JPH0643976B2 - Vitrification method for inorganic substances - Google Patents

Vitrification method for inorganic substances

Info

Publication number
JPH0643976B2
JPH0643976B2 JP62261769A JP26176987A JPH0643976B2 JP H0643976 B2 JPH0643976 B2 JP H0643976B2 JP 62261769 A JP62261769 A JP 62261769A JP 26176987 A JP26176987 A JP 26176987A JP H0643976 B2 JPH0643976 B2 JP H0643976B2
Authority
JP
Japan
Prior art keywords
sample
boric acid
weight
vitrification
alkali carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62261769A
Other languages
Japanese (ja)
Other versions
JPH01105145A (en
Inventor
章 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62261769A priority Critical patent/JPH0643976B2/en
Priority to US07/235,560 priority patent/US4919342A/en
Priority to EP95115605A priority patent/EP0701120B1/en
Priority to EP88308030A priority patent/EP0306276B1/en
Priority to DE3855906T priority patent/DE3855906T2/en
Priority to DE3856530T priority patent/DE3856530T2/en
Publication of JPH01105145A publication Critical patent/JPH01105145A/en
Priority to US07/414,479 priority patent/US4993646A/en
Priority to US07/471,628 priority patent/US5137410A/en
Priority to US07/854,566 priority patent/US5257302A/en
Publication of JPH0643976B2 publication Critical patent/JPH0643976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無機物を蛍光X線分析用の試料とする際に好
適に使用できる無機物のガラス化法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for vitrifying an inorganic material that can be preferably used when the inorganic material is used as a sample for fluorescent X-ray analysis.

(従来の技術) 種々の材料中の各成分を分析するため、蛍光X線分析法
が使用されている。蛍光X線分析法では、蛍光X線分析
用の試料を所定形状の測定用成形体に作成するための前
処理が必要である。
(Prior Art) X-ray Fluorescence Analysis is used to analyze each component in various materials. The fluorescent X-ray analysis method requires a pretreatment for preparing a sample for fluorescent X-ray analysis into a molded article for measurement having a predetermined shape.

従来、無機物の蛍光X線分析及び化学分析用試料作製方
法としては、以下の4方法が知られていた。
Heretofore, the following four methods have been known as sample preparation methods for fluorescent X-ray analysis and chemical analysis of inorganic substances.

1)試料を微粉砕する粉砕法。1) A pulverization method in which a sample is finely pulverized.

2)各種ホウ酸アルカリ(例えばLi2B4O7,Li2O・B
2O3,Na2B2O7)の単独又は混合物を添加し加熱してガラ
ス化するガラス化法。
2) Various alkali borate (eg Li 2 B 4 O 7 , Li 2 O ・ B
A vitrification method in which 2 O 3 , Na 2 B 2 O 7 ) alone or in a mixture is added and heated to vitrify.

3)試料を炭酸アルカリで融解する炭酸アルカリ融解法 4)試料を圧力容器中に入れ、フッ酸などの強酸で分解
溶液化する溶液化法。
3) Alkali carbonate melting method of melting the sample with alkali carbonate 4) Solution method of putting the sample in a pressure vessel and decomposing it with a strong acid such as hydrofluoric acid.

(発明が解決しようとする問題点) しかしながら上述した方法のうち、粉砕法は試料の少な
くとも一部が結晶質である場合には粉砕された試料がな
お結晶構造を有しているため、蛍光X線分析法によって
はいわゆる鉱物効果により高精度の分析結果が得られな
い場合がある欠点があった。また、窒化ケイ素、サイア
ロン、炭化ケイ素などの非酸化物を成分として含む無機
物は、一般に硬度が高いため粉砕に時間がかかり、粉砕
容器からの試料汚染の問題もあるため、分析精度をそれ
ほど要求しない場合を除きほとんど適用できなかった。
(Problems to be Solved by the Invention) However, among the above-mentioned methods, the crushing method uses fluorescent X because the crushed sample still has a crystalline structure when at least a part of the sample is crystalline. Depending on the line analysis method, there is a drawback that highly accurate analysis results may not be obtained due to the so-called mineral effect. Inorganic substances containing non-oxides such as silicon nitride, sialon, and silicon carbide as components generally have high hardness, so it takes time to pulverize, and there is a problem of sample contamination from the pulverization container, so analysis accuracy is not required so much. It was hardly applicable except in some cases.

炭酸アルカリ融解法は非酸化物に対しても湿式分析の前
処理法としては適用できるが融解融成物の吸湿性が高
く、また白金皿等分解に用いた容器からの剥離が困難な
ことから、蛍光X線分析試料とするための前処理法とし
ては使えないという欠点があった。
The alkali carbonate melting method can be applied to non-oxides as a pretreatment method for wet analysis, but it has high hygroscopicity of the melted melt and is difficult to peel from the container used for decomposition such as the platinum plate. However, it has a drawback that it cannot be used as a pretreatment method for preparing a fluorescent X-ray analysis sample.

ホウ酸アルカリによるガラス化法は、特に非酸化物を成
分として含む無機物に対してはガラス化が部分的にしか
進まないため、分析精度が低下する欠点があった。
The vitrification method using alkali borate has a drawback that the analysis accuracy is lowered because the vitrification partially progresses particularly to an inorganic substance containing a non-oxide as a component.

また強酸による溶液化法は分解に一昼夜要し、更に得ら
れる分析用試料が液体であるため、化学分析用としては
利用できるが、蛍光X線分析装置自身の制約から高精度
迅速分析法である蛍光X線分析法への適用が困難である
欠点があった。
Further, the solution method using a strong acid requires one day to decompose, and since the obtained analytical sample is a liquid, it can be used for chemical analysis, but it is a highly accurate and rapid analytical method due to the restrictions of the fluorescent X-ray analyzer itself. There is a drawback that it is difficult to apply to the fluorescent X-ray analysis method.

本発明の無機物のガラス化法は、ガラス化しようとする
窒化ケイ素、炭化ケイ素を主成分とする無機物の重量に
対し、2倍重量以上の炭酸アルカリを添加して加熱分解
する工程と、加熱分解して得られた融成物に、前記無機
物の重量に対し等量以上のホウ酸を添加し加熱してガラ
ス化する工程とを含むことを特徴とするものであり、よ
り好ましくは前記加熱分解工程において、前記炭酸アル
カリとともに炭酸アルカリ100重量部に対して5〜5
0重量部のホウ酸(但し、炭酸アルカリ1モルに対しホ
ウ酸0.4モル以下)を添加することを特徴とするもの
である。
The method for vitrifying an inorganic material of the present invention comprises a step of thermally decomposing by adding twice or more weight of alkali carbonate to the weight of the inorganic material mainly composed of silicon nitride and silicon carbide to be vitrified, and thermally decomposing. The resulting melt, characterized in that it comprises a step of adding at least an equal amount of boric acid to the weight of the inorganic material and heating to vitrify, more preferably the thermal decomposition In the step, 5 to 5 with respect to 100 parts by weight of the alkali carbonate together with the alkali carbonate.
It is characterized by adding 0 part by weight of boric acid (however, 0.4 mol or less of boric acid to 1 mol of alkali carbonate) is added.

(作 用) 上述した構成において、ガラス化しようとする無機物に
対して、まず所定量の炭酸アルカリ好ましくは炭酸アル
カリとホウ酸を添加して加熱分解する工程で分解した
後、所定量のホウ酸により結晶質をガラス化しているた
め、蛍光X線分析時に鉱物効果が生じないとともにガラ
ス化が均一に進み、短時間で良好な分析用試料を得るこ
とが出来る。
(Operation) In the above-mentioned constitution, first, a predetermined amount of alkali carbonate, preferably alkali carbonate and boric acid is added to the inorganic substance to be vitrified and decomposed in the step of thermally decomposing, and then the predetermined amount of boric acid is decomposed. By virtue of vitrification of the crystalline material, no mineral effect occurs during fluorescent X-ray analysis, vitrification proceeds uniformly, and a good analytical sample can be obtained in a short time.

また、本発明の方法によるガラスは、吸湿性がなく白金
皿等からの剥離も容易であって、蛍光X線分析に好適に
適用できるものである。
Further, the glass produced by the method of the present invention has no hygroscopic property and can be easily peeled off from a platinum dish or the like, and is suitable for fluorescent X-ray analysis.

なお、分解工程で炭酸アルカリをガラス化しようとする
無機物の重量に対して2倍以上と限定したのは、2倍未
満では分解が不充分であるためである。また、ガラス化
工程でホウ酸添加量をガラス化しようとする無機物の重
量に対して等量以上と限定したのは、等量未満ではガラ
ス化が不充分であるためである。
In the decomposition step, the weight of the inorganic substance to be vitrified is limited to twice or more, because the decomposition is insufficient if the weight is less than twice. In the vitrification step, the amount of boric acid added is limited to be equal to or more than the weight of the inorganic substance to be vitrified because vitrification is insufficient when the amount is less than the equal amount.

また、ガラス化工程において、炭酸アルカリ、ホウ酸と
の多すぎる分には余り問題はないが、蛍光X線分析時の
分析精度を高くするためにはX線強度が高い方が望まし
く、このためには炭酸アルカリはガラス化しようとする
無機物に対し4倍程度、ホウ酸はガラス化しようとする
無機物に対し10倍程度が好ましい上限となる。さらに、
加熱分解工程において、前記炭酸アルカリとともに炭酸
アルカリ100重量部に対して5〜50重量部のホウ酸(但
し、炭酸アルカリ1モルに対しホウ酸0.4モル以下)を
添加すると好ましい理由は、この範囲内において分解中
の融成物が取り扱い容易な程度に流動性を持つためであ
る。なお、ホウ酸の添加量は5重量部未満では流動性が
低くて取り扱いにくい場合があり、また50重量部を超え
ると分解不完全や分解不能となる場合がある。
Further, in the vitrification step, there is no problem if there is too much alkali carbonate or boric acid, but it is desirable that the X-ray intensity is high in order to improve the analysis accuracy during fluorescent X-ray analysis. For Al, the preferable upper limit is about 4 times that of the inorganic substance to be vitrified, and that of boric acid is about 10 times that of the inorganic substance to be vitrified. further,
In the heat decomposition step, it is preferable to add 5 to 50 parts by weight of boric acid (however, 0.4 mol or less of boric acid to 1 mol of alkali carbonate) to 100 parts by weight of alkali carbonate together with the alkali carbonate within this range. This is because the melted material in decomposition has fluidity to the extent that it can be easily handled. If the added amount of boric acid is less than 5 parts by weight, the fluidity may be low and handling may be difficult, and if it exceeds 50 parts by weight, decomposition or incomplete decomposition may occur.

(実施例) 以下、本発明のガラス化方法の各工程について窒化ケイ
素を含む無機物(以下、窒化ケイ素と略記する。)を、
ガラス化しようとする無機物とした場合を一例として以
下に説明する。まず、窒化ケイ素試料の粉末又は焼結体
の粗粒(例えば3mm、5mm等)を秤量して準備するとと
もに、炭酸アルカリとして炭酸リチウム等と必要に応じ
てホウ酸を秤量して準備する。準備した窒化ケイ素試
料、炭酸リチウム、ホウ酸を白金−金合金皿に入れて混
合した後、ブンゼンバーナと必要に応じメッケルバーナ
を使用して徐々に加熱、すなわち初めは低温で徐々に火
力を強めながら加熱分解を実施する。加熱分解工程はCO
2の気泡が混合物から発生しなくなった時点で終了す
る。
(Examples) In the following, for each step of the vitrification method of the present invention, an inorganic material containing silicon nitride (hereinafter abbreviated as silicon nitride) is used.
The case of using an inorganic substance to be vitrified will be described below as an example. First, powder of a silicon nitride sample or coarse particles of a sintered body (for example, 3 mm, 5 mm, etc.) are weighed and prepared, and lithium carbonate and the like as alkali carbonate and, if necessary, boric acid are weighed and prepared. Place the prepared silicon nitride sample, lithium carbonate, and boric acid in a platinum-gold alloy dish and mix, then gradually heat using a Bunsen burner and a Meckel burner as needed, that is, gradually increase the heat power at low temperature. While carrying out thermal decomposition. CO in the thermal decomposition process
The process ends when the second bubble does not generate from the mixture.

次に、放冷後所定量のホウ酸を加え、メッケルバーナに
より初めは低温で、次に徐々に火力を強め最後に約1000
℃で強熱しガラス化する。ガラス化中は融成物を揺動さ
せつつ強熱し、ガラス化終了後は白金−金合金皿に圧縮
空気を吹きつけて強制冷却した後、融成物を白金−金合
金皿から剥離する。最後に、ガラスの偏析による悪影響
を防止するため得られた融成物を粉砕、プレスして蛍光
X線分析用の成形体を作製する。試料準備から蛍光X線
分析までの所要時間は約2時間である。
Next, after allowing to cool, a predetermined amount of boric acid was added, and the Meckel burner was used to initially lower the temperature, then gradually increase the heating power, and finally about 1000
Ignite at ℃ and vitrify. During vitrification, the melt is oscillated and ignited. After completion of vitrification, compressed air is blown onto the platinum-gold alloy dish to forcibly cool it, and then the melt is peeled from the platinum-gold alloy dish. Finally, the melt obtained in order to prevent the adverse effect due to the segregation of glass is crushed and pressed to prepare a molded body for fluorescent X-ray analysis. The time required from sample preparation to fluorescent X-ray analysis is about 2 hours.

なお、炭酸アルカリとしては上述した炭酸リチウムの
他、必要に応じて炭酸ソーダ、炭酸カリウムを使用する
ことができる。また、皿としては白金−金合金皿の他、
白金−金合金製ルツボ、白金皿、白金ルツボ、黒鉛ルツ
ボ等を使用することができる。
In addition to the above-mentioned lithium carbonate, sodium carbonate or potassium carbonate can be used as the alkali carbonate, if necessary. In addition to the platinum-gold alloy dish,
A platinum-gold alloy crucible, a platinum dish, a platinum crucible, a graphite crucible and the like can be used.

以下、実際の例について説明する。Hereinafter, an actual example will be described.

窒化ケイ素の含有量が異なる窒化ケイ素試料No.1〜
7、炭酸リチウム、ホウ酸を第1表に示す割合で準備
し、上述した本発明のガラス化法によりガラス化を実施
した。評価として、加熱分解工程における分解状態と、
ガラス化工程におけるガラス化状態を調べ、分解が完全
で得られたガラスが透明かつ剥離しやすいものを◎、分
解は完全で得られたガラスも透明であるがやや剥離しに
くいものを〇、分解不完全またはガラス化不充分なもの
を×として第1表に示した。
Silicon Nitride Sample Nos. 1 to 1 with different silicon nitride contents
7. Lithium carbonate and boric acid were prepared in the proportions shown in Table 1, and vitrified by the above-mentioned vitrification method of the present invention. As an evaluation, the decomposition state in the heat decomposition step,
Examine the vitrification state in the vitrification process, ◎ if the decomposition is complete and the obtained glass is transparent and easy to peel off, ◯, if the decomposition is complete and the obtained glass is transparent but slightly difficult to peel off, ◯ Incomplete or insufficient vitrification is shown in Table 1 as x.

また、炭化ケイ素の含有量が異なる炭化ケイ素試料No.2
1〜26に本発明を適用した結果を第2表に示す。評価方
法は窒化ケイ素の場合と同様である。なお、窒化ケイ素
試料No.4及び炭化ケイ素試料No.23はそれぞれ原料粉末
であり、その他は焼結体の粗粒である。
In addition, silicon carbide sample No. 2 with different silicon carbide content
The results of applying the present invention to 1 to 26 are shown in Table 2. The evaluation method is the same as that for silicon nitride. The silicon nitride sample No. 4 and the silicon carbide sample No. 23 are raw powders, and the others are coarse particles of the sintered body.

窒化ケイ素試料No.8〜11、炭化ケイ素試料No.27〜29を
別に用意し、炭酸リチウム量またはホウ酸量を本発明範
囲外として同様にガラス化し比較例とした。窒化ケイ素
試料No.1〜11、炭化ケイ素試料No.21〜29は、それぞれ
10ケずつガラス化して評価した。
Silicon nitride sample Nos. 8 to 11 and silicon carbide sample Nos. 27 to 29 were separately prepared, and the amount of lithium carbonate or boric acid was outside the range of the present invention and similarly vitrified to be a comparative example. Silicon nitride sample Nos. 1 to 11 and silicon carbide sample Nos. 21 to 29 are respectively
Evaluation was carried out by vitrifying 10 pieces each.

第1表及び第2表の結果から、加熱分解工程における炭
酸リチウムの量が窒化ケイ素試料または炭化ケイ素試料
の2倍以上で、かつガラス化時のホウ酸が窒化ケイ素試
料または炭化ケイ素試料と等量以上である本発明試料N
o.1〜7及びNo.21〜26は分解,ガラス化ともほぼ良好
であったのに対し、上記いずれかの条件を満足していな
い比較例試料No.8〜11及びNo.27〜29は分解不完全また
はガラス化不充分であった。
From the results of Tables 1 and 2, the amount of lithium carbonate in the thermal decomposition step is twice or more that of the silicon nitride sample or the silicon carbide sample, and boric acid during vitrification is the same as the silicon nitride sample or the silicon carbide sample. Inventive sample N that is more than the amount
Although o.1 to 7 and Nos. 21 to 26 were almost good in both decomposition and vitrification, comparative example samples No. 8 to 11 and Nos. 27 to 29 which did not satisfy any of the above conditions. Was incompletely decomposed or insufficiently vitrified.

さらに、窒化ケイ素焼結体をガラス化せずに粉砕した試
料と、本発明のNo.3の方法によりガラス化した後粉砕
した試料の各10試料を使用して蛍光X線分析を行い検量
線(各成分の蛍光X線強度と濃度との関係)を調べた。
各分析成分の次式から求めた検量線の正確度を第3表に
示す。
Further, a fluorescent X-ray analysis was carried out using 10 samples each of a sample obtained by crushing the silicon nitride sintered body without vitrification and a sample obtained by vitrifying and then crushing by the method of No. 3 of the present invention. (Relationship between fluorescent X-ray intensity and concentration of each component) was examined.
Table 3 shows the accuracy of the calibration curve obtained from the following equation for each analytical component.

ここで、σ検量線の正確度 Cchem:化学分析値,wt% Cx-ray:蛍光X線分析値,wt% n:検量線の作成に使用した標準試料の数 k:回帰式の推定に使用したパラメータの数 また、炭化ケイ素焼結体について同様の方法で検量線の
正確度を求めた結果を第4表に示す。窒化ケイ素、炭化
ケイ素いずれの場合でも、本発明による方法で試料をガ
ラス化して蛍光X線分析することにより、従来のガラス
化せずに粉砕後蛍光X線分析するよりも多くの成分で約
1桁高い分析精度が得られることが明らかである。
Here, the accuracy of the σ calibration curve C chem : chemical analysis value, wt% C x-ray : fluorescent X -ray analysis value, wt% n: number of standard samples used to create the calibration curve k: estimation of regression equation The number of parameters used in Table 4 shows the results of determining the accuracy of the calibration curve by the same method for the silicon carbide sintered body. In both cases of silicon nitride and silicon carbide, vitrification of the sample by the method according to the present invention and X-ray fluorescence analysis reveals that the amount of the component is about 1 compared to the conventional X-ray analysis after crushing without vitrification. It is clear that orders of magnitude higher analysis accuracy can be obtained.

本発明は上述した実施例にのみ限定されるものではな
く、幾多の変形、変更が可能である。例えば上述した実
施例では、窒化ケイ素及び炭化ケイ素を例として説明し
たが、その他のセラミック焼結体、ガラス、粉末等無機
物一般に適用できる。
The present invention is not limited to the above-described embodiments, but various modifications and changes can be made. For example, although silicon nitride and silicon carbide have been described as examples in the above-described embodiments, the present invention can be applied to other ceramics sintered bodies, inorganic materials such as glass and powder in general.

また実施例では、蛍光X線分析用試料を対象として説明
したが、ガラス化物またはその粉砕物を酸等で溶解して
原子吸光分析、高周波プラズマ発光分析などの湿式化学
分析試料とすることもできる。
Further, in the examples, the sample for fluorescent X-ray analysis has been described, but a vitrified product or a pulverized product thereof may be dissolved in an acid or the like to be used as a wet chemical analysis sample such as atomic absorption analysis and high frequency plasma emission analysis. .

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
のガラス化方法によれば、ガラス化しようとする無機物
に対して、まず所定量の炭酸アルカリ好ましくは炭酸ア
ルカリとホウ酸を添加して加熱分解する工程で分解した
後、所定量のホウ酸によりガラス化しているため、蛍光
X線分析法に適用した場合、鉱物効果が生じないので粉
砕法に比較して高精度の蛍光X線分析が可能となる。ま
た、本発明のガラス化法を適用した蛍光X線分析法で
は、試料を溶液化して分析する湿式化学分析法に対し所
要分析時間が約1/10に短縮可能となる。
(Effect of the Invention) As is clear from the above description, according to the vitrification method of the present invention, a predetermined amount of alkali carbonate, preferably alkali carbonate and boric acid, is added to the inorganic substance to be vitrified. After decomposing in the process of adding and decomposing by heating, it is vitrified with a predetermined amount of boric acid, so when applied to the fluorescent X-ray analysis method, the mineral effect does not occur, so it is more accurate than the grinding method. X-ray fluorescence analysis becomes possible. Further, in the fluorescent X-ray analysis method to which the vitrification method of the present invention is applied, the required analysis time can be shortened to about 1/10 of the wet chemical analysis method in which a sample is made into a solution and analyzed.

本発明の無機物のガラス化法は、高精度迅速分析法であ
る蛍光X線分析の試料前処理法として好適であり、その
工業的価値は非常に大なるものである。
The method for vitrifying an inorganic substance of the present invention is suitable as a sample pretreatment method for fluorescent X-ray analysis, which is a highly accurate and rapid analysis method, and its industrial value is extremely great.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス化しようとする窒化ケイ素、炭化ケ
イ素を主成分とする無機物の重量に対し、2倍重量以上
の炭酸アルカリを添加して加熱分解する工程と、加熱分
解して得られた融成物に、前記無機物の重量に対し等量
以上のホウ酸を添加し加熱してガラス化する工程とを含
むことを特徴とする無機物のガラス化法。
1. A step of thermally decomposing by adding twice or more the weight of alkali carbonate to the weight of an inorganic substance mainly composed of silicon nitride and silicon carbide to be vitrified, and obtained by thermal decomposition. A method of vitrifying an inorganic material, comprising the step of adding boric acid in an amount equal to or more than the weight of the inorganic material to the melt and heating it to vitrify.
【請求項2】前記加熱分解工程において、前記炭酸アル
カリとともに炭酸アルカリ100重量部に対して5〜5
0重量部のホウ酸(但し、炭酸アルカリ1モルに対しホ
ウ酸0.4モル以下)を添加する特許請求の範囲第1項
記載の無機物のガラス化法。
2. In the thermal decomposition step, 5 to 5 with respect to 100 parts by weight of alkali carbonate together with the alkali carbonate.
The method for vitrifying an inorganic material according to claim 1, wherein 0 part by weight of boric acid (0.4 mol or less of boric acid to 1 mol of alkali carbonate) is added.
JP62261769A 1987-08-31 1987-10-19 Vitrification method for inorganic substances Expired - Lifetime JPH0643976B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62261769A JPH0643976B2 (en) 1987-10-19 1987-10-19 Vitrification method for inorganic substances
US07/235,560 US4919342A (en) 1987-08-31 1988-08-24 Method of pretreating a sample for X-ray fluorescence analysis
DE3856530T DE3856530T2 (en) 1987-08-31 1988-08-31 Device for the treatment of powdered, granulated and conglomerated material with associated analysis method
EP88308030A EP0306276B1 (en) 1987-08-31 1988-08-31 Method for vitrifying powdery and granular materials
DE3855906T DE3855906T2 (en) 1987-08-31 1988-08-31 Process for vitrifying powdered and granular materials
EP95115605A EP0701120B1 (en) 1987-08-31 1988-08-31 Powdery, granular and conglomerate material treating apparatus and analyzing method using the apparatus
US07/414,479 US4993646A (en) 1987-08-31 1989-09-29 Powdery, granular and conglomerate material treating apparatus
US07/471,628 US5137410A (en) 1987-08-31 1990-01-29 Material supply apparatus for transferring powdery, granular and conglomerated materials
US07/854,566 US5257302A (en) 1987-08-31 1992-03-20 Fluorescent X-ray analyzing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261769A JPH0643976B2 (en) 1987-10-19 1987-10-19 Vitrification method for inorganic substances

Publications (2)

Publication Number Publication Date
JPH01105145A JPH01105145A (en) 1989-04-21
JPH0643976B2 true JPH0643976B2 (en) 1994-06-08

Family

ID=17366439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261769A Expired - Lifetime JPH0643976B2 (en) 1987-08-31 1987-10-19 Vitrification method for inorganic substances

Country Status (1)

Country Link
JP (1) JPH0643976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776672B (en) * 2014-01-10 2017-09-19 巨石集团有限公司 The sample treatment and method of determining chemical of a kind of siliceous sandstone

Also Published As

Publication number Publication date
JPH01105145A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
Savage et al. An assessment of Ge-Sb-Se glasses as 8 to 12μm infra-red optical materials
CN101008593B (en) Sample preparation method of material containing silicon carbide used for x-ray spectrometric analysis
Donald et al. The influence of Fe2O3 and B2O3 additions on the thermal properties, crystallization kinetics and durability of a sodium aluminum phosphate glass
EP0306276B1 (en) Method for vitrifying powdery and granular materials
US3331731A (en) Method of and article formed by sealing alumina ceramic to a metal with a sealant glass
Ginther The contamination of glass by platinum
JPH0643976B2 (en) Vitrification method for inorganic substances
Doležal et al. Decomposition by pressure in inorganic analysis
Wilding et al. High temperature calorimetric studies of the heat of solution of La2O3 in silicate liquids
Ødegård et al. Preparation of a synthetic titanite glass calibration material for in situ microanalysis by direct fusion in graphite electrodes: A preliminary characterisation by EPMA and LA‐ICP‐MS
CALVERT et al. Liquidus Behavior in the Silica‐Rich Region of the System PbO‐SiO2
Royle et al. Densities, glass transition temperatures, and structural models resulting from extremely modified caesium and rubidium borate glasses
EP0708332B1 (en) Combustion decomposition accelerators
Tischer Heat of annealing in simple alkali silicate glasses
Kim et al. Enthalpies of chromium oxide solution in soda lime borosilicate glass systems
Pons Melting Rate of Soda‐Lime‐Silica Glasses as Influenced by Composition and the Effect of Minor Constituents
Vance et al. Volatile losses from sphene glass‐ceramic and borosilicate glass melts
Qian et al. Bulk Composition of the Glassy Phase in some Commercial PFA's
RU2800284C1 (en) Method for manufacturing multi-component reference samples for x-ray fluorescence analysis of rocks
RU2755517C1 (en) Glass for active part of ionizing radiation sources based on cesium-137 and method of forming active part of radiation sources
RU2766339C1 (en) Method of preparing solid mineral fuel samples for x-ray fluorescence analysis
Fan et al. Thermochemistry and structure of the liquid Na2O-GeO2 system
JPH0255941A (en) Analysis of metal oxide
Ridenour Evidence for selective volatilization and imperfect mixing in indochinites
SU1497536A1 (en) Method of producing specimens for x-ray spectrum analysis of rare metal alloys