected as follows. 12 species (DNA fragments 1 to 12
5 μl each of the phosphorylation reaction solution of the DNA fragment obtained by the operation of Reference Example 2 (corresponding to the above) was added to make 60 μl. To this, 1.4 units of T4 DNA ligase (Takara Shuzo) was added, incubated at 14 ° C for 25 hours, and then treated at 65 ° C for 10 minutes to stop the reaction. Here, in order to digest the dimer of Block I, which is the main product, with the restriction endonuclease EcoRI (Takara Shuzo), the following three components were added to this reaction solution: 50 mM NaCl, 0.01% bovine serum albumin (BSA). ), 7 mM MgCl 2 and 120 units of Eco RI at 37 ° C.
After reacting for 1.5 hours, using a 6% acrylamide gel, a buffer solution (pH 8.3) [100 mM Tris-
HCl, 100 mM boric acid, 2 mM EDTA] in 2
It was electrophoresed at 5 mA for 1.5 hours. After migration, 0.6
The gel was stained with mg / l ethidium bromide (EtBr), and the gel piece containing the 101 bp DNA fragment was enclosed in a dialysis tube and immersed in a percussion solution for electrophoresis to electrically elute the DNA fragment from the gel [ (Journal of Molecular Biology (J. Mol. Bio
l. ) ”, 110 , 119 (1977)]. The solution in the dialysis tube was mixed with 0.01 M Tris-HCl, (pH
7.6), 0.1 M NaCl and 0.001 M ED
After extracting with phenol saturated with TA three times and further extracting with ether, NaCl was added so as to have a concentration of 0.2M. Subsequently, 2 volumes of cold ethanol was added to precipitate the DNA at -20 ° C. Block II (including # 13 to # 22) was further prepared by the same operation as above.

実施例1 hEGF遺伝子のクローニング(第5図) クローニングベクターには大腸菌のプラスミドpBR3
22を使用した。pBR322DNAを20μlの反応
液〔10mM Tris−HCl,pH8.0,7mM
MgCl,100mM NaCl,2mM 2−メ
ルカプトエタノール,0.01%ウシ血清アルブミン
(BSA),19ユニットのEcoRI(宝酒造),5
ユニットのBam HI(宝酒造)〕中、37℃、1時
間反応させた後、水で3倍稀釈し、65℃で10分間処
理し、酵素を失活させた。この反応液0.5μlと約2
0当量のDNAフラグメントブロックIおよびIIとを混
合し、66mMTris−HCl(pH7.5),6.
6mM MgCl,10mM ジチオスレイトール
(DDT)および1mMATP存在下、10μlの反応液
として、14℃、2時間T4DNAリガーゼ(ニューイ
ングランド・バイオラボ社製)を作用させて、hEGF
遺伝子をプラスミドに結合させた。
Example 1 Cloning of hEGF gene (FIG. 5) The Escherichia coli plasmid pBR3 was used as a cloning vector.
22 was used. pBR322 DNA was added to 20 μl of a reaction solution [10 mM Tris-HCl, pH 8.0, 7 mM.
MgCl 2 , 100 mM NaCl, 2 mM 2-mercaptoethanol, 0.01% bovine serum albumin (BSA), 19 units EcoRI (Takara Shuzo), 5
In a unit of Bam HI (Takara Shuzo)], the mixture was reacted at 37 ° C. for 1 hour, then diluted 3 times with water and treated at 65 ° C. for 10 minutes to inactivate the enzyme. 0.5 μl of this reaction solution and about 2
5. Mix 0 equivalents of DNA fragment blocks I and II, and add 66 mM Tris-HCl (pH 7.5), 6.
6 mM MgCl 2 , 10 mM dithiothreitol
(DDT) and 1 mM ATP, 10 μl of a reaction solution was allowed to act with T4 DNA ligase (New England Biolabs) for 2 hours at 14 ° C. to give hEGF.
The gene was ligated into a plasmid.

この反応液を用い、既知の方法に従い、大腸菌DH1株
〔Selson,M.E.ら,「ネイチャー(Natur
e)」,217,1110−1114(1968)〕を形
質転換させた。すなわち、−70℃で保存していた50
μlのコンピテントセル〔Hanahan,D.,「ジ
ャーナル オブ モレキュラー バイオロジー(J.M
ol.Biol.)」,166,557(1983)〕
を0℃、15分間インキュベートした後、4μlの上記
反応液を添加した。さらに0℃、30分間インキュベー
トした後、42℃、1.5分間おき、さらに0℃で5分
間おいた。この反応液に200μlのLB培地(1リッ
トル当りバクトトリプトン10g,バクトイースト抽出
物5g,NaCl 8gを含む)を加え、37℃、50
分間インキュベートした。この大腸菌を35μg/ml
のアンピシリンを含むLB寒天培地上にまき、37℃で
1晩培養した。生じたアンピシリン耐性コロニー中、6
0株を選び、さらに7μg/mlのテトラサイクリンを
含むLB寒天培地に接種したが、59株ははえなかっ
た。次にこの59株中16株を選択し、この転換株のプ
ラスミドDNAをアルカリ法〔Maniatis,T.
ら,「モレキュラー クローニング(Molecular
Cloning(Cold Spring Harb
our))」,368−369(1982)〕により粗精
製し、EcoRIおよびBamHI消化、さらにEco
RIおよびBglII消化,PstI消化した。これら消
化物の2%アガロースゲルでの泳動パターンから、14
株が正しくhEGF遺伝子の挿入されている転換株であ
ることがわかった。この様にして得たクローニングベク
ターをpTB361と名付けた。このプラスミドpTB
361を持つ大腸菌DH1組み換え体の1白金耳を、3
5μg/mlのアンピシリンを含むLB培地1.5ml
に接種し、37℃で一夜、振盪培養した。この培養液
0.3mlを200mlフラスコに分注した25mlの
同じ培地に加え、37℃、6.5時間振盪培養した後、
この培養液を500mlフラスコに分注した同培地12
5mlに加え、さらに45分間振盪培養した。次にクロ
ラムフェニコールを170μg/mlになるように添加
し、さらに一夜培養をつづけ、プラスミドDNAの増幅
をはかった。この培養液150mlを、6000rp
m,4℃,9分間遠心分離し、得られた菌体を生理食塩
水で洗浄し、4mlの反応液〔25mM Tris−H
Cl,pH8.0,50mMグルコース,10mM E
DTA,1mg/mlリゾチーム〕を加え、懸濁した。
氷中で20分間おいた後、8mlのアルカリ溶液〔1%
(w/v)SDS,0.2N NaOH〕を添加し、氷
中で5分間したら、6mlの5M酢酸カリウム緩衝液
(pH4.8)を加え、10分間氷中でおき、10,0
00rpmで4℃、20分間遠心分離した。得られた上
澄液に2倍量のエタノールを加え、振盪した後、−20
℃で10分間おき、10,000rpmで4℃、20分
間遠心分離した。沈殿物を風乾後、4mlの緩衝液〔1
mM NaEDTA(pH8.0),10mM Tr
is−HCl(pH8.0)〕に溶かし、塩化セシウム
(CsCl)を3.9g、EtBrを3mg加え、Be
ckman50Tiローターで35,000rpm,1
5℃,64時間CsCl−EtBr平衡密度勾配遠心分
離にかけた。プラスミドDNAのバンドを集め、2倍量
の緩衝液〔1mM NaEDTA,pH8.0,10
mM Tris−HCl,pH8.0〕を加え、等量の
クロロホルム−フェノール(1:1,v/v)を加えて
2回洗浄し、EtBrを除去後、エタノール沈殿を行な
った。さらに沈殿物を0.6mlの緩衝液〔1mM E
DTA,10mM Tris−HCl,pH8.0,
0.3M NaCl〕に溶かし、もう一度エタノール沈
殿を行なった。
E. coli DH1 strain [Selson, M. et al. E. Et al., “Nature (Natur
e) ", 217 , 1110-1114 (1968)]. That is, 50 stored at -70 ° C
μl of competent cells [Hanahan, D .; , “Journal of Molecular Biology (JM
ol. Biol. ), 166 , 557 (1983)].
Was incubated at 0 ° C. for 15 minutes, and then 4 μl of the above reaction solution was added. After further incubating at 0 ° C. for 30 minutes, each was left at 42 ° C. for 1.5 minutes, and further left at 0 ° C. for 5 minutes. To this reaction solution, 200 μl of LB medium (containing 10 g of bactotryptone, 5 g of bacto yeast extract and 8 g of NaCl per liter) was added, and the mixture was incubated at 37 ° C. and 50 ° C.
Incubated for minutes. 35 μg / ml of this E. coli
It was spread on LB agar medium containing ampicillin and cultured at 37 ° C. overnight. 6 out of the resulting ampicillin resistant colonies
0 strain was selected and further inoculated on LB agar medium containing 7 μg / ml tetracycline, but 59 strain was not obtained. Next, 16 of these 59 strains were selected, and the plasmid DNA of this converted strain was subjected to the alkaline method [Maniatis, T. et al.
Et al., “Molecular Cloning”
Cloning (Cold Spring Harb
our)) ", 368-369 (1982)], digested with EcoRI and BamHI, and further digested with Eco.
It was digested with RI, BglII and PstI. From the migration patterns of these digests on a 2% agarose gel, 14
It was found that the strain was a transformant in which the hEGF gene was correctly inserted. The cloning vector thus obtained was named pTB361. This plasmid pTB
1 platinum loop of E. coli DH1 recombinant with 361
1.5 ml LB medium containing 5 μg / ml ampicillin
And cultured at 37 ° C. overnight with shaking. 0.3 ml of this culture solution was added to 25 ml of the same medium dispensed in a 200 ml flask, and the mixture was shake-cultured at 37 ° C. for 6.5 hours,
This medium was dispensed into a 500 ml flask with the same medium 12
The mixture was added to 5 ml and shake-cultured for another 45 minutes. Next, chloramphenicol was added at 170 μg / ml, and the culture was continued overnight to amplify the plasmid DNA. 150 ml of this culture solution is added to 6000 rp
m, 4 ° C, 9 minutes of centrifugation, the obtained bacterial cells were washed with physiological saline, and 4 ml of the reaction solution [25 mM Tris-H
Cl, pH 8.0, 50 mM glucose, 10 mM E
DTA, 1 mg / ml lysozyme] was added and suspended.
After 20 minutes in ice, 8ml of alkaline solution [1%
(W / v) SDS, 0.2N NaOH], and after 5 minutes in ice, 6 ml of 5M potassium acetate buffer (pH 4.8) was added, and the mixture was kept in ice for 10 minutes.
It was centrifuged at 00 rpm for 20 minutes at 4 ° C. To the obtained supernatant, twice the amount of ethanol was added, and after shaking, -20
Every 10 minutes at 4 ° C., centrifugation was performed at 10,000 rpm at 4 ° C. for 20 minutes. After air-drying the precipitate, 4 ml of buffer solution [1
mM Na 2 EDTA (pH 8.0), 10 mM Tr
is-HCl (pH 8.0)], 3.9 g of cesium chloride (CsCl) and 3 mg of EtBr were added, and Be was added.
35,000 rpm, 1 with ckman 50Ti rotor
It was subjected to CsCl-EtBr equilibrium density gradient centrifugation at 5 ° C for 64 hours. The bands of plasmid DNA were collected and used in a double volume of buffer [1 mM Na 2 EDTA, pH 8.0, 10].
mM Tris-HCl, pH 8.0] was added, an equal amount of chloroform-phenol (1: 1, v / v) was added, and the mixture was washed twice. After removing EtBr, ethanol precipitation was performed. The precipitate was added to 0.6 ml of buffer solution [1 mM E
DTA, 10 mM Tris-HCl, pH 8.0,
0.3M NaCl] and ethanol precipitation was performed again.

ここで単離したプラスミドpTB361に組み込まれて
いるhEGF遺伝子の塩基配列はWallaceらの方
法〔Wallace,R.B.ら,「ジーン(Gen
e)」,16,21−26(1981)〕に従った。すなわ
ち、pTB361DNAを10μlの反応液〔7mM
Tris−HCl,pH7.5,7mM MgCl
50mM NaCl,4ユニットのPvuII(宝酒
造)〕中、37℃、1時間反応させた。この反応液にプ
ライマーとしてDNAフラグメント#7の水溶液(1.
0A260/ml)1μlを加え、100℃で5分加熱
後、氷浴で急冷した。以後の操作はジデオキシ法の一般
法どおりで行なった。同様にして、プライマーにDNA
フラグメント#14、#18を用いてhEGF遺伝子の
塩基配列が正しいことを確認した。
The nucleotide sequence of the hEGF gene incorporated in the plasmid pTB361 isolated here is the method of Wallace et al. [Wallace, R. et al. B. Et al., “Gen”
e) ”, 16 , 21-26 (1981)]. That is, pTB361 DNA was added to 10 μl of the reaction solution [7 mM
Tris-HCl, pH 7.5, 7 mM MgCl 2 ,
The reaction was carried out in 50 mM NaCl, 4 units of PvuII (Takara Shuzo)] at 37 ° C. for 1 hour. An aqueous solution of DNA fragment # 7 (1.
0A260 / ml) (1 μl) was added, and the mixture was heated at 100 ° C. for 5 minutes and then rapidly cooled in an ice bath. Subsequent operations were carried out according to the general dideoxy method. Similarly, DNA is used as a primer
Using the fragments # 14 and # 18, it was confirmed that the base sequence of the hEGF gene was correct.

実施例2 hEGFの発現用プラスミドの構築ならびに
形質転換体の製造(第5図) i)上記実施例1で得られた10μgのpTB361を
反応液〔50mM NaCl,6mM Tris−HC
l(pH7.6),6mM MgCl,6mM 2−
メルカプトエタノール,0.01%BSA,50ユニッ
トEcoRI,10ユニットPstI(宝酒造)〕中、
37℃、1.5時間反応させた後、2%アガロースゲル
電気泳動により172bpDNA断片を常法(前述)に
従って精製した。一方、発現用ベクターにはptrp7
81〔Kurokawa,T.ら,「ヌクレイック アシ
ッズ リサーチ(Nucl.Acids Re
s.)」,11,3077−3085(1983)〕を
使用した。ptrp781DNAを上記と同様にして、
EcoRIおよびPstI消化し、この反応液に2倍量
の水を加え、65℃で10分間おき、酵素を失活させ
た。
Example 2 Construction of plasmid for expression of hEGF and production of transformant (FIG. 5) i) 10 μg of pTB361 obtained in Example 1 above was added to a reaction solution [50 mM NaCl, 6 mM Tris-HC.
1 (pH 7.6), 6 mM MgCl 2 , 6 mM 2-
Mercaptoethanol, 0.01% BSA, 50 units EcoRI, 10 units PstI (Takara Shuzo)],
After reacting at 37 ° C. for 1.5 hours, a 172 bp DNA fragment was purified by 2% agarose gel electrophoresis according to a conventional method (described above). On the other hand, ptrp7 is used as an expression vector.
81 [Kurokawa, T .; , "Nucleic Acids Research (Nucl. Acids Re
s. ) ”, 11 , 3077-3085 (1983)]. ptrp781 DNA as above,
After digestion with EcoRI and PstI, double the amount of water was added to the reaction solution, and the mixture was kept at 65 ° C. for 10 minutes to inactivate the enzyme.

この様にして得た172bpDNAおよびプラスミドD
NAは各々、両端にEcoRI消化およびPstI消化
により生じた単鎖の付着端を有する。
172 bp DNA and plasmid D thus obtained
Each NA has a single chain cohesive end generated by EcoRI and PstI digestion at both ends.

これら両者を混合し、66mM Tris−HCl,p
H7.5,6.6mM MgCl,10mM DTT
および1mM ATP存在下、14℃、5.5時間T4
DNAリガーゼ(NEB社)を作用させてDNAを結合
し、前出と同様な方法で大腸菌DH1株を形質転換させ
た。次にこの大腸菌を7μg/mlのテトラサイクリン
を含むLB寒天培地上にまき、37℃で1日培養した。
生じたテトラサイクリン耐性コロニーを、次に35μg
/mlのアンピシリンを含むLB寒天培地に接種し、は
えない転換株を選び出した。さらに前出と同様な方法
で、転換株のプラスミドDNAをEcoRIおよびPs
tIで消化し、さらにBglIIおよびHindIIIで消
化して、hEGF遺伝子が正しく挿入された転換株を選
択した。この様にして得た発現用プラスミドをpTB3
70と、また形質転換体をエシェリヒア コリ DH1
/pTB370と名づけた。
Both of these are mixed, and 66 mM Tris-HCl, p is added.
H7.5, 6.6 mM MgCl 2 , 10 mM DTT
And T4 in the presence of 1 mM ATP at 14 ° C for 5.5 hours
DNA ligase (NEB) was allowed to act to bind the DNA, and Escherichia coli DH1 strain was transformed by the same method as described above. Next, this Escherichia coli was spread on an LB agar medium containing 7 μg / ml of tetracycline and cultured at 37 ° C. for 1 day.
The resulting tetracycline resistant colonies were then plated with 35 μg
LB agar medium containing 1 / ml of ampicillin was inoculated, and a non-flying transformant was selected. Further, the plasmid DNA of the transformant was treated with EcoRI and Ps by the same method as described above.
A transformant in which the hEGF gene was correctly inserted was selected by digestion with tI and further digestion with BglII and HindIII. The expression plasmid thus obtained was designated as pTB3.
70 and also the transformant, Escherichia coli DH1
/ PTB370.

ii)λPプロモーター遺伝子を持つ発現用ベクターは
次の様にして構築した(第6図) プラスミドptrp601〔Y.Fujisawaら,
「ヌクレイック アシッズ リサーチ(Nucleic
Acids Res.)」,11,3581(198
3)〕を制限酵素EcoRIおよびClaIで切断した
後、生じた単鎖の付着端をDNAポリメラーゼI(Kl
enow fragment)でうめ、フェノール処理
し、エタノール沈殿を行なった。この直鎖状DNAを1
4℃でT4DNAリガーゼを作用させて環状DNAと
し、前出と同様な方法で大腸菌を形質転換させ、これよ
りtrpプロモーター下流がEcoRIとなったプラス
ミドを単離し、pTB56と名付けた。
ii) An expression vector having the λP L promoter gene was constructed as follows (FIG. 6). The plasmid ptrp601 [Y. Fujizawa et al.,
"Nucleic Acids Research (Nucleic
Acids Res. ) ”, 11 , 3581 (198)
3)] was digested with restriction enzymes EcoRI and ClaI, and the resulting cohesive end of the single chain was replaced with DNA polymerase I (Kl
It was filled with enow fragment), treated with phenol, and precipitated with ethanol. 1 of this linear DNA
T4 DNA ligase was allowed to act at 4 ° C. to form circular DNA, and Escherichia coli was transformed by the same method as described above. From this, a plasmid having EcoRI in the trp promoter downstream was isolated and named pTB56.

次にこのプラスミドpTB56をPvuIIで消化し直鎖
状DNAとした後、合成オリゴヌクレオチド(EcoR
Iリンカー)と混ぜ、T4DNAリガーゼ反応を行なっ
た。この反応物をEcoRIで消化した後、2%アガロ
ースゲル電気泳動によりtrpプロモーター遺伝子を含
む約0.28kbpDNA断片を定法に従って精製し
た。
Next, this plasmid pTB56 was digested with PvuII to obtain a linear DNA, and then a synthetic oligonucleotide (EcoR
(I linker) and T4 DNA ligase reaction was performed. After digesting this reaction product with EcoRI, about 0.28 kbp DNA fragment containing the trp promoter gene was purified by 2% agarose gel electrophoresis according to a standard method.

一方、pBR322DNAをEcoRI消化して直鎖状
DNAとした後、5′末端のリン酸基をアルカリ性フォ
スファターゼ処理により除去し、前記0.28kbpD
NAEcoRI断片と混合し、14℃でT4DNAリガ
ーゼを作用させ、DNAを結合し、大腸菌を形質転換さ
せ、これよりtrpプロモーターがpBR322のEc
oRI部位にクローニングされたプラスミドを単離し、
pTB57と名付けた。
On the other hand, pBR322 DNA was digested with EcoRI to form linear DNA, and the phosphate group at the 5'end was removed by alkaline phosphatase treatment to give 0.28 kbpD.
It was mixed with NAEcoRI fragment, reacted with T4 DNA ligase at 14 ° C., ligated with DNA, and transformed into Escherichia coli. From this, the trp promoter was Ec of pBR322.
isolation of the plasmid cloned into the oRI site,
It was named pTB57.

次にこのプラスミドpTB57をEcoRIで部分消化
して得られる直鎖状DNAを前出と同様の操作で処理
し、片方のEcoRI認識部位をつぶし、環状DNAと
した後、大腸菌を形質転換させ、得られたコロニーより
プラスミドを得、制限酵素の切断でのパターンよりtr
pプロモーターの上流側にあるEcoRI認識部位がな
くなったプラスミドをpTB91と名付けた。
Next, a linear DNA obtained by partially digesting this plasmid pTB57 with EcoRI was treated in the same manner as described above to crush one EcoRI recognition site to form a circular DNA, which was then transformed into Escherichia coli. A plasmid was obtained from the selected colony, and tr was obtained from the pattern of restriction enzyme cleavage.
The plasmid lacking the EcoRI recognition site on the upstream side of the p promoter was designated as pTB91.

さらにプラスミドpTB91をEcoRIで消化後、単
鎖の付着端をDNAポリメラーゼIでうめ、合成オリゴ
ヌクレオチド(BglIIリンカー)と混ぜ、T4DNAリ
ガーゼを用いて結合し、trpプロモーター遺伝子の下
流にBglII認識部位を導入し、このプラスミドをpT
B334と名づけた。
Furthermore, after digesting plasmid pTB91 with EcoRI, the cohesive end of the single chain was filled in with DNA polymerase I, mixed with synthetic oligonucleotide (BglII linker), ligated using T4 DNA ligase, and a BglII recognition site was introduced downstream of the trp promoter gene. And the plasmid pT
It was named B334.

この様にして得たpTB57とpTB334を用い、t
rpプロモーターの上流にEco RI認識部位、およ
び下流にBglII認識部位を持つプラスミドを構築し
た。まずpTB344を制限酵素Hpa IおよびPs
t Iで切断した後、2%アガロースゲル電気泳動によ
り約0.78kbpDNA断片を溶出精製した。
Using pTB57 and pTB334 thus obtained, t
A plasmid having an Eco RI recognition site upstream of the rp promoter and a BglII recognition site downstream thereof was constructed. First, pTB344 was treated with restriction enzymes Hpa I and Ps.
After cutting with t I, about 0.78 kbp DNA fragment was eluted and purified by 2% agarose gel electrophoresis.

またpTB57も同様の制限酵素で切断した後、1%ア
ガロースゲル電気泳動により、3.85kbpDNA断
片を溶出精製した。これら両者を混合しT4DNAリガ
ーゼを用いて結合した後、大腸菌を形質転換させ、得ら
れたコロニーよりプラスミドを得、制限酵素の切断での
パターンより目的のプラスミドを持つ転換株を選択し
た。これより単離したプラスミドをpTB340と名付
けた。
Also, pTB57 was cleaved with the same restriction enzyme, and then a 3.85 kbp DNA fragment was eluted and purified by 1% agarose gel electrophoresis. After mixing both of them and ligating them with T4 DNA ligase, Escherichia coli was transformed, a plasmid was obtained from the obtained colonies, and a transformant having the desired plasmid was selected based on the pattern of restriction enzyme cleavage. The plasmid isolated from this was named pTB340.

次にλPプロモーターを持つプラスミドpAD329
〔Adhya,S.ら,「セル(Cell)」,29
939−944(1982)〕より、λPプロモータ
ー遺伝子を持つ0.35kbpのDNA断片を単離し
た。まずプラスミドpAD329を制限酵素BglIIお
よびHpaIで消化後、2%アガロースゲル電気泳動に
かけ、約0.45kbpのDNA断片を溶出精製した。
次いでこの0.45kbpのDNA断片をHinfIに
より部分消化した後、2%アガロースゲル電気泳動にか
け、約0.35kbpのDNA断片を溶出精製した。こ
の様にして得た0.35kbpのDNA断片は両端にB
glII消化およびHinf I消化により生じた付着端
を有する。
Next, a plasmid pAD329 having a λP L promoter
[Adhya, S. , "Cell," 29 ,
939-944 (1982)], a DNA fragment of 0.35 kbp having a λP L promoter gene was isolated. First, the plasmid pAD329 was digested with restriction enzymes BglII and HpaI and then subjected to 2% agarose gel electrophoresis to elute and purify a DNA fragment of about 0.45 kbp.
Next, this 0.45 kbp DNA fragment was partially digested with HinfI and then subjected to 2% agarose gel electrophoresis to elute and purify a DNA fragment of about 0.35 kbp. The 0.35 kbp DNA fragment thus obtained had B
It has sticky ends generated by glII and HinfI digestion.

一方、プラスミドpTB340を制限酵素BglIIおよ
びEcoRIで消化した後、1%アガロースゲル電気泳
動にかけ、約4.35kbpDNAを溶出し、精製し
た。ここで得られたDNAは両端にBglII消化および
EcoRI消化により生じた付着端を有する。この様に
して得られたλP プロモーター遺伝子を含む0.35kbpDNA断片と
約4.35kbpのDNAとを混ぜ、T4DNAリガー
ゼで環状DNAとした後、大腸菌を形質転換させ、これ
よりλP プロモーターを持ち、その上流にBglII認
識部位、下流にEco RI認識部位を有するプラスミ
ドを単離し、これをpTB281と名付けた。
On the other hand, the plasmid pTB340 was digested with restriction enzymes BglII and EcoRI and then subjected to 1% agarose gel electrophoresis to elute and purify about 4.35 kbp DNA. The DNA obtained here has cohesive ends generated by BglII digestion and EcoRI digestion at both ends. The thus obtained 0.35 kbp DNA fragment containing the λP promoter gene and about 4.35 kbp DNA were mixed, circular DNA was prepared with T4 DNA ligase, and E. coli was transformed with the λP promoter. A plasmid having a BglII recognition site on the upstream side and an EcoRI recognition site on the downstream side was isolated and named pTB281.

これを用いてhEGFの発現用プラスミドを構築した
(第5図)。まず実施例1で前述したプラスミドpTB
361 10μgを反応液〔100mM NaCl,1
0mM Tris−HCl,pH8.0,7mM Mg
Cl,2mM 2−メルカプトエタノール,0.01
%BSA,50ユニットEcoRI,20ユニットBa
mHI(宝酒造)〕中、37℃、1.5時間反応させた
後、2%アガロースゲル電気泳動により、hEGF遺伝
子を含む179bpのDNA断片を溶出し、精製した。
一方、プラスミドpTB281も上記と同様にしてEc
oRIおよびBamHI消化し、2倍量の水を加えて6
5℃、10分間おき、酵素を失活させた。これら両端を
混合し、14℃でT4DNAリガーゼを作用させ、DN
Aを結合した。
Using this, a plasmid for expressing hEGF was constructed (Fig. 5). First, the plasmid pTB described above in Example 1
361 10 μg was added to the reaction solution [100 mM NaCl, 1
0 mM Tris-HCl, pH 8.0, 7 mM Mg
Cl 2 , 2 mM 2-mercaptoethanol, 0.01
% BSA, 50 units EcoRI, 20 units Ba
mHI (Takara Shuzo)] at 37 ° C. for 1.5 hours, and then a 179 bp DNA fragment containing the hEGF gene was eluted and purified by 2% agarose gel electrophoresis.
On the other hand, the plasmid pTB281 was also subjected to Ec in the same manner as above.
digested with oRI and BamHI and added 2 volumes of water to give 6
The enzyme was inactivated at 5 ° C. for 10 minutes. These both ends are mixed, and T4 DNA ligase is allowed to act at 14 ° C.
A was attached.

大腸菌の形質転換は次の様に行なった。大腸菌N483
0株(ファルマシア・ジャパン社市販)の一晩培養液に
LB培地を加え、100倍に稀釈した。37℃で2時間
振盪培養した後3,300rpm,4℃,8分間遠心分
離し、得られた菌体を10mM NaClで洗浄した。
これに50mM CaCl溶液を添加し、氷中で15
分間おき、3,300rpmで4℃、4分間遠心分離
し、もう一度50mM CaClに懸濁した。この1
00μlに懸濁した大腸菌N4830に上記で得た反応
液7μlを添加し、0℃、45分間インキュベートし
た。次いで37℃、2分間インキュベートし、900μ
lのLB培地を加えた後、30℃で1時間インキュベー
トした。この大腸菌を35μg/mlのアンピシリンを
含むLB寒天培地上にまき、30℃で一晩培養した。生
じたアンピシリン耐性コロニーは、すべて7μg/ml
のテトラサイクリンに対する耐性能をなくしていた。次
に、この転換株の一部からプラスミドDNAをとり、E
coRIおよびBamHIによる消化、さらにBglII
消化により、hEGF遺伝子の正しく挿入された転換株
を選択した。この様にして得たプラスミドをpTB37
2と名づけた。
Transformation of E. coli was performed as follows. E. coli N483
LB medium was added to an overnight culture of strain 0 (commercially available from Pharmacia Japan) and diluted 100 times. After shaking culture at 37 ° C. for 2 hours, centrifugation was performed at 3,300 rpm, 4 ° C. for 8 minutes, and the obtained bacterial cells were washed with 10 mM NaCl.
To this, add 50 mM CaCl 2 solution,
Every minute, it was centrifuged at 3,300 rpm at 4 ° C. for 4 minutes, and suspended again in 50 mM CaCl 2 . This one
7 μl of the reaction solution obtained above was added to Escherichia coli N4830 suspended in 00 μl, and incubated at 0 ° C. for 45 minutes. Then, incubate at 37 ℃ for 2 minutes, 900μ
After the addition of 1 LB medium, the mixture was incubated at 30 ° C. for 1 hour. This Escherichia coli was spread on LB agar medium containing 35 μg / ml of ampicillin, and cultured at 30 ° C. overnight. Ampicillin-resistant colonies formed were all 7 μg / ml
It had lost its resistance to tetracycline. Next, plasmid DNA was taken from a part of this transformant and
digestion with coRI and BamHI, followed by BglII
A transformant having the correct insertion of the hEGF gene was selected by digestion. The plasmid thus obtained was designated pTB37
I named it 2.

上記で得られたpTB372を次に前述同様の操作によ
りpRK248cIts(レプレッサー)〔Berna
rd,H.ら,「メソッズ イン エンザイモロジー
(Methods in Enzymology)」,
68,482−492(1979)〕を含有する大腸菌
DH1株の形質転換に用い、得られた形質転換体を35
μg/mlのアンピシリンおよび7μg/mlのテトラ
サイクリンを含有するLB寒天培地上にまき、30℃で
一晩培様した。生じたコロニーから前述同様に得たプラ
スミドDNAを制限酵素で消化し、そのパターンよりh
EGF遺伝子を含む形質転換株を選び、これをエシェリ
ヒア コリ DH1/pTB372,pRK248cI
tsと名づけた。
The pTB372 obtained above was then treated with pRK248cIts (repressor) [Berna by the same procedure as described above.
rd, H.D. Et al., “Methods in Enzymology”,
68, used to transform E. coli DH1 strain containing 482-492 (1979)], the resulting transformant 35
The cells were spread on LB agar medium containing µg / ml ampicillin and 7 µg / ml tetracycline, and incubated overnight at 30 ° C. The plasmid DNA obtained from the resulting colony in the same manner as described above was digested with a restriction enzyme.
A transformant containing the EGF gene was selected, and this was transformed into Escherichia coli DH1 / pTB372, pRK248cI.
It was named ts.

実施例3 hEGFの製造法 i)エシェリヒア コリ DH1/pTB370を7μ
g/mlのテトラサイクリンを含むLB培地中、37℃
で一晩振盪培養した。この培養液0.5mlに7μg/
mlのテトラサイクリンを含む10mlのM9培地
〔0.4%カザミノ酸、1%グルコースを含む〕を加
え、37℃、4時間振盪培養した後、3β−インドール
アクリル酸(IAA)を加えて30μg/mlとなるよ
うにした。このまま、さらに4時間培養を続けた後、こ
の培養液10.5mlを7,000rpm、4℃、10
分間遠心分離し、得られた菌体を−70℃で凍結した。
これを溶解後、1mlの反応液〔7Mグアニジン塩酸
塩,2mMフェニルメチルスルホニルフルオライド(P
MSF),0.1M Tris−HCl,pH7.0〕
中、0℃、1時間インキュベートした。この反応液を2
0,000rpm、4℃、30分間遠心分離し、得られ
た上澄液をTEN〔20mM Tris−HCl,pH
8.0,1mM EDTA,0.2M NaCl〕11
に対して4℃で2回透析し、析出した不溶物を20,0
00rpm、4℃、30分間の遠心分離で除去した。こ
の様にして得られた溶液は−20℃で保存した。
Example 3 Method for producing hEGF i) Escherichia coli DH1 / pTB370 7 μ
37 ° C in LB medium containing g / ml tetracycline
It was shaken and cultured overnight. 7 μg / in 0.5 ml of this culture
10 ml of M9 medium containing 0.4 ml of tetracycline [containing 0.4% casamino acid and 1% glucose] was added, and the mixture was shake-cultured at 37 ° C. for 4 hours, and then 3β-indole acrylic acid (IAA) was added thereto to give 30 μg / ml. So that After continuing culturing for another 4 hours, 10.5 ml of this culture solution was added at 7,000 rpm, 4 ° C. and 10 ° C.
After centrifugation for minutes, the obtained bacterial cells were frozen at -70 ° C.
After dissolving this, 1 ml of reaction solution [7M guanidine hydrochloride, 2 mM phenylmethylsulfonyl fluoride (P
MSF), 0.1 M Tris-HCl, pH 7.0]
Incubated at 0 ° C. for 1 hour. 2 this reaction solution
Centrifugation was performed at 30,000 rpm for 30 minutes at 4 ° C., and the resulting supernatant was mixed with TEN [20 mM Tris-HCl, pH.
8.0, 1 mM EDTA, 0.2 M NaCl] 11
Dialyzed twice at 4 ° C against the precipitated insoluble matter for 20,0
It was removed by centrifugation at 00 rpm, 4 ° C. for 30 minutes. The solution thus obtained was stored at -20 ° C.

ii)エシェリヒア コリ DH1/pTB372,pR
K248cItsを35μg/mlのアンピシリンおよ
び7μg/mlのテトラサイクリンを含むM9培地中、
29℃で一晩振盪培養した。この培養液0.5mlに3
5μg/mlのアンピシリンを含む10mlのM9培地
を加え、29℃で4時間振盪培養し、続いて42℃で2
時間振盪培養を続けた後、前述と同様な処理を行ない、
得られた溶液は−20℃で保存した。
ii) Escherichia coli DH1 / pTB372, pR
K248cIts in M9 medium containing 35 μg / ml ampicillin and 7 μg / ml tetracycline,
The cells were cultured at 29 ° C with shaking overnight. 3 to 0.5 ml of this culture
10 ml of M9 medium containing 5 μg / ml of ampicillin was added, and the mixture was cultivated with shaking at 29 ° C. for 4 hours, and then at 42 ° C. for 2 hours.
After continuing shaking culture for a time, perform the same treatment as described above,
The resulting solution was stored at -20 ° C.

上記i)、ii)で得られた各生産物をラジオレセプター
アッセイ法(RRA法)〔Cohen,S.ら,「プロ
シージング オブ ナショナルアカデミー オブ サイ
エンス(Proc.Natl.Acad.Sci.US
A)」,72,1317−1321(1975)〕で分
析した。
The products obtained in i) and ii) above were subjected to radioreceptor assay (RRA method) [Cohen, S. et al. , "Procedure of National Academy of Science (Proc. Natl. Acad. Sci. US
A) ", 72 , 1317-1321 (1975)].

EGF活性は、同じ活性を示す精製マウスEGF標準の
重量で表わした。まずヒト胎児包皮細胞Flow700
0(flow Laboratories,Inc.市
販)を10%の牛胎児血清を含むダルベッコ・ミニマル
・エセンシャル(DMEM)培地を用いて、直径1.6
cmの細胞培養用ディッシュ(Linbro,Flow
Laboratories,Inc.市販)で培養し
た。この培地を捨て、0.1%BSAを含むDMEM培
地で細胞を洗浄後、0.2mlの同培地と、クロラミン
T法により125IでラベルしたマウスEGF(Coll
aborative Research,Inc.市
販)5ng、および上記で得た各生産物を適量加え、3
7℃で1時間培養した。
EGF activity was expressed by weight of purified mouse EGF standard showing the same activity. First, human fetal foreskin cell Flow700
0 (flow Laboratories, Inc. commercially available) in a Dulbecco's Minimal Essential (DMEM) medium containing 10% fetal bovine serum to a diameter of 1.6.
cm cell culture dish (Linbro, Flow
Laboratories, Inc. Cultured (commercially available). After discarding this medium and washing the cells with DMEM medium containing 0.1% BSA, 0.2 ml of the medium and mouse EGF (Coll) labeled with 125 I by the chloramine T method were used.
Aborative Research, Inc. (Commercially available) 5 ng, and an appropriate amount of each product obtained above, and added 3
It was cultured at 7 ° C for 1 hour.

次に同培地で洗浄後、0.2N NaOHで処理し、チ
ューブへ移し、γ線カウンターで、とりこまれた 125
Iを測定した。同様の操作で重量既知のマウスEGFと
の競合反応により得られた検量曲線より、生産物中のヒ
トEGF量を算出した。結果は第1表に示した。
Then washed with the same medium, and treated with 0.2 N NaOH, transferred to a tube, with γ rays counter was incorporated 125
I was measured. By the same operation, the amount of human EGF in the product was calculated from the calibration curve obtained by the competitive reaction with mouse EGF of known weight. The results are shown in Table 1.

またエシェリヒア コリ DH1/pTB370株を培
養し、IAAで誘導後、すでに記載した方法で溶解物中
のEGF活性を発育とあわせて測定した。その結果を第
7図に示した。図中、破線は菌株の発育を、実線はEG
F活性を示す。
Further, the Escherichia coli DH1 / pTB370 strain was cultured, and after induction with IAA, the EGF activity in the lysate was measured together with the growth by the method already described. The results are shown in FIG. In the figure, the broken line shows the growth of the strain and the solid line shows the EG.
F activity is shown.

実施例4 hEGFの動物細胞での産生 (i)プラスミドpTB506の構築 SV40プロモーターおよびIL−2遺伝子を有するp
TB106〔特開昭61−63282号公報実施例1
(i)〕を原料に、そのIL−2遺伝子領域の5′末端
に存在するPstI切断部位をEcoRI切断部位に変
換し、また同遺伝子領域の3′末端に存在するBamH
I切断部位の直前にBglII切断部位を挿入したプラス
ミドpTB396を構築した。
Example 4 Production of hEGF in animal cells (i) Construction of plasmid pTB506 p with SV40 promoter and IL-2 gene
TB106 [Example 1 of Japanese Unexamined Patent Publication No. 61-63282]
(I)] as a raw material, the PstI cleavage site present at the 5'end of the IL-2 gene region is converted into an EcoRI cleavage site, and BamH present at the 3'end of the gene region is converted.
Plasmid pTB396 was constructed in which a BglII cleavage site was inserted immediately before the I cleavage site.

このpTB396をEcoRIおよびBglIIで切断し
てIL−2遺伝子領域を除いたプラスミドDNAを製造
した。一方、pTB361をEcoRIおよびBamH
I切断してEGF遺伝子を切り出し、これを上記プラス
ミドDNAとT4DNAリガーゼで結合させたpTB4
13を構築した。
This pTB396 was digested with EcoRI and BglII to prepare a plasmid DNA excluding the IL-2 gene region. On the other hand, pTB361 was replaced with EcoRI and BamH.
PTB4 obtained by excising the EGF gene by cutting with I and ligating it with the above plasmid DNA by T4 DNA ligase.
13 were built.

次にpTB314〔特開昭61−63282号公報実施
例1(iii)〕より、ClaIおよびHindIII切断によ
りエーベルソンマウス白血病ウィルス(A−MuLV)
〔Goff,S.P.ら「セル(Cell)」,22
777−785(1980)〕のLTR領域を含むDN
A断片を切り出し、ClaIおよびHindIII切断し
たpTB413のClaIおよびHindIII切断部位
に挿入してpTB506を構築した(第8図)。
Next, from pTB314 [JP-A 61-63282, Example 1 (iii)], Abelson murine leukemia virus (A-MuLV) was digested with ClaI and HindIII.
[Goff, S. P. Et al., “Cell”, 22 :
777-785 (1980)] containing the LTR region
The A fragment was cut out and inserted into the ClaI and HindIII digested pTB413 at the ClaI and HindIII cleavage sites to construct pTB506 (FIG. 8).

(ii)動物細胞の形質転換 ファルコンシャーレ(直径6cm)に10%牛胎児血清
を含むダルベッコ改変イーグルMEM培地を入れ、マウ
スHPRT(hypoxanthine phosph
oribosyl transferase)欠損L細
胞(LA9細胞)〔Littlefield.J.W.,
「エクスペリメンタル セル リサーチ(Exp.Ce
ll Res.」41:190−196(1966)〕
を37℃で一晩培養した。培養後、この細胞(7×10
個/ディシユ)に対して、プラスミドp4aA8{ヒ
トHPRTcDNAを含むプラスミド)〔Jolly.
D,J.ら,「プロシージング オブ ナショナル ア
カデミー オブ サイエンス(Proc.Natl.A
cad.Sci.USA)」,80:477−481
(1983)〕0.5μgと10μgのpTB506D
NAとをグラハムらの方法〔「ウィロロジー(Viro
logy)」,52:456−467(1973)〕に
従って混合、接種し、共形質転換を行った。4時間37
℃で培養後、新たな培地に替えて一夜培養し、翌日10
%牛胎児血清を含むHAT培地(15μg/mlヒポキ
サンチン、1μg/mlアミノプテリン、5μg/ml
チミジンを含むダルベッコ改変イーグルMEM培地)に
替えて、37℃で培養を続けた。
(Ii) Transformation of animal cells A Falcon Petri dish (6 cm in diameter) was filled with Dulbecco's modified Eagle's MEM medium containing 10% fetal bovine serum, and mouse HPRT (hypoxanthine phosph) was added.
oribosyl transferase-deficient L cells (LA9 cells) [Littlefield. J. W.,
"Experimental Cell Research (Exp. Ce
ll Res. 41 : 190-196 (1966)]
Were cultured overnight at 37 ° C. After culturing, the cells (7 x 10
5 cells / dishes), p4aA8 plasmid (a plasmid containing human HPRT cDNA) [Jolly.
D, J. Et al., "Procedure of National Academy of Science (Proc. Natl. A.
cad. Sci. USA) ", 80 : 477-481.
(1983)] 0.5 μg and 10 μg of pTB506D
NA and Graham's method ["Virology (Viro
, 52 : 456-467 (1973)], mixed and inoculated, and cotransformed. 4 hours 37
After culturing at ℃, change to a new medium and cultivate overnight.
HAT medium containing 15% fetal bovine serum (15 μg / ml hypoxanthine, 1 μg / ml aminopterin, 5 μg / ml
The culture was continued at 37 ° C. with the replacement of Dulbecco's modified Eagle MEM medium containing thymidine).

3〜4日に一度培養液の交換を行って培養を続けると、
約2〜3週間後HPRT となった細胞が増殖してコロ
ニーを形成した。
When the culture solution is exchanged once every 3 to 4 days,
After about 2 to 3 weeks, the cells that became HPRT proliferated and formed colonies.

(iii)形質転換体のクローニングおよびEGFの定量 上記(ii)で得た形質転換細胞のクローニングを、リミテ
ッド ダイリューション法に従って行なった。クローニ
ング終了後クローン細胞は10%牛胎児血清を含むイー
グル改変MEM培地にて培養した。分離されたクローン
細胞はファルコンシャーレ(直径6cm)にまき、細胞
がコンフルエントになった時、細胞をラバーポリスマン
を用いてはがし、遠心(2000rpm×5分間)にて
集めた。次に集めた細胞に200μlのNETを加え、
超音波処理(5秒間×2)にて細胞を破壊し、遠心(2
0000rpm、4℃、30分間)した後、得られた上
澄液中のEGF活性を実施例6の方法に従い測定した。
形質転換細胞クローンのうちマウスLA9−EGF−3
細胞は1.4ng/10細胞のEGFを産生している
ことが判明した。結果を第2表に示す。
(iii) Cloning of transformants and quantification of EGF The cloning of the transformed cells obtained in (ii) above was carried out according to the limited dilution method. After the completion of cloning, the clone cells were cultured in Eagle modified MEM medium containing 10% fetal bovine serum. The separated cloned cells were spread on a Falcon dish (diameter 6 cm), and when the cells became confluent, the cells were peeled off using a rubber policeman and collected by centrifugation (2000 rpm × 5 minutes). Then add 200 μl NET to the collected cells,
Sonicate (5 seconds x 2) to destroy the cells and centrifuge (2
0000 rpm, 4 ° C., 30 minutes), and the EGF activity in the obtained supernatant was measured according to the method of Example 6.
Mouse LA9-EGF-3 among transformed cell clones
It was found that the cells produced 1.4 ng / 10 7 cells of EGF. The results are shown in Table 2.

【図面の簡単な説明】[Brief description of drawings]

第1図はhEGFに対応する本発明で用いている合成遺
伝子のDNA配列およびアミノ酸配列を示した図であ
り、第2図は本発明で用いているhEGF遺伝子合成の
際のDNAフラグメントへの分割の一例を示した図であ
り、第3図は本発明で用いているhEGF対応合成遺伝
子製造用DNAフラグメントの一例を示す図であり、第
4図は第3図の各DNAフラグメントを連結してhEG
F合成遺伝子を製造する模式図である。 第5図は本発明のhEGF対応合成遺伝子を組込んだ発
現用プラスミドの構築図であり、第6図はプラスミドp
TB281の構築図である。第7図は本発明の形質転換
細菌を用いてEGFを製造した際の菌体の発育とEGF
活性を示すグラフである。第8図は実施例7(i)にお
ける動物細胞形質転換用プラスミドpTB506の構築
図を示す。
FIG. 1 is a diagram showing the DNA sequence and amino acid sequence of the synthetic gene used in the present invention corresponding to hEGF, and FIG. 2 is a division into DNA fragments in the hEGF gene synthesis used in the present invention. FIG. 3 is a diagram showing an example, FIG. 3 is a diagram showing an example of a DNA fragment for producing a synthetic gene corresponding to hEGF used in the present invention, and FIG. 4 is a diagram showing the DNA fragments of FIG. hEG
It is a schematic diagram which manufactures F synthetic gene. FIG. 5 is a construction diagram of an expression plasmid incorporating the synthetic gene corresponding to hEGF of the present invention, and FIG. 6 is a plasmid p.
It is a construction drawing of TB281. FIG. 7 shows the growth of cells and EGF when EGF was produced using the transformed bacterium of the present invention.
It is a graph which shows activity. FIG. 8 shows a construction diagram of the animal cell transformation plasmid pTB506 in Example 7 (i).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C12P 21/02 H 8214−4B (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (56)参考文献 Proc.Natl.Acad.Sc i.USA.,1983〔80〕P.7461−7465 Nucleic Acids Rese arch,1982〔10〕P.4467−4482 Nature,1983〔303〕P.722− 725─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // C12P 21/02 H 8214-4B (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (56) References Proc. Natl. Acad. Sc i. USA. 1983 [80] P. 7461-7465 Nucleic Acids Research, 1982 [10] P. 4467-4482 Nature, 1983 [303] P. 722-725

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】DNA配列 AACAGTGATTCAGAATGTCCTCTCT
CACACGATGGATACTGCCTCCATGA
CGGCGTGTGTATGTATATTGAAGCA
CTAGACAAATACGCATGCAACTGTG
TAGTTGGCTATATTGGTGAACGATG
CCAGTACCGAGATCTGAAATGGTGG
GAACTGCGA で示されるヒト表皮細胞増殖因子発現のための合成遺伝
子を有するDNAによって形質転換した細菌または哺乳
動物細胞。
1. DNA sequence AACAGTGATTCAGAATGTCCTCTCT
CACACAGTGGATACTGCCTCCATGA
CGGCGTGTGTATGTATATTGAAGCA
CTAGACAAAATACGCATGCAACTGTG
TAGTTGGCTATATTTGGTGAACGATG
CCAGTACCGAGATCTGAAATGGTGGG
A bacterial or mammalian cell transformed with a DNA having a synthetic gene for expression of human epidermal growth factor designated GAACTGCGA.
JP60176976A 1984-10-09 1985-08-13 Transformant for producing human epidermal growth factor Expired - Lifetime JPH0644866B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60176976A JPH0644866B2 (en) 1985-08-13 1985-08-13 Transformant for producing human epidermal growth factor
CA000492430A CA1263619A (en) 1984-10-09 1985-09-08 Dna, production and use thereof
US06/784,844 US4849350A (en) 1984-10-09 1985-10-04 Novel DNA, production and use thereof
EP85112653A EP0177915B1 (en) 1984-10-09 1985-10-05 Novel dna, production and use thereof
AT85112653T ATE59861T1 (en) 1984-10-09 1985-10-05 DNA, ITS PRODUCTION AND USE.
DE8585112653T DE3581255D1 (en) 1984-10-09 1985-10-05 DNA, THEIR PRODUCTION AND USE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176976A JPH0644866B2 (en) 1985-08-13 1985-08-13 Transformant for producing human epidermal growth factor

Publications (2)

Publication Number Publication Date
JPS6240290A JPS6240290A (en) 1987-02-21
JPH0644866B2 true JPH0644866B2 (en) 1994-06-15

Family

ID=16022998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176976A Expired - Lifetime JPH0644866B2 (en) 1984-10-09 1985-08-13 Transformant for producing human epidermal growth factor

Country Status (1)

Country Link
JP (1) JPH0644866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652954B1 (en) * 1993-04-26 2001-06-20 Dae Woong Pharmaceutical Co., Ltd. A novel gene vector coding human epidermal growth factor and process for preparing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Nature,1983〔303〕P.722−725
NucleicAcidsResearch,1982〔10〕P.4467−4482
Proc.Natl.Acad.Sci.USA.,1983〔80〕P.7461−7465

Also Published As

Publication number Publication date
JPS6240290A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
US4849350A (en) Novel DNA, production and use thereof
US5096825A (en) Gene for human epidermal growth factor and synthesis and expression thereof
US4689406A (en) Enhancement of microbial expression of polypeptides
CA1336329C (en) Fusion proteins, a process for their preparation and their use
Nakayama et al. A lymphoid cell-specific nuclear factor containing c-Rel-like proteins preferentially interacts with interleukin-6 κΒ-related motifs whose activities are repressed in lymphoid cells
IE58485B1 (en) A genetic engineering process for the preparation of hirudins, and means for carrying out this process
JPH0745516B2 (en) Polypeptide having human γ-interferon activity and method for producing the same
HU196237B (en) Process for producing human growth prehormone
US4992367A (en) Enhanced expression of human interleukin-2 in mammalian cells
Kálmán et al. Synthesis of a gene for human serum albumin and its expression in Saccharomyces cerevisiae
DK166681B1 (en) DNA SEQUENCES, DNA SEQUENCES AND DNA OLIGONUCLEOTIDES FOR USE IN THE PREPARATION OF THE FIRST DNA SEQUENCES, HYBRID PLASMIDS CONTAINING DNA SEQUENCE, HOUSE CELLS WITH 2
JP3236284B2 (en) Plasmid, method for producing the same, and method for using the same for obtaining plasminogen activator
JP2634132B2 (en) New peptide
US5858734A (en) DNA sequence construction
Ivanov et al. Unusual effect of clusters of rare arginine (AGG) codons on the expression of human interferon α1 gene in Escherichia coli
EP0196762A1 (en) Recombinant ricin fragments, vectors and transformed hosts expressing the same, the modification of DNA sequences, and isolation of mRNA
US5182196A (en) Expression systems for overproduction of desired proteins
JPH0644866B2 (en) Transformant for producing human epidermal growth factor
US4711847A (en) Preparation of secretin
WO1990001542A1 (en) Luciferase, luciferase-coding gene, and process for preparing luciferase
CA1324097C (en) Inducible heat shock and amplification system
US4983518A (en) Eukaryotic expression vectors with multimeric enhancer segments, a process for the preparation thereof and the use thereof
SU1491346A3 (en) Method of producing recombinant plasmide dna encoding synthesis of bovine or human growth hormone
JPH0642833B2 (en) Human epidermal growth factor gene
KR940004543B1 (en) Method of producing vector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term