JPH0643809A - Digital signature system based on elliptic curve and signer device and verifier device for this system - Google Patents
Digital signature system based on elliptic curve and signer device and verifier device for this systemInfo
- Publication number
- JPH0643809A JPH0643809A JP4199916A JP19991692A JPH0643809A JP H0643809 A JPH0643809 A JP H0643809A JP 4199916 A JP4199916 A JP 4199916A JP 19991692 A JP19991692 A JP 19991692A JP H0643809 A JPH0643809 A JP H0643809A
- Authority
- JP
- Japan
- Prior art keywords
- elliptic curve
- modq
- message
- signature
- calculated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/725—Finite field arithmetic over elliptic curves
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は電子化された文書のり
ん議/決済、電子投票システムなどで電子的に署名/捺
印を付与するデイジタル署名方式、特に有限体上の楕円
曲線に基づく方式及びそれに用いられる署名者装置、及
び検証者装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital signature system for electronically signing / imprinting electronic documents by electronic discussion / settlement, electronic voting system, etc., particularly a system based on an elliptic curve on a finite field, and The present invention relates to a signer device and a verifier device used therefor.
【0002】[0002]
【従来の技術】1991年に米国のNIST(Nati
onal Institute ofStandard
s and Technology)は、デイジタル署
名の標準案(DSA:Digital Signatu
re Standard)を提案した(Federal
Register of NIST,“Digita
l Signature Algorithm”Aug
ust 30,1991.)。DSAは署名長が短くな
る点でエルガマル署名法(EIGamal,T.:“A
Public key cryptosystem
and a signature scheme ba
sed on discrete logarithm
s”,IEEE Transaction on In
formation Theory,Vol.IT−3
1,No.4,pp.469−472,1991.)の
改良版である。DSAおよびElGamal署名法は有
限体Fp 上の離散対数計算の困難さに基づいている。し
かしより一層安全な署名方式が望まれている。2. Description of the Related Art In 1991, the US NIST (Nati
onal Institute of Standard
s and Technology) is a digital signature standard proposal (DSA: Digital Signature).
re Standard) (Federal
Register of NIST, "Digital
l Signature Algorithm "Aug
ust 30, 1991. ). The DSA has a shorter signature length, and thus the ElGamal signature method (EIGamal, T .: “A
Public key cryptosystem
and a signature scheme ba
sed on discrete logarithm
s ", IEEE Transaction on In
formation Theory, Vol. IT-3
1, No. 4, pp. 469-472, 1991. ) Is an improved version of. The DSA and ElGamal signature methods are based on the difficulty of discrete logarithmic computation over the finite field F p . However, a more secure signature scheme is desired.
【0003】この発明のデイジタル署名方式は有限体上
の楕円曲線に基づいており、DSAをより一層安全なよ
うにしたものである。まず楕円曲線の概要を説明する。
素数p、パラメータa,bに対して以下の式を満たす点
の集合に無限遠点Οを加えた集合を、楕円曲線Ep と呼
ぶ(Koblitz,N.:A Coursein N
umber Theory and Cryptogr
aphy,Berlin:Springer−Verl
ag,1987.)。ここでは便宜上、アフィン座標系
で表す。The digital signature system of the present invention is based on an elliptic curve on a finite field, and makes the DSA more secure. First, the outline of the elliptic curve will be described.
A set obtained by adding a point at infinity Ο to a set of points satisfying the following expressions for a prime number p and parameters a and b is called an elliptic curve E p (Koblitz, N .: A Coursein N).
number Theory and Cryptogr
aphy, Berlin: Springer-Verl
ag, 1987. ). Here, for convenience, the affine coordinate system is used.
【0004】 Ep :y2 ≡x3 +ax+b(modp). 楕円曲線上の加算P3 =P1 +P2 は以下のように定義
される。 x3 =λ2 −x1 −x2 y3 =λ(x1 −x3 )−y1 λ=(y2 −y1 )/(x2 −x1 ):(P1 ≠P2 ) λ=((3x1 2+a)/2y1 :(P1 =P2 ) ただしPi =(xi ,yi )。E p : y 2 ≡x 3 + ax + b (modp). The addition P 3 = P 1 + P 2 on the elliptic curve is defined as follows. x 3 = λ 2 −x 1 −x 2 y 3 = λ (x 1 −x 3 ) −y 1 λ = (y 2 −y 1 ) / (x 2 −x 1 ): (P 1 ≠ P 2 ). λ = ((3x 1 2 + a) / 2y 1 : (P 1 = P 2 ), where P i = (x i , y i ).
【0005】なお、斎次座標系を用いることにより、F
p 上の除算(拡張ユークリッドアルゴリズムによる逆元
の計算)を行なわずに楕円曲線上の加算が定義できる。
点Pのd倍点(d・P)は上記の加算を用いて、バイナ
リ法などにより計算される。この発明の署名方式では、
位数(曲線上の点(x,y)の数)が素数でなく、適当
な大きさの素因数を持つような楕円曲線を用いる。位数
が定まる楕円曲線の例として、a=0,b≠0かつp≡
2(mod3)の場合があり、位数は常にp+1とな
る。)It should be noted that the F
It is possible to define addition on an elliptic curve without performing division on p (calculation of the inverse element by the extended Euclidean algorithm).
The d-fold point (d · P) of the point P is calculated by the binary method using the above addition. In the signature system of this invention,
An elliptic curve whose order (the number of points (x, y) on the curve) is not a prime number but has a prime factor of an appropriate size is used. As an example of an elliptic curve whose order is determined, a = 0, b ≠ 0 and p≡
It may be 2 (mod3), and the order is always p + 1. )
【0006】[0006]
【課題を解決するための手段】請求項1の発明によれば
センタにおいて、有限体Fp 上の楕円曲線Ep (y2≡
x3 +ax+b(modp))のうち群の位数(#
Ep )が素数でないものを選び、その選んだ楕円曲線E
p 上の一点V=(vx ,vy ),({vx ,vy }∈F
p )、及び位数#Ep を割り切る素数qと、qを越えな
い正の整数q′をそれぞれ選び、上記楕円曲線Ep 上で
G=(#Ep /q)・Vを計算し、上記p,a,q,
q′と各署名者iに個有な下記公開鍵Ti とを公開情報
として公開する。According to the invention of claim 1, in the center, an elliptic curve E p (y 2 ≡ on a finite field F p )
x 3 + ax + b (modp)), the order of the group (#
E p ) is a non-prime number, and the selected elliptic curve E
One point on p V = (v x , v y ), ({v x , v y } ∈F
p ), and a prime number q that divides the order #E p and a positive integer q ′ that does not exceed q, and G = (# E p / q) · V is calculated on the elliptic curve E p . The above p, a, q,
q'and the following public key T i unique to each signer i are disclosed as public information.
【0007】署名者iは自己の秘密鍵zi (乱数)と公
開情報p,a,Gとを用いて楕円曲線Ep 上で前記公開
鍵Ti =zi ・Gを計算し、そのTi をセンタへ送り、
公開する。署名に当っては乱数kを生成し、そのkと公
開情報とを用いて楕円曲線E p 上でR=(rx ,ry )
=k・Gを計算し、またメッセージmを変数に代入して
ハッシュ関数H(m)を計算し、更にs1 =rx mod
q′を計算し、次に自己の秘密鍵zi を用いてs2 =
(k/(H(m)+zi s1 ))modqを計算し、メ
ッセージmと署名(s1 ,s2 )とを検証者へ送る。Signer i has his private key zi(Random number) and public
Elliptic curve E using open information p, a, GpPublished above
Key Ti= Zi・ Calculate G and then TiTo the center,
Publish. When signing, generate a random number k and
Elliptic curve E using open information and pWhere R = (rx, Ry)
= K · G is calculated, and the message m is substituted for the variable
The hash function H (m) is calculated, and then s1= Rxmod
compute q ', then own private key ziUsing s2=
(K / (H (m) + zis1)) Calculate modq
Sage m and signature (s1, S2) And are sent to the verifier.
【0008】検証者は受信したmと(s1 ,s2 )と、
公開情報とを用いてu1 =H(m)s1 modq,u2
=s1 s2 modqを計算し、更に楕円曲線Ep 上で
R′=(rx ′,ry ′)=u1 ・G+u2 ・Ti を計
算し、その後、検査式s1 ≡r x ′(modq′)が成
立するか否かを確認する。)The verifier receives the received m and (s1, S2)When,
Using public information and u1= H (m) s1modq, u2
= S1s2modq is calculated, and further elliptic curve EpAbove
R '= (rx′, Ry′) = U1・ G + u2・ TiTotal
Then, the inspection formula s1≡r x'(Modq') is
Confirm whether to stand. )
【0009】[0009]
【実施例】図1にこの発明が適用されるシステムの例を
示す。センタ装置11と署名者装置12及び検証者装置
13とがそれぞれ通信路14及び15で接続され、また
署名者装置12及び検証者装置13が通信路16で接続
されている。センタ装置11の構成例を図2に、署名者
装置12の構成例を図3に、検証者装置13の構成例を
図4にそれぞれ示す。FIG. 1 shows an example of a system to which the present invention is applied. The center device 11, the signer device 12 and the verifier device 13 are connected by communication paths 14 and 15, respectively, and the signer device 12 and the verifier device 13 are connected by communication path 16. FIG. 2 shows a configuration example of the center device 11, FIG. 3 shows a configuration example of the signer device 12, and FIG. 4 shows a configuration example of the verifier device 13.
【0010】センタ装置11において、素数生成器17
から素数Pを生成し、楕円曲線パラメータ生成器18に
おいて、有限体Fp 上の楕円曲線Ep :y2 ≡x3 +a
x+b(modp)のうち群の位数#Ep が素数でない
ものを選び、かつその選んだ楕円曲線上の一点V=(v
x ,vy ),({vx ,vy }∈Fp )を選び、更にそ
の選んだ位数#Ep を割り切る素数qを選び、q′≦q
となる正の整数q′を選びこれらのパラメータa、V、
#Ep 、q、q′を出力する。乗算器19で#Ep /q
の計算を行い、その結果とパラメータa,Vとを楕円曲
線乗算器21に入力し、楕円曲線Ep 上でG=(#Ep
/q)・Vを計算する。センタではセンタ装置11で得
られたパラメータp,a,G,q,q′と、署名者iか
ら受信した公開鍵Ti とを公開情報として公開する。In the center device 11, a prime number generator 17
It generates a prime number P from the elliptic curve parameter generator 18, an elliptic curve over a finite field F p E p: y 2 ≡x 3 + a
Among x + b (modp), a group whose order #E p is not a prime number is selected, and one point V = (v on the selected elliptic curve
x , v y ), ({v x , v y } εF p ), and a prime number q that divides the selected order #E p , and q ′ ≦ q
We choose a positive integer q ′ such that
#E p , q, q ′ are output. #E p / q in multiplier 19
Perform calculations, the results and parameters a, and a V type elliptic curve multiplier 21, G = (# E p on an elliptic curve E p
/ Q) · V is calculated. At the center, the parameters p, a, G, q, q'obtained by the center device 11 and the public key T i received from the signer i are disclosed as public information.
【0011】(1)鍵生成 署名者iは図3に示す署名者装置12を用いて、乱数生
成器23から乱数ziを自己の秘密鍵として生成し、こ
れとセンタからの公開情報p,a,Gとを用いて楕円曲
線乗算器24で、楕円曲線Ep 上でTi =zi ・Gを計
算し、このTiを公開鍵としてセンタへ送る。また秘密
鍵zi を鍵記憶部25に記憶しておく。(1) Key Generation The signer i uses the signer device 12 shown in FIG. 3 to generate a random number z i from the random number generator 23 as its own secret key, and public information p, from the center. The elliptic curve multiplier 24 uses a and G to calculate T i = z i · G on the elliptic curve E p , and sends this T i as a public key to the center. Further, the secret key z i is stored in the key storage unit 25.
【0012】(2)署名作成 署名者iは図3に示す署名者装置12を用いて、メッセ
ージmをハッシュ関数計算器26に入力してハッシュ値
H(m)を計算して剰余乗除算器27に入力する。また
乱数生成器28から乱数kを生成し、これと公開情報
p,a,Gとを楕円曲線乗算器29に入力して楕円曲線
Ep 上でR=(rx ,ry )=k・Gを計算し、その結
果を剰余乗除算器27に入力する。剰余乗除算器27で
は s1 =rx modq′, s2 =(k/(H(m)+zi ・s1 ))modp を計算する。この(s1 ,s2 )を署名としてメッセー
ジmと共に検証者へ送る。(2) Signature Creation The signer i uses the signer device 12 shown in FIG. 3 to input the message m to the hash function calculator 26 to calculate the hash value H (m) and to calculate the modular exponentiation divider. Enter in 27. A random number k is generated from the random number generator 28, and the public information p, a, and G are input to the elliptic curve multiplier 29, and R = (r x , r y ) = k · on the elliptic curve E p. G is calculated, and the result is input to the modular multiplication / division unit 27. The modular multiplication / division unit 27 calculates s 1 = r x modq ′, s 2 = (k / (H (m) + z i · s 1 )) modp. This (s 1 , s 2 ) is sent to the verifier together with the message m as a signature.
【0013】(3)署名の検証 検証者は図4に示す検証者装置13を用いて、受信した
署名(s1 ,s2 )が同時に受信したメッセージmに対
する正しい署名であるか否かを以下のように検証する。
ハッシュ関数計算器31を用いて受信したメッセージm
を変数に入れてハッシュ値H(m)を計算する。その計
算結果H(m)と受信した署名(s1 ,s2 )と公開情
報qとを剰余乗算器32に入力して、 u1 =H(m)s2 modq, u2 =s1 ・s2 m
odq を計算する。その計算結果u1 ,u2 と公開情報p,
a,G,Ti とを用いて楕円曲線加算/乗算器33で下
記の楕円曲線Ep 上の計算を行う。(3) Verification of Signature The verifier uses the verifier device 13 shown in FIG. 4 to determine whether the received signatures (s 1 , s 2 ) are correct signatures for the simultaneously received message m. To verify.
Message m received using the hash function calculator 31
Into a variable to calculate the hash value H (m). The calculation result H (m), the received signatures (s 1 , s 2 ) and the public information q are input to the remainder multiplier 32, and u 1 = H (m) s 2 modq, u 2 = s 1 s 2 m
Calculate odq. The calculation results u 1 , u 2 and public information p,
The following elliptic curve E p is calculated by the elliptic curve adder / multiplier 33 using a, G, and T i .
【0014】 R′=(rx ′,ry ′)=u1 ・G+u2 ・Ti その計算結果rx ′と受信した署名s1 とを比較器34
に入力して合同式s1≡rx ′(modq′)が成立す
るか否かを確認し、成立する場合はその署名(s1 ,s
2 )はそのメッセージmに対する正しい署名であると出
力し、それ以外は不正の署名であると出力する。R ′ = (r x ′, r y ′) = u 1 · G + u 2 · T i The calculated result r x ′ and the received signature s 1 are compared by a comparator 34.
It is confirmed whether or not the congruence expression s 1 ≡r x ′ (modq ′) is satisfied by inputting to the signature, and if it is satisfied, the signature (s 1 , s
2 ) outputs that the message m has a correct signature, and otherwise outputs an invalid signature.
【0015】以上の3段階でデイジタル署名方式が実現
される。ところで、署名とメッセージが正しい場合には
楕円曲線Ep上の検査式は、以下のようになる。 R′=u1 ・G+u2 ・Ti =(H(m)s2 +cq1 )・G+(s1 s2 +c′q1 )・(zi ・G) =((H(m)+s1 zi )s2 )・G =k・G =R ただしq1 ・Gは楕円曲線Ep の零元Oとなる。また、
c,c′は、ある整数である。以上より、 rx ≡rx ′(modp), ry ≡ry ′(mod
p) また、0<rx ,rx ′,ry ,ry ′≦p−1,より rx ≡rx ′(modq′), ry ≡ry ′(mod
q′) が成り立つ。署名確認には、法q′でのx座標の一致を
調べる。The digital signature method is realized by the above three steps. By the way, when the signature and the message are correct, the check formula on the elliptic curve Ep is as follows. R '= u 1 · G + u 2 · T i = (H (m) s 2 + cq 1 ) · G + (s 1 s 2 + c′q 1 ) · (z i · G) = ((H (m) + s 1 z i ) s 2 ) · G = k · G = R where q 1 · G is the zero element O of the elliptic curve E p . Also,
c and c'are certain integers. From the above, r x ≡r x '(modp ), r y ≡r y' (mod
p) The, 0 <r x, r x ', r y, r y' ≦ p-1, and more r x ≡r x '(modq' ), r y ≡r y '(mod
q ') holds. For the signature confirmation, the coincidence of the x-coordinates by the modulus q'is checked.
【0016】以上のデイジタル署名方式において署名サ
イズは(|q|+|q′|)ビットとなる。ただし|q
|はqのビット長とする。法qのサイズはハッシュ関数
の中間一致攻撃に対する安全性を考慮して決められる。
また素数pのサイズはEp 上の離散対数計算の困難さを
考慮して決められる。In the above digital signature scheme, the signature size is (| q | + | q '|) bits. Where | q
| Is the bit length of q. The size of the modulus q is determined in consideration of the security of the hash function against intermediate match attacks.
The size of the prime number p is determined in consideration of the difficulty of discrete logarithm calculation on E p .
【0017】[0017]
【発明の効果】この発明のデイジタル署名方式は、素数
pの大きさを同じにした場合にDSAに比べてより安全
である。なぜならば、この発明の方式の安全性は楕円曲
線Ep上の離散対数計算の困難さに基づいており、楕円
曲線Ep 上の離散対数問題は一般に有限体Ep 上の離散
対数問題より難しいからである。The digital signature system of the present invention is more secure than DSA when the size of the prime number p is the same. Because this safety system of the present invention is based on the difficulty of discrete logarithm calculation on an elliptic curve E p, harder than the discrete logarithm problem on the finite field E p in the discrete logarithm problem is generally on the elliptic curve E p Because.
【図1】この発明が適用されるシステムを示すブロック
図。FIG. 1 is a block diagram showing a system to which the present invention is applied.
【図2】センタ装置11の構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of a center device 11.
【図3】請求項2の発明による署名者装置12の構成例
を示すブロック図。FIG. 3 is a block diagram showing a configuration example of a signer device 12 according to the invention of claim 2.
【図4】請求項3の発明による検証者装置13の構成例
を示すブロック図。FIG. 4 is a block diagram showing a configuration example of a verifier device 13 according to the invention of claim 3.
Claims (3)
線Ep (y2 ≡x3+ax+b(modp)のうち群の
位数(#Ep )が素数でないものを選び、その楕円曲線
Ep 上の一点V=(vx ,vy ),({vx ,vy }∈
Fp )、及び位数#Ep を割り切る素数qと、qを越え
ない正の整数q′をそれぞれ選び、上記楕円曲線Ep 上
でG=(#Ep /q)・Vを計算し、上記p,a,q,
q′,Gと下記公開鍵Ti とを公開情報として公開し、 署名者iは自己の秘密鍵(乱数)zi を用いて上記楕円
曲線Ep 上でTi =z i ・Gを計算し、このTi を上記
公開鍵Ti として上記センタへ送っておき、その後、乱
数kを選び、上記楕円曲線Ep 上でR=(rx ,ry )
=k・Gを計算し、更にs1 =rx modq′を計算
し、また自己の秘密鍵zi とハッシュ関数H(・)を用
い、メッセージmに対してs2 =(k/(H(m)+z
i s1 ))modqを計算し、署名(s1 ,s2 )をメ
ッセージmと共に検証者へ送信し、 その検証者は受信した(s1 ,s2 )、m及び上記公開
情報を用いて、u1 =H(m)s1 modq,u2 =s
1 s2 modqを計算し、更に上記楕円曲線E p 上で
R′=(rx ′,ry ′)=u1 ・G+u2 ・Ti を計
算し、検査式s1≡rx ′(modq′)を満すか否か
を確認する。ことを特徴とする楕円曲線に基づくデイジ
タル署名方式。1. A finite field F at the centerpElliptic curve on
Line Ep(Y2≡ x3Of + ax + b (modp)
Order (#Ep) Is not a prime number and its elliptic curve
EpTop point V = (vx, Vy), ({Vx, Vy} ∈
Fp), And the order #EpThe prime number q that divides and exceeds q
Select each positive integer q ′ and select the elliptic curve EpUp
And G = (# Ep/ Q) · V is calculated, and the above p, a, q,
q ', G and the following public key TiAnd are disclosed as public information, and the signer i own private key (random number) ziAbove ellipse using
Curve EpT oni= Z i・ Calculate GiThe above
Public key TiSent to the above center as
Choose a few k and select the elliptic curve EpWhere R = (rx, Ry)
= K · G, and then s1= RxCalculate modq '
And also his own secret key ziAnd use the hash function H (.)
S for message m2= (K / (H (m) + z
is1)) Modq is calculated and the signature (s1, S2)
Sent to the verifier with the message m, and the verifier receives (s1, S2), M and the above
Using information, u1= H (m) s1modq, u2= S
1s2modq is calculated, and the above elliptic curve E is calculated. pAbove
R '= (rx′, Ry′) = U1・ G + u2・ TiTotal
Calculation, inspection formula s1≡rxWhether to satisfy '(modq')
To confirm. Based on an elliptic curve
Tal signature method.
数生成手段と、 公開情報p,a,Gと上記zi とを用いて楕円曲線Ep
上で公開鍵Ti =zi・Gを計算する第1楕円曲線乗算
手段と、 上記秘密鍵zi を記憶する手段と、 メッセージmを変数とするハッシュ関数H(m)を計算
するハッシュ関数計算手段と、 乱数kを発生する第2乱数生成手段と、 そのkと上記p,a,Gとを用い上記楕円曲線Ep 上で
R=(rx ,ry )=k・Gを計算する第2楕円曲線乗
算手段と、 上記zi 、上記H(m)、上記R、上記k、及び公開情
報q′を用いてs1 =ra modq′及びs2 =(k/
(H(m)+zi s1 ))modqを計算する剰余乗除
算手段と、 上記メッセージmと、それに対する署名として上記(s
1 ,s2 )とを検証者へ送信する手段と、 を具備するデイジタル署名の署名者装置。2. An elliptic curve E p using first random number generating means for generating a random number z i as a secret key, public information p, a, G and the above z i.
First elliptic curve multiplication means for calculating the public key T i = z i · G above, means for storing the secret key z i , and a hash function for calculating a hash function H (m) with the message m as a variable R = (r x , r y ) = k · G is calculated on the elliptic curve E p using the calculation means, the second random number generation means for generating the random number k, and the k and the p, a and G. S 1 = r a modq ′ and s 2 = (k / using the second elliptic curve multiplication means for performing the above, z i , H (m), R, k, and public information q ′.
(H (m) + z i s 1 )) modulo multiplication / division means for calculating modq, the message m, and the signature (s) as the signature for the message m.
1 , s 2 ) and a means for transmitting to the verifier, and a signer device for digital signature, comprising:
シュ関数H(m)を計算するハッシュ関数計算手段と、 上記H(m)と、公開情報qと、上記メッセージmと共
に受信した署名s1 ,s2 )とを用いて、u1 =H
(m)s1 modq,u2 =s1 s2 modqを計算す
る剰余乗算手段と、 上記u1 ,u2 と、公開情報p,a,Gと署名者と対応
する公開鍵Ti とを用いて楕円曲線Ep 上でR′=(r
x ′,ry ′)=u1 ・G+u2 ・Ti を計算する楕円
曲線加算/乗算手段と、 上記rx ′と上記s1 とが一致するか否かを比較する比
較手段と、 を具備するデイジタル署名の検証者装置。3. A hash function calculating means for calculating a hash function H (m) using the received message m as a variable, the H (m), public information q, and the signatures s 1 , s received together with the message m. 2 ) and using u 1 = H
(M) s 1 modq, u 2 = s 1 s 2 modulo multiplication means for calculating, q 1 and u 2 , the public information p, a and G, and the public key T i corresponding to the signer. On the elliptic curve E p using R ′ = (r
x ′, r y ′) = u 1 · G + u 2 · T i , elliptic curve addition / multiplication means, and comparison means for comparing whether or not r x ′ and s 1 match. A digital signature verifier device provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4199916A JP2868104B2 (en) | 1992-07-27 | 1992-07-27 | Digital signature method based on elliptic curve, signer device and verifier device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4199916A JP2868104B2 (en) | 1992-07-27 | 1992-07-27 | Digital signature method based on elliptic curve, signer device and verifier device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0643809A true JPH0643809A (en) | 1994-02-18 |
JP2868104B2 JP2868104B2 (en) | 1999-03-10 |
Family
ID=16415736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4199916A Expired - Lifetime JP2868104B2 (en) | 1992-07-27 | 1992-07-27 | Digital signature method based on elliptic curve, signer device and verifier device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2868104B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002519723A (en) * | 1998-06-23 | 2002-07-02 | マイクロソフト コーポレイション | Techniques for generating privately authenticable cryptographic signatures and using such signatures in connection with product reproduction |
WO2010048721A1 (en) * | 2008-10-30 | 2010-05-06 | Certicom Corp. | Collision-resistant elliptic curve hash functions |
US8095792B2 (en) | 2004-02-13 | 2012-01-10 | Certicom Corp. | One way authentication |
KR20160055363A (en) * | 2014-11-07 | 2016-05-18 | 고려대학교 산학협력단 | Elliptic Curve Cryptography(ECC) based unclonable smart-meter chip |
-
1992
- 1992-07-27 JP JP4199916A patent/JP2868104B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002519723A (en) * | 1998-06-23 | 2002-07-02 | マイクロソフト コーポレイション | Techniques for generating privately authenticable cryptographic signatures and using such signatures in connection with product reproduction |
JP4644368B2 (en) * | 1998-06-23 | 2011-03-02 | マイクロソフト コーポレーション | Techniques for generating privately authenticable cryptographic signatures and using such signatures in connection with product reproduction |
US8095792B2 (en) | 2004-02-13 | 2012-01-10 | Certicom Corp. | One way authentication |
US8359469B2 (en) | 2004-02-13 | 2013-01-22 | Certicom Corp. | One way authentication |
US8938617B2 (en) | 2004-02-13 | 2015-01-20 | Certicom Corp. | One way authentication |
WO2010048721A1 (en) * | 2008-10-30 | 2010-05-06 | Certicom Corp. | Collision-resistant elliptic curve hash functions |
KR20160055363A (en) * | 2014-11-07 | 2016-05-18 | 고려대학교 산학협력단 | Elliptic Curve Cryptography(ECC) based unclonable smart-meter chip |
Also Published As
Publication number | Publication date |
---|---|
JP2868104B2 (en) | 1999-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8462944B2 (en) | Method of public key generation | |
US8639931B2 (en) | Acceleration of key agreement protocols | |
US7996676B2 (en) | Masked digital signatures | |
US6480605B1 (en) | Encryption and decryption devices for public-key cryptosystems and recording medium with their processing programs recorded thereon | |
US6212637B1 (en) | Method and apparatus for en-bloc verification of plural digital signatures and recording medium with the method recorded thereon | |
JP2008527865A (en) | Enhanced verification of digital signatures and public keys | |
Hwang et al. | An untraceable blind signature scheme | |
JP2004516506A (en) | Method and apparatus for key pair determination and RSA key generation | |
Huang et al. | Partially blind ECDSA scheme and its application to bitcoin | |
Poulakis | Some lattice attacks on DSA and ECDSA | |
US6499104B1 (en) | Digital signature method | |
Behnia et al. | ARIS: authentication for Real-Time IoT systems | |
Nikolay | Digital signature scheme based on a new hard problem | |
EP2495907A1 (en) | System and method for reducing computations in the derivation of a publick key corresponding to an implicit certificate | |
JPH0643809A (en) | Digital signature system based on elliptic curve and signer device and verifier device for this system | |
US20090138718A1 (en) | Method of generating a signature with "tight" security proof, associated verification method and signature scheme based on the diffie-hellman model | |
Lin | Toward secure strong designated verifier signature scheme from identity-based system. | |
US9252941B2 (en) | Enhanced digital signatures algorithm method and system utilitzing a secret generator | |
Lee et al. | Untraceable blind signature schemes based on discrete logarithm problem | |
JP3331321B2 (en) | Method for collectively verifying a plurality of digital signatures, apparatus therefor and recording medium recording the method | |
Moldovyan | Short Signatures from Difficulty of Factorization Problem. | |
Sun et al. | Batch blind signatures on elliptic curves | |
Park et al. | Insecurity of Chait et al.’s RSA-Based Aggregate Signature Scheme | |
Hitchcock | Elliptic curve cryptography for lightweight applications | |
Tiwari et al. | Security Analysis of Proxy Blind Signature Scheme Based on Factoring and ECDLP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071225 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 14 |