JPH0643507A - Rear induction raman pulse amplifier - Google Patents

Rear induction raman pulse amplifier

Info

Publication number
JPH0643507A
JPH0643507A JP4218383A JP21838392A JPH0643507A JP H0643507 A JPH0643507 A JP H0643507A JP 4218383 A JP4218383 A JP 4218383A JP 21838392 A JP21838392 A JP 21838392A JP H0643507 A JPH0643507 A JP H0643507A
Authority
JP
Japan
Prior art keywords
light
amplified
raman
raman medium
stokes light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4218383A
Other languages
Japanese (ja)
Other versions
JP2671268B2 (en
Inventor
Yuji Matsumoto
裕治 松本
Yoshirou Oowadano
芳郎 大和田野
Isao Okuda
功 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4218383A priority Critical patent/JP2671268B2/en
Publication of JPH0643507A publication Critical patent/JPH0643507A/en
Application granted granted Critical
Publication of JP2671268B2 publication Critical patent/JP2671268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To obtain high conversion efficiency even on a return path by providing a reflecting mirror which reflects primary Stokes' light to be amplified which is projected from a Raman medium and makes it incident on the Raman medium again. CONSTITUTION:Exciting light 2 which is not Raman-converted on a going way is reflected by a wavelength selecting mirror 5, circularly polarized by a polarization plane control element 8, and then reflected by the reflecting mirror 6. Then, the light is polarized into reversely circular polarized light, which passes thorugh a polarization plane control element 8 to become linear polarized light having its plane of polarization rotated by 90 deg.; and the light is propagated again through the return path in the direction of the axis of the Raman medium container 1 from a window 1b to excite the Raman medium again. When the exciting light 2 on the going path reaches a window 1b, the primary Stakes' light 3 to be amplified which is made incident on the Raman medium container 1 is propagated reversely as exciting light 2 and amplified. Further, the primary Stokes' light 3 to be amplified is propagated in the same linear polarized light direction with the exciting light 2 on the going path by a polarization plane control element 9 and a reflecting mirror 7, and then propagated in the Raman medium container 1 in the reverse direction again and amplified, and the light is transmitted through the wavelength selecting mirror 5, and separated by a polarizing plate 10 and outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高効率でレーザパルス
幅を圧縮し、ピークパワーの増倍を行う後方誘導ラマン
パルス増幅器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backward stimulated Raman pulse amplifier which highly efficiently compresses a laser pulse width and multiplies peak power.

【0002】[0002]

【従来の技術】図4は従来の後方誘導ラマンパルス増幅
器の一例を示す概略構成図である。この図において、ラ
マン媒質容器1の窓1aより励起光2を、窓1aと反対
側の窓1bより被増幅1次ストークス光3をそれぞれ互
いに逆方向に入射し、励起光2から1次ストークス光へ
ラマン変換している。すなわち、励起光2がラマン媒質
容器1内を伝播し出射側の窓1bに達したとき、窓1b
から被増幅1次ストークス光3を入射するが、この際、
被増幅1次ストークス光3のパルス幅を励起光2のパル
ス幅より短くすることによって、励起光2の強度より高
い強度で、パルス幅の短い1次ストークス光を得てい
る。なお、4,5は波長選択鏡である。
2. Description of the Related Art FIG. 4 is a schematic diagram showing an example of a conventional backward stimulated Raman pulse amplifier. In this figure, pumping light 2 is input from the window 1a of the Raman medium container 1, and amplified primary Stokes light 3 is input in opposite directions from the window 1a on the opposite side of the window 1a. It is Hellaman conversion. That is, when the excitation light 2 propagates through the Raman medium container 1 and reaches the exit side window 1b, the window 1b
The amplified first Stokes light 3 is incident from the
By making the pulse width of the amplified primary Stokes light 3 shorter than the pulse width of the pumping light 2, the primary Stokes light having an intensity higher than that of the pumping light 2 and a short pulse width is obtained. Reference numerals 4 and 5 are wavelength selective mirrors.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図4に
示した従来の後方誘導ラマンパルス増幅器では、入力ス
トークス光の強度が励起光2によって次第に増幅されて
くるまでは小さいので、励起光2の前半部分(すなわ
ち、被増幅1次ストークス光3の入射直後)でのラマン
変換効率は低く抑えられていた。これを改善するため
に、励起光2の強度を大きくして変換効率を上げること
も考えられるが、励起光2自身による自発ストークス光
の発生に伴う損失が増加するという問題があった。ま
た、入射する被増幅1次ストークス光3の強度を大きく
することも考えられるが、入出力ストークス光の強度比
が小さくなるという問題点があった。
However, in the conventional backward stimulated Raman pulse amplifier shown in FIG. 4, the intensity of the input Stokes light is small until it is gradually amplified by the pumping light 2, and therefore the first half of the pumping light 2 is used. The Raman conversion efficiency (that is, immediately after the incident primary amplified Stokes light 3) was kept low. In order to improve this, it is conceivable to increase the intensity of the pumping light 2 to increase the conversion efficiency, but there is a problem that the loss accompanying the generation of spontaneous Stokes light by the pumping light 2 itself increases. Further, it is possible to increase the intensity of the incident amplified primary Stokes light 3, but there is a problem that the intensity ratio of the input and output Stokes light becomes small.

【0004】本発明は、上記の問題点を解決するために
なされたもので、小型で高い変換効率を有する後方誘導
ラマンパルス増幅器を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a backward stimulated Raman pulse amplifier having a small size and high conversion efficiency.

【0005】[0005]

【課題を解決するための手段】本発明にかかる後方誘導
ラマンパルス増幅器は、ラマン媒質中に励起光と被増幅
1次ストークス光を入射させる手段とを備えた後方誘導
ラマンパルス増幅器において、前記ラマン媒質から出射
される被増幅1次ストークス光を反射して、前記ラマン
媒質中に再入射させ他端から出力を得る反射鏡を備えた
ものである。
A backward stimulated Raman pulse amplifier according to the present invention is a backward stimulated Raman pulse amplifier provided with a pumping light and a means for injecting a first-order Stokes light to be amplified into a Raman medium. It is provided with a reflecting mirror that reflects the amplified primary Stokes light emitted from the medium, re-enters the Raman medium, and obtains an output from the other end.

【0006】また、本発明の後方誘導ラマンパルス増幅
器は、ラマン媒質中に、励起光と被増幅1次ストークス
光を入射させる手段とを備えた後方誘導ラマンパルス増
幅器において、前記ラマン媒質から出射される励起光を
反射して、ラマン媒質中に再入射させる反射鏡を備えた
ものである。
Further, the backward stimulated Raman pulse amplifier according to the present invention is a backward stimulated Raman pulse amplifier provided with a means for causing the pumping light and the amplified first-order Stokes light to enter the Raman medium, and the light is emitted from the Raman medium. It is provided with a reflecting mirror that reflects the excitation light to be re-incident in the Raman medium.

【0007】[0007]

【作用】本発明においては、往路で増幅された1次スト
ークス光が反射鏡で反射され、復路でさらに往路でラマ
ン変換されなかった非変換励起光によってラマン変換さ
れるので、励起光から1次ストークス光への変換効率が
向上する。
In the present invention, the first-order Stokes light amplified on the outward path is reflected by the reflecting mirror and Raman-converted on the return path by the unconverted excitation light that has not been Raman-converted on the outward path. The efficiency of conversion into Stokes light is improved.

【0008】[0008]

【実施例】図1は本発明の一実施例を示す概略構成図で
ある。この図において、図4と同一符号は同一のものを
示す。6,7は反射鏡で、それぞれ励起光2,被増幅1
次ストークス光3を反射する。8,9は、例えばλ/4
板等からなる偏光面制御素子、10,11は、例えば偏
光ビームスプリッタ等からなる偏光板である。また、図
2(a),(b)は、図1の実施例における励起光2,
被増幅1次ストークス光3のそれぞれについての光学系
をより詳細に示した構成図であり、図3(a),
(b),(c)は各過程における状態を示す図である。
なお、図2において、12,13は偏光板、14,15
はビーム径制御用の縮小レンズ系である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic block diagram showing an embodiment of the present invention. In this figure, the same symbols as those in FIG. 4 indicate the same components. Reference numerals 6 and 7 are reflection mirrors, respectively, pumping light 2, amplified 1
The next Stokes light 3 is reflected. 8 and 9 are, for example, λ / 4
The polarization plane control elements 10, 11 made of plates and the like are polarizing plates made of, for example, polarization beam splitters. 2 (a) and 2 (b) show the excitation light 2 in the embodiment of FIG.
FIG. 4 is a configuration diagram showing in more detail the optical system for each of the amplified first-order Stokes light 3, and FIG.
(B), (c) is a figure which shows the state in each process.
In FIG. 2, reference numerals 12 and 13 denote polarizing plates, and 14 and 15
Is a reduction lens system for controlling the beam diameter.

【0009】次に、動作について説明する。図1におい
て、偏光板11により選択的に透過された後、波長選択
鏡4で反射され、窓1aから入射した励起光2はラマン
媒質容器1の軸方向に伝播し、ラマン媒質を励起しなが
ら窓1bへ到達する。この時点で、窓1bより偏光板1
0,波長選択鏡5を介した被増幅1次ストークス光3が
入射されることになるが(図3(a))、その往路でラ
マン変換されなかった励起光2は、波長選択鏡5で反射
され、偏光面制御素子8で円偏光とされた後、反射鏡6
で反射されることになる。この後、反射鏡6で反射され
て、逆回りの円偏光とされた励起光2は偏光面制御素子
8を通過することにより偏光面が90°回転した直線偏
光となり、窓1bから再度ラマン媒質容器1の軸方向に
1度目とは逆方向に復路を伝播し、再度ラマン媒質を励
起する。一方、往路の励起光2がラマン媒質容器1の窓
1bに到達した時、ラマン媒質容器1に入射された被増
幅1次ストークス光3は励起光2とは逆方向に伝播し増
幅される。往路の増幅が終わった被増幅1次ストークス
光3は(図3(b))、励起光2と同様に、偏光面制御
素子9と反射鏡7とにより復路の励起光2と同じ直線偏
光方向にされた後、再度逆方向にラマン媒質容器1内を
窓1bまで伝播して増幅される(図3(c))。そし
て、この後、波長選択鏡5を透過し、偏光板10で分離
されて出力される。
Next, the operation will be described. In FIG. 1, after being selectively transmitted by the polarizing plate 11, the excitation light 2 reflected by the wavelength selection mirror 4 and incident from the window 1a propagates in the axial direction of the Raman medium container 1 and excites the Raman medium. Reach the window 1b. At this time, the polarizing plate 1 is opened from the window 1b.
0, the amplified first-order Stokes light 3 enters through the wavelength selection mirror 5 (FIG. 3A), but the pumping light 2 that has not been Raman-converted in the outward path is transmitted through the wavelength selection mirror 5. After being reflected and circularly polarized by the polarization plane control element 8, the reflecting mirror 6
Will be reflected at. After that, the excitation light 2 which is reflected by the reflecting mirror 6 and is made into the circularly polarized light in the reverse direction passes through the polarization plane control element 8 to become linearly polarized light with its polarization plane rotated by 90 °, and again from the window 1b to the Raman medium. The Raman medium is re-excited by propagating in the return path in the direction opposite to the first direction in the axial direction of the container 1. On the other hand, when the forward excitation light 2 reaches the window 1b of the Raman medium container 1, the amplified primary Stokes light 3 incident on the Raman medium container 1 propagates in the opposite direction to the excitation light 2 and is amplified. The amplified primary Stokes light 3 that has been amplified on the outward path (FIG. 3B) has the same linear polarization direction as the excitation light 2 on the return path due to the polarization plane control element 9 and the reflecting mirror 7, similarly to the excitation light 2. Then, the Raman medium container 1 propagates in the opposite direction to the window 1b again and is amplified (FIG. 3C). Then, after this, the light passes through the wavelength selection mirror 5, is separated by the polarizing plate 10, and is output.

【0010】すなわち、本発明の後方誘導ラマンパルス
増幅器では、反転分布のラマン媒質中で増幅されて出力
される被増幅1次ストークス光3を、励起光2により連
続的に反転分布の形成が行なわれているラマン媒質中を
往復させて出力を得る構成としたことにより、初期状態
から十分に増幅された出力を得ることが可能となってい
る。また、従来使用されていなかった非変換の励起光2
を復路で再度被増幅1次ストークス光3にラマン変換す
ることによって、励起光2から出力1次ストークス光へ
の変換効率を向上させることができる。
That is, in the backward stimulated Raman pulse amplifier of the present invention, the amplified first-order Stokes light 3 amplified and output in the Raman medium having the population inversion is continuously formed by the pumping light 2. It is possible to obtain a sufficiently amplified output from the initial state by adopting a configuration in which the output is obtained by reciprocating in the Raman medium. In addition, unconverted excitation light 2 which has not been used before
By performing Raman conversion to the amplified first-order Stokes light 3 again in the return path, the conversion efficiency from the pump light 2 to the output first-order Stokes light can be improved.

【0011】なお、図3(a),(b),(c)の状態
について、さらに詳細に説明すれば、図3(a)では、
励起光2によってラマン媒質が励起されつつあり、被増
幅1次ストークス光3がラマン媒質に入射されようとし
ている状態が示されている。また、図3(b)では、下
段の左側に増幅されて振幅の大きくなった被増幅1次ス
トークス光3が示されている。その右側には、被増幅1
次ストークス光3の増幅にともなって、次第にラマン変
換量が大きくなっていたことに起因する、強度が徐々に
小さくなった残留励起光2が復路に入射されたことが示
されている。また、上段には、同時刻における往路の励
起光2が示されており、やはりラマン変換のために相当
量が減衰している。また、図3(c)では、上段に往路
で増幅された被増幅1次ストークス光3が示されてお
り、下段には復路でラマン変換された後、外部へ出射し
ていく励起光2が示されている。
The states of FIGS. 3 (a), 3 (b) and 3 (c) will be described in more detail.
The Raman medium is being excited by the excitation light 2 and the amplified first-order Stokes light 3 is about to enter the Raman medium. Further, in FIG. 3B, the amplified first-order Stokes light 3 that has been amplified and has a large amplitude is shown on the lower left side. Amplified 1 on the right
It is shown that the residual pumping light 2 whose intensity gradually decreased due to the increase in the Raman conversion amount accompanying the amplification of the next Stokes light 3 was incident on the return path. Further, the pump light 2 on the outward path at the same time is shown in the upper stage, and is also considerably attenuated due to Raman conversion. Further, in FIG. 3C, the amplified first-order Stokes light 3 amplified on the outward path is shown in the upper stage, and the excitation light 2 that is emitted to the outside after Raman conversion on the return route is shown on the lower stage. It is shown.

【0012】次に、図2(a),(b)に示した構成に
ついて説明する。これらの構成においては、いずれも往
路時のラマン変換によって強度が低下した励起光2を収
束させて、強度を増す目的のビーム径制御用の縮小レン
ズ14と、往路の励起光2のビーム径と復路の被増幅1
次ストークス光3のビーム径とを合せるためのビーム径
制御用の縮小レンズ15とが設けられている。
Next, the structure shown in FIGS. 2A and 2B will be described. In each of these configurations, a reduction lens 14 for controlling a beam diameter for increasing the intensity by converging the excitation light 2 whose intensity is reduced by Raman conversion in the outward path, and a beam diameter of the excitation light 2 in the outward path. Amplification on return path 1
A reduction lens 15 for controlling the beam diameter for adjusting the beam diameter of the next Stokes light 3 is provided.

【0013】λ/2板からなる偏光面制御素子8および
9によって往路と復路の励起光2と被増幅1次ストーク
ス光3の偏光方向を制御する構成としている。以下に本
実施れにおける具体的な条件を列挙した。
The polarization plane control elements 8 and 9 made of a λ / 2 plate are used to control the polarization directions of the forward and backward pumping light 2 and the amplified primary Stokes light 3. The specific conditions in this implementation are listed below.

【0014】入力励起光波長 249nm 強度 1J/cm2 パルス幅 100ns (クリプトン弗素エキシマレーザ光) 入力1次ストークス光波長 268nm 強度 1mJ/cm2 パルス幅 20ns ラマン媒質 メタンガス 3 気圧 媒質容器の長さ 15m 波長選択鏡 高屈折率と低屈折率をもつ2種類の誘電体
(マグネシウム,シリコン,アルミニウム等の酸化物や
弗化物)の波長の1/4の厚みの薄膜を多層構造に蒸着
した鏡によって特定波長の光を反射する。例えば、49
度の入射角に対してS偏光の249nmの光は98%以
上、P偏光の249nmの光は85%以上反射し、S偏
光およびP偏光の268nmの光は90%以上透過す
る。
Input excitation light wavelength 249 nm intensity 1 J / cm 2 pulse width 100 ns (krypton fluorine excimer laser light) Input first-order Stokes light wavelength 268 nm intensity 1 mJ / cm 2 pulse width 20 ns Raman medium methane gas 3 atmospheric pressure medium container length 15 m wavelength Selective mirror Specified wavelength is obtained by a mirror with a thin film with a thickness of 1/4 of the wavelength of two types of dielectrics (magnesium, silicon, aluminum, etc. oxides and fluorides) having high and low refractive indices, deposited in a multilayer structure. Reflects the light. For example, 49
At an incident angle of 90 degrees, S-polarized light of 249 nm reflects 98% or more, P-polarized light of 249 nm reflects 85% or more, and S-polarized light and P-polarized light of 268 nm transmits 90% or more.

【0015】このような構成では、入力1次ストークス
光は往路において100倍増幅し、強度は、1mJ/c
2 から0.1J/cm2 となる。励起光の強度は、1
J/cm2 から0.9J/cm2 に減衰する。復路の励
起光強度を縮小レンズ系で、1J/cm2 にすると、復
路における1次ストークス光は7倍増幅し、0.7J/
cm2 となる。往路,復路を合わせた1次ストークス光
の増幅は、700倍であり、励起光から1次ストークス
光へのラマン変換効率は70%となる。単位時間あたり
の入力励起光強度は、パルス幅が100nsであるの
で、107 W/cm2 であるが、出力1次ストークス光
強度は、パルス幅が20nsであるので、3.5x10
7 W/cm2 となり、単位時間あたりの出力1次ストー
クス光強度は、入力励起光強度の3.5倍に大きくな
る。
In such a structure, the input first-order Stokes light is amplified 100 times in the forward path, and the intensity is 1 mJ / c.
the 0.1J / cm 2 from m 2. Excitation light intensity is 1
Attenuated from J / cm 2 to 0.9 J / cm 2. When the intensity of the pumping light on the return path is reduced to 1 J / cm 2 by the reduction lens system, the first-order Stokes light on the return path is amplified by 7 times to 0.7 J / cm 2.
It becomes cm 2 . The amplification of the first-order Stokes light in both the forward and backward passes is 700 times, and the Raman conversion efficiency from the pump light to the first-order Stokes light is 70%. The input excitation light intensity per unit time is 10 7 W / cm 2 because the pulse width is 100 ns, but the output first-order Stokes light intensity is 3.5 × 10 5 because the pulse width is 20 ns.
It becomes 7 W / cm 2 , and the output primary Stokes light intensity per unit time becomes 3.5 times as large as the input excitation light intensity.

【0016】[0016]

【発明の効果】以上説明したように本発明は、ラマン媒
質中に、励起光と被増幅1次ストークス光を入射させる
手段とを備えた後方誘導ラマンパルス増幅器において、
前記ラマン媒質から出射される被増幅1次ストークス光
を反射して、前記ラマン媒質中に再入射させる反射鏡を
設け、他端から出力を得る構成としたので、往路へ入射
する被増幅1次ストークス光の強度が低くても、復路へ
入射する被増幅1次ストークス光が往路で増幅され高強
度となり、復路での高い変換効率が得られる利点を有す
る。
As described above, the present invention provides a backward stimulated Raman pulse amplifier including a pumping light and a means for injecting the amplified first-order Stokes light into the Raman medium.
The amplified primary Stokes light emitted from the Raman medium is reflected and re-incident in the Raman medium, and an output is obtained from the other end. Even if the intensity of the Stokes light is low, the amplified primary Stokes light that enters the return path is amplified in the forward path and becomes high in intensity, which has the advantage that high conversion efficiency in the return path can be obtained.

【0017】また、ラマン媒質中に、励起光と被増幅1
次ストークス光を入射させる手段とを備えた後方誘導ラ
マンパルス増幅器において、前記ラマン媒質から出射さ
れる励起光を反射して、ラマン媒質中に再入射させる反
射鏡を設けたことにより、励起光の変換効率をより高く
でき、励起光の強度を下げて自発ストークス光の発生を
極力抑えることが可能になる。
Further, in the Raman medium, the pumping light and the amplified light 1
In the backward stimulated Raman pulse amplifier having means for making the next Stokes light incident, by providing a reflecting mirror that reflects the excitation light emitted from the Raman medium and makes it incident again in the Raman medium, The conversion efficiency can be further increased, the intensity of the excitation light can be reduced, and the generation of spontaneous Stokes light can be suppressed as much as possible.

【0018】これらのことにより、1次ストークス光の
入出力強度比を大きくでき、大出力の励起光を少ない段
数の後方誘導ラマンパルス増幅器で短パルス化できる。
また、励起光および1次ストークス光の往復の光路がラ
マン媒質容器の軸と一致しているので、ラマン媒質容器
の数,長さ,口径が大きくなることはない等の理由によ
り、高効率な小型の後方誘導ラマンパルス増幅器の産業
界での応用範囲が急速に拡大する効果がある。
As a result, the input / output intensity ratio of the first-order Stokes light can be increased, and the high-output pumping light can be shortened by the backward stimulated Raman pulse amplifier having a small number of stages.
In addition, since the round-trip optical paths of the excitation light and the first-order Stokes light coincide with the axis of the Raman medium container, the number of Raman medium containers, the length, and the aperture do not increase, so that the efficiency is high. This has the effect of rapidly expanding the application range of small backward-induction Raman pulse amplifiers in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】図1の詳細を示す説明図である。FIG. 2 is an explanatory diagram showing details of FIG.

【図3】励起光と1次ストークス光の時間的同期関係を
示す図である。
FIG. 3 is a diagram showing a temporal synchronization relationship between pump light and first-order Stokes light.

【図4】従来の後方誘導ラマンパルス増幅器の一例を示
す概略構成図である。
FIG. 4 is a schematic configuration diagram showing an example of a conventional backward stimulated Raman pulse amplifier.

【符号の説明】[Explanation of symbols]

1 ラマン媒質容器 2 励起光 3 被増幅1次ストークス光 4 波長選択鏡 5 波長選択鏡 6 反射鏡 7 反射鏡 8 偏光面制御素子 9 偏光面制御素子 10 偏光板 11 偏光板 12 偏光板 13 偏光板 14 ビーム径制御用の縮小レンズ系 15 ビーム径制御用の縮小レンズ系 1 Raman medium container 2 Excitation light 3 Amplified primary Stokes light 4 Wavelength selection mirror 5 Wavelength selection mirror 6 Reflection mirror 7 Reflection mirror 8 Polarization plane control element 9 Polarization plane control element 10 Polarizing plate 11 Polarizing plate 12 Polarizing plate 13 Polarizing plate 14 Reduction lens system for controlling beam diameter 15 Reduction lens system for controlling beam diameter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ラマン媒質中に、励起光と被増幅1次ス
トークス光を入射させる手段とを備えた後方誘導ラマン
パルス増幅器において、前記ラマン媒質から出射される
被増幅1次ストークス光を反射して、前記ラマン媒質中
に再入射させ他端から出力を得る反射鏡を備えたことを
特徴とする後方誘導ラマンパルス増幅器。
1. A backward stimulated Raman pulse amplifier, comprising: a Raman medium; and means for making pumping light and amplified first-order Stokes light incident on the Raman medium, and reflects the amplified first-order Stokes light emitted from the Raman medium. A backward stimulated Raman pulse amplifier, characterized in that the Raman medium is provided with a reflecting mirror that re-enters the Raman medium to obtain an output from the other end.
【請求項2】 ラマン媒質中に、励起光と被増幅1次ス
トークス光を入射させる手段とを備えた後方誘導ラマン
パルス増幅器において、前記ラマン媒質から出射される
励起光を反射して、ラマン媒質中に再入射させる反射鏡
を備えたことを特徴とする後方誘導ラマンパルス増幅
器。
2. A backward stimulated Raman pulse amplifier comprising a pumping light and a means for allowing the amplified first-order Stokes light to enter the Raman medium, and reflects the pumping light emitted from the Raman medium to produce the Raman medium. A backward stimulated Raman pulse amplifier having a reflecting mirror for re-incident light.
JP4218383A 1992-07-24 1992-07-24 Backward stimulated Raman pulse amplifier Expired - Lifetime JP2671268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218383A JP2671268B2 (en) 1992-07-24 1992-07-24 Backward stimulated Raman pulse amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218383A JP2671268B2 (en) 1992-07-24 1992-07-24 Backward stimulated Raman pulse amplifier

Publications (2)

Publication Number Publication Date
JPH0643507A true JPH0643507A (en) 1994-02-18
JP2671268B2 JP2671268B2 (en) 1997-10-29

Family

ID=16719045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218383A Expired - Lifetime JP2671268B2 (en) 1992-07-24 1992-07-24 Backward stimulated Raman pulse amplifier

Country Status (1)

Country Link
JP (1) JP2671268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031823A (en) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst System for generating high output short pulse laser beam
US6678087B1 (en) 1999-08-06 2004-01-13 Nippon Telegraph And Telephone Corporation Optical amplifier and optical fiber communication system using the amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126696A (en) * 1983-01-10 1984-07-21 Nec Corp Light amplifier for optical communication
JPS59197188A (en) * 1984-03-06 1984-11-08 アメリカ合衆国 Method and device for producing high intensity raman laser pulse
JPS6022637U (en) * 1983-07-22 1985-02-16 サンウエーブ工業株式会社 Underfloor storage device
JPH0529684A (en) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp Signal folding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126696A (en) * 1983-01-10 1984-07-21 Nec Corp Light amplifier for optical communication
JPS6022637U (en) * 1983-07-22 1985-02-16 サンウエーブ工業株式会社 Underfloor storage device
JPS59197188A (en) * 1984-03-06 1984-11-08 アメリカ合衆国 Method and device for producing high intensity raman laser pulse
JPH0529684A (en) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp Signal folding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678087B1 (en) 1999-08-06 2004-01-13 Nippon Telegraph And Telephone Corporation Optical amplifier and optical fiber communication system using the amplifier
JP2002031823A (en) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst System for generating high output short pulse laser beam

Also Published As

Publication number Publication date
JP2671268B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
US5559816A (en) Narrow-band laser apparatus
US7826500B2 (en) Fiber laser and optical device
JP2000261081A (en) Laser
JP2010021518A5 (en)
JPH0533837B2 (en)
JPH1041565A (en) Solid laser amplifier
JP2008021798A (en) Optical amplifying device
US20120236894A1 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
JP4907865B2 (en) Multistage amplification laser system
JP2671268B2 (en) Backward stimulated Raman pulse amplifier
JP2005039093A (en) Laser device
US5230004A (en) Narrow beam oscillator and large volume amplifier utilizing same gain medium
JP4772545B2 (en) Pulse compressor and laser generator
JPH08228038A (en) Narrow-band laser generator
JP3176682B2 (en) Tunable laser device
JP2002057395A (en) Laser oscillating/amplifying apparatus
JP2002062555A (en) Laser beam generator
JPH06283795A (en) Acousto-optical q-switch for optical fiber laser
JP2007013181A (en) Up-conversion optical fiber laser with external resonance structure
JP2012168498A (en) Wavelength conversion element, solid-state laser device, and laser system
JP4977531B2 (en) Wavelength conversion device and two-dimensional image display device
JPH065953A (en) Solid state laser
JPH11233863A (en) Light amplifier
US20020109911A1 (en) Method of optical amplification, an optical amplifier and an optical resonator for optical amplifier
JPH0513891A (en) Laser and generating method for laser output light

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term