JPH0643373A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH0643373A
JPH0643373A JP4195608A JP19560892A JPH0643373A JP H0643373 A JPH0643373 A JP H0643373A JP 4195608 A JP4195608 A JP 4195608A JP 19560892 A JP19560892 A JP 19560892A JP H0643373 A JPH0643373 A JP H0643373A
Authority
JP
Japan
Prior art keywords
light
mirror
piezo
scanning
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4195608A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yoshikawa
浩寧 吉川
Shinya Hasegawa
信也 長谷川
Fumio Yamagishi
文雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4195608A priority Critical patent/JPH0643373A/en
Publication of JPH0643373A publication Critical patent/JPH0643373A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent an image-forming position from being deviated by compensating the fluctuation of a mirror surface at an initial position by detecting the light quantity per unit area of a light beam on a scanning line, and applying offset to the preceding focusing position of a convergence optical system corresponding to the light quantity. CONSTITUTION:A control circuit 30 outputs a piezo driving signal of radial shape waveform whose center part is lowered against both terminal parts of the scanning line on a photosensitive drum setting the peak position of a light detection signal outputted from an optical detector 21 as reference when the peak value of the signal exceeds a prescribed threshold value. A piezo element 20 separates a mirror 14 by a collimator lens 13 by furthermost distance at the center part of the scanning line by the piezo driving signal. Also, the control circuit 30 outputs the piezo driving signal of radial shape by adding a prescribed offset value when the peak value of the light detection signal is less than a power value. Thereby, the piezo element 20 separates the mirror 14 by distance in accordance with the offset value through a scanning period by the collimator lens 13. Thereby, a beam waist position can approach the collimator lens 13 as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光走査装置に関し、特に
レーザ光ビームを走査する光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device, and more particularly to an optical scanning device for scanning a laser light beam.

【0002】POSスキャナ,レーザプリンタ,光計測
等に応用される光走査装置としてのレーザスキャナは、
それぞれの目的に応じて、走査速度,解像度,走査線の
直線性などの所要性能が要求される。特に、近年におい
てはレーザプリンタの低価格化が進み、OA用レーザプ
リンタの普及が目覚ましい。
A laser scanner as an optical scanning device applied to a POS scanner, a laser printer, optical measurement, etc.
Depending on each purpose, required performance such as scanning speed, resolution, and linearity of scanning line is required. Particularly, in recent years, the price of laser printers has been reduced, and the spread of OA laser printers has been remarkable.

【0003】レーザスキャナでは、基本的光学性能すな
わち偏向走査,ビーム収束,光集光という機能の高性能
化が望まれる。特に最近のレーザプリンタでは、より綺
麗なグラフィック機能の要望によって高解像化が望まれ
ている。また、光学系としては、より安く、より小型で
あることが望まれている。
In the laser scanner, it is desired that the basic optical performance, that is, the functions of deflection scanning, beam focusing, and light focusing be improved. Particularly in recent laser printers, higher resolution is desired due to the demand for more beautiful graphic functions. Further, it is desired that the optical system be cheaper and more compact.

【0004】[0004]

【従来の技術】従来のレーザスキャナは、ポリゴンある
いはホログラムディスクを用いてレーザ光ビームを偏
向、走査し、f−Θレンズ等を用いて光を収束してい
る。高解像化に対しては、レンズ枚数を多くしたり、光
学レンズを非球面化することによって走査線上でのビー
ムスポット径を小さくして対応している。このため、レ
ンズ系が高価という問題がある。一方、安価なレンズ系
を目的として、レンズのプラスチック化もなされている
が、レンズ系の空間配置によって小型化が難しいという
問題点がある。そこで、本出願人はピエゾ素子を用いた
焦点距離を可変できる光学系を特願 によ
り提案している。これはミラー面の変位によってレンズ
前焦点を移動させ、後焦点を可変するものである。ミラ
ー面の変位は電気的駆動により実施する。
2. Description of the Related Art A conventional laser scanner deflects and scans a laser light beam by using a polygon or a hologram disk, and converges the light by using an f-Θ lens or the like. The high resolution is dealt with by increasing the number of lenses or making the optical lens aspherical to reduce the beam spot diameter on the scanning line. Therefore, there is a problem that the lens system is expensive. On the other hand, although the lens is made of plastic for the purpose of an inexpensive lens system, there is a problem that miniaturization is difficult due to the spatial arrangement of the lens system. Therefore, the present applicant has proposed a patent application for an optical system using a piezo element and capable of varying the focal length. This is to move the front focus of the lens and change the back focus by the displacement of the mirror surface. The displacement of the mirror surface is performed by electric drive.

【0005】[0005]

【発明が解決しようとする課題】上記の従来装置では、
ピエゾ素子の劣化や光学部品の温度による膨張によって
ピエゾ素子の非駆動時におけるミラー面の初期位置が変
動し、光ビームの結像位置が走査面からずれてしまうと
いう問題があった。
In the above conventional device,
There is a problem that the initial position of the mirror surface when the piezo element is not driven changes due to the deterioration of the piezo element and the expansion of the optical component due to the temperature, and the imaging position of the light beam deviates from the scanning surface.

【0006】本発明は上記の点に鑑みてなされたもの
で、ミラー面の初期位置の変動を補償して光ビームの結
像位置のずれを防止する光走査装置を提供することを目
的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an optical scanning device that compensates for fluctuations in the initial position of a mirror surface and prevents deviation of the imaging position of a light beam. .

【0007】[0007]

【課題を解決するための手段】本発明の光走査装置は、
光ビームを収束光学系で収束し回転するポリゴンミラー
又はホログラムディスクに照射して走査し、かつ焦点位
置可変手段上記収束光学系の前焦点位置を走査に同期し
て可変し上記収束光学系の後焦点を走査線上とする光走
査装置において、上記走査線上に設けられ光ビームの単
位面積当りの光量を検出する光検出器と、上記光検出器
の検出光量に応じて、上記焦点位置可変手段の可変する
収束光学系の前焦点位置にオフセットを加えるオフセッ
ト手段とを有する。
The optical scanning device of the present invention comprises:
After irradiating a polygon mirror or a hologram disk, which converges and rotates a light beam with a converging optical system, and scans, the focal position changing means changes the front focal position of the converging optical system in synchronism with scanning, and after the converging optical system. In an optical scanning device having a focus on a scanning line, a photodetector provided on the scanning line for detecting a light amount per unit area of a light beam, and a focus position varying means for the light amount detected by the photodetector. Offset means for adding an offset to the front focus position of the variable converging optical system.

【0008】[0008]

【作用】本発明においては、検出光量に応じて前焦点位
置にオフセットを加えるため、前焦点位置が変動して後
焦点位置が走査線上からずれ検出光量が減少するとオフ
セットにより前焦点位置が可変されて上記後焦点位置が
走査線上となるように補償される。
In the present invention, since the front focus position is offset in accordance with the detected light amount, the front focus position is changed and the rear focus position is deviated from the scanning line. When the detected light amount is decreased, the front focus position is changed by the offset. The back focal position is compensated so as to be on the scanning line.

【0009】[0009]

【実施例】図2は本発明装置の概略構成図を示す。同図
中、レーザダイオード10より出射されたレーザ光ビー
ムはコリメータレンズ11で平行光とされた後ハーフミ
ラー12で反射される。この反射光ビームはコリメータ
レンズ13を通してミラー14で反射され再びコリメー
ターレンズ13を通り、ハーフミラー12を透過してポ
リゴンミラー16に照射される。定速回転するポリゴン
で反射された光ビームは感光ドラム17を軸方向に走査
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a schematic block diagram of the device of the present invention. In the figure, the laser light beam emitted from the laser diode 10 is collimated by the collimator lens 11 and then reflected by the half mirror 12. The reflected light beam is reflected by the mirror 14 through the collimator lens 13, passes through the collimator lens 13 again, passes through the half mirror 12, and is applied to the polygon mirror 16. The light beam reflected by the polygon that rotates at a constant speed scans the photosensitive drum 17 in the axial direction.

【0010】ミラー14の裏面はピエゾ素子20に固定
されており、ピエゾ素子20に印加する電圧に応じてミ
ラー14とコリメータレンズ13との間の距離を可変し
ており、コリメータレンズ13で光ビームを感光ドラム
17位置に収束して結像させている。
The back surface of the mirror 14 is fixed to the piezo element 20, and the distance between the mirror 14 and the collimator lens 13 is variable according to the voltage applied to the piezo element 20, and the collimator lens 13 causes the light beam to travel. Is converged on the position of the photosensitive drum 17 to form an image.

【0011】また、感光ドラム17に隣接して走査線1
8上に光検出器21が設けられている。光検出器21は
図3に示すフォトダイオード21aとフォトダイオード
22より前方位置にビームウエスト径より、小径の径8
0μm程度のピンホール23aを持つ遮光性のマスク2
3とより構成されている。つまり光検出器21はピンホ
ール23aの開口面積当りの入射光量を検出している。
光ビームはコリメータレンズ13によりビームウエスト
が感光ドラム17上となるように収束されているため、
光ビームが光検出器21上に走査するとき図4に示す光
ビームのビームウエスト位置より手前の位置Aに光検出
器21がある場合のピンホール23aからフォトダイオ
ード22に入射する光量は、ビームウエスト位置近傍に
光検出器21がある場合のピンホール23aからフォト
ダイオード22に入射する光量より少なくなる。このた
め、固定された光検出器21に対してビームウエスト位
置が後方となる図4の位置Aの位置関係では光ビームの
走査によって光検出器21出力は図5(A)に示す如く
なり、また光検出器21の位置近傍にビームウエスト位
置がある図4の位置Bの位置関係では光検出器21出力
は図5(B)に示す如くなる。
Further, the scanning line 1 is adjacent to the photosensitive drum 17.
8 is provided with a photodetector 21. The photodetector 21 has a diameter 8 smaller than the beam waist diameter in front of the photodiodes 21a and 22 shown in FIG.
Light-shielding mask 2 having a pinhole 23a of about 0 μm
It is composed of 3 and 3. That is, the photodetector 21 detects the amount of incident light per opening area of the pinhole 23a.
Since the light beam is converged by the collimator lens 13 so that the beam waist is on the photosensitive drum 17,
When the light beam scans on the photodetector 21, the amount of light entering the photodiode 22 from the pinhole 23a when the photodetector 21 is located at a position A before the beam waist position of the light beam shown in FIG. The amount of light is smaller than the amount of light incident on the photodiode 22 from the pinhole 23a when the photodetector 21 is near the waist position. Therefore, in the positional relationship of position A in FIG. 4 in which the beam waist position is behind the fixed photodetector 21, the output of the photodetector 21 becomes as shown in FIG. 5A due to the scanning of the light beam. Further, in the positional relationship of the position B in FIG. 4 where the beam waist position is near the position of the photodetector 21, the output of the photodetector 21 is as shown in FIG. 5 (B).

【0012】ここで、製造時にはミラー14とコリメー
タレンズ13との距離は最適値よりも僅かに短かく設定
し、ピエゾ素子20の劣化や光学部品の温度膨張があっ
てもビームウエスト位置が感光ドラム17の周面よりも
後方となることがないようにしている。
Here, at the time of manufacture, the distance between the mirror 14 and the collimator lens 13 is set to be slightly shorter than the optimum value, and the beam waist position is the photosensitive drum even if the piezo element 20 is deteriorated or the optical components are expanded in temperature. It is arranged so as not to be behind the peripheral surface of 17.

【0013】図1は本発明装置の要部の一実施例の構成
図を示す。同図中、光検出器21の出力する光検出信号
は制御回路30に供給される。この光検出信号は図6
(A)に示す如く、光ビームが光検出器21を走査する
毎にピークを生じる。制御回路30は上記の光検出信号
のピーク値を所定の閾値VTHと比較し、ピーク値が閾値
THを越えている場合、上記ピーク位置を基準として感
光ドラム17上の走査線18の両端部に対して中央部が
低くなる略放物線状の図6(B)に示す波形のピエゾ駆
動信号を生成して出力する。ピエゾドライブ回路31は
このピエゾ駆動信号の電力増幅を行なってピエゾ素子2
0に印加する。ピエゾ素子20は上記ピエゾ駆動信号の
電圧が低い程つまり走査線18の中央部程ミラー14を
コリメータレンズ13より離間させる方向に変位させ
る。これによってコリメータレンズ13の前焦点が長く
なり後焦点位置であるビームウエスト位置はコリメータ
レンズ13に近づいて感光ドラム17の外周面上とな
る。
FIG. 1 is a block diagram showing an embodiment of the main part of the device of the present invention. In the figure, the photodetection signal output from the photodetector 21 is supplied to the control circuit 30. This light detection signal is shown in FIG.
As shown in (A), a peak occurs each time the light beam scans the photodetector 21. The control circuit 30 compares the peak value of the light detection signal with a predetermined threshold value V TH . If the peak value exceeds the threshold value V TH , both ends of the scanning line 18 on the photosensitive drum 17 with the peak position as a reference. A piezo drive signal having a waveform shown in FIG. 6B having a substantially parabolic shape in which the central portion is lower than the central portion is generated and output. The piezo drive circuit 31 amplifies the power of the piezo drive signal and outputs the piezo element 2
Apply 0. The piezo element 20 displaces the mirror 14 away from the collimator lens 13 as the voltage of the piezo drive signal is lower, that is, in the central portion of the scanning line 18. As a result, the front focus of the collimator lens 13 becomes longer, and the beam waist position, which is the rear focus position, approaches the collimator lens 13 and is on the outer peripheral surface of the photosensitive drum 17.

【0014】また、制御回路30は光検出信号のピーク
値が閾値VTH未満の場合、このピークを基準として出力
する略放物線状のピエゾ駆動信号に所定のオフセット値
αを加算して出力する。これによってピエゾ素子20は
走査周期を通じてオフセット値αに応じた距離だけミラ
ー14をコリメータレンズ13より離間させ、これによ
ってビームウエスト位置は全体にコリメータレンズ13
に近づき、ピエゾ素子の劣化や光学部品の温度膨張等に
よるミラー面の変動を補償する。
Further, when the peak value of the light detection signal is less than the threshold value V TH , the control circuit 30 adds a predetermined offset value α to the substantially parabolic piezo drive signal output with this peak as a reference, and outputs it. As a result, the piezo element 20 separates the mirror 14 from the collimator lens 13 by a distance corresponding to the offset value α throughout the scanning cycle, so that the beam waist position is entirely covered by the collimator lens 13.
To compensate for fluctuations in the mirror surface due to deterioration of the piezo element, temperature expansion of optical components, and the like.

【0015】なお、制御回路30ではピエゾ駆動信号に
オフセット値αを加算した状態で光検出信号のピーク値
が閾値VTHを越えない場合、次の走査周期のオフセット
値αを所定量だけ増大するよう構成してもよい。
In the control circuit 30, if the peak value of the light detection signal does not exceed the threshold value V TH in the state where the offset value α is added to the piezo drive signal, the offset value α of the next scanning cycle is increased by a predetermined amount. It may be configured as follows.

【0016】図7は本発明装置の要部の変形例の構成図
を示す。同図中、図1と同一部分には同一符号を付し、
その説明を省略する。図7においてはピエゾ素子20と
ミラー14との間にピエゾ素子40を設け、ピエゾ素子
20,40夫々をピエゾドライブ装置31,41で別々
に駆動する。
FIG. 7 is a block diagram showing a modification of the essential part of the device of the present invention. In the figure, the same parts as those in FIG.
The description is omitted. In FIG. 7, a piezo element 40 is provided between the piezo element 20 and the mirror 14, and the piezo elements 20 and 40 are individually driven by the piezo drive devices 31 and 41.

【0017】光検出器21の出力する図8(A)に示す
如き光検出信号は制御回路42及び比較回路43に供給
される。制御回路42は光検出信号のピーク位置を基準
として走査線18の両端部に対して中央部が低くなる略
放物線状の図8(B)に示すピエゾ駆動信号を生成して
ピエゾドライブ回路31に供給する。上記ピエゾ素子2
0,ピエゾドライブ回路31,制御回路42の動作は図
1における光検出信号のピーク値が閾値以下の場合と同
一である。
The photodetection signal as shown in FIG. 8A output from the photodetector 21 is supplied to the control circuit 42 and the comparison circuit 43. The control circuit 42 generates a substantially parabolic piezoelectric drive signal shown in FIG. 8B in which the central portion is lower than both ends of the scanning line 18 on the basis of the peak position of the light detection signal, and the piezoelectric drive circuit 31 is generated. Supply. The piezo element 2
The operations of 0, the piezo drive circuit 31, and the control circuit 42 are the same as when the peak value of the photodetection signal in FIG.

【0018】比較回路43は光検出信号のピーク値を閾
値VYHと比較し、ピーク値が閾値V TH未満のとき図8
(C)に示す如き一定値αのピエゾ駆動信号を生成して
ピエゾドライブ回路41に供給する。ピエゾドライブ回
路41は比較回路43よりのピエゾ駆動信号を電力増幅
してピエゾ素子40に印加する。これによってミラー1
4は走査周期を通じて値αに応じた距離だけコリメータ
レンズ13より離間してミラー面の変動を補償する。
The comparison circuit 43 uses the peak value of the photodetection signal as a threshold.
Value VYHAnd the peak value is the threshold value V THWhen less than Figure 8
Generate a piezo drive signal with a constant value α as shown in (C)
It is supplied to the piezo drive circuit 41. Piezo drive times
The path 41 power-amplifies the piezo drive signal from the comparison circuit 43.
Then, the voltage is applied to the piezo element 40. This makes mirror 1
4 is a collimator at a distance corresponding to the value α throughout the scanning cycle
The lens 13 is separated from the lens 13 to compensate for variations in the mirror surface.

【0019】なお、上記実施例ではポリゴンミラー16
によって光ビームの走査を行なっているが、これはホロ
グラムディスクを用いて光ビーム走査を行なうものであ
っても良い。
In the above embodiment, the polygon mirror 16 is used.
Although the scanning of the light beam is performed by this, the scanning of the light beam may be performed by using a hologram disk.

【0020】[0020]

【発明の効果】上述の如く本発明の光走査装置によれ
ば、ミラー面の初期位置の変動を補償して光ビームの結
像位置のずれを防止でき、実用上きわめて有用である。
As described above, according to the optical scanning device of the present invention, it is possible to compensate the fluctuation of the initial position of the mirror surface and prevent the deviation of the image forming position of the light beam, which is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の要部の構成図である。FIG. 1 is a configuration diagram of a main part of a device of the present invention.

【図2】本発明装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the device of the present invention.

【図3】光検出器を示す図である。FIG. 3 is a diagram showing a photodetector.

【図4】光検出器と光ビームとの関係を示す図である。FIG. 4 is a diagram showing a relationship between a photodetector and a light beam.

【図5】光検出信号の波形図である。FIG. 5 is a waveform diagram of a light detection signal.

【図6】光検出信号及びピエゾ駆動信号の波形図であ
る。
FIG. 6 is a waveform diagram of a light detection signal and a piezo drive signal.

【図7】本発明装置の要部の構成図である。FIG. 7 is a configuration diagram of a main part of the device of the present invention.

【図8】光検出信号及びピエゾ駆動信号の波形図であ
る。
FIG. 8 is a waveform diagram of a light detection signal and a piezo drive signal.

【符号の説明】[Explanation of symbols]

10 レーザダイオード 11,13 コリメータレンズ 14 ミラー 16 ポリゴンミラー 17 感光ドラム 18 走査線 20 ピエゾ素子 21 光検出器 30 制御回路 31 ピエゾドライブ回路 10 Laser Diode 11, 13 Collimator Lens 14 Mirror 16 Polygon Mirror 17 Photosensitive Drum 18 Scan Line 20 Piezo Element 21 Photo Detector 30 Control Circuit 31 Piezo Drive Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを収束光学系(13)で収束し
回転するポリゴンミラー(16)又はホログラムディス
クに照射して走査し、かつ焦点位置可変手段(20,3
0,31)上記収束光学系の前焦点位置を走査に同期し
て可変し上記収束光学系の後焦点を走査線上とする光走
査装置において、 上記走査線上に設けられ光ビームの単位面積当りの光量
を検出する光検出器(21)と、 上記光検出器の検出光量に応じて、上記焦点位置可変手
段の可変する収束光学系の前焦点位置にオフセットを加
えるオフセット手段(30)とを有することを特徴とす
る光走査装置。
1. A focal point variable means (20, 3) for irradiating a polygon mirror (16) or a hologram disk which is converged and rotated by a converging optical system (13) with a light beam for scanning, and for changing a focal position.
0, 31) In an optical scanning device in which the front focus position of the converging optical system is changed in synchronization with scanning and the rear focal point of the converging optical system is on the scanning line, a unit area of a light beam provided on the scanning line It has a photodetector (21) for detecting the amount of light, and an offset means (30) for adding an offset to the front focus position of the converging optical system that is varied by the focus position varying means according to the amount of light detected by the photodetector. An optical scanning device characterized by the above.
JP4195608A 1992-07-22 1992-07-22 Optical scanner Withdrawn JPH0643373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195608A JPH0643373A (en) 1992-07-22 1992-07-22 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195608A JPH0643373A (en) 1992-07-22 1992-07-22 Optical scanner

Publications (1)

Publication Number Publication Date
JPH0643373A true JPH0643373A (en) 1994-02-18

Family

ID=16343993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195608A Withdrawn JPH0643373A (en) 1992-07-22 1992-07-22 Optical scanner

Country Status (1)

Country Link
JP (1) JPH0643373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579776A (en) * 2018-12-11 2020-07-08 Trw Ltd Disc brake assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579776A (en) * 2018-12-11 2020-07-08 Trw Ltd Disc brake assembly

Similar Documents

Publication Publication Date Title
JP2908657B2 (en) Semiconductor laser array recording device
US5963356A (en) Scanning optical apparatus
US5883385A (en) Multibeam scanning method and apparatus with positional adjustment features
JP2002131665A (en) Optical scanner and device and method for forming image
US5469290A (en) Two-element zoom lens for beam separation error correction
JPH09183249A (en) Light beam recording apparatus
JP4899394B2 (en) Image forming apparatus
JP2000171742A (en) Scanning optical system and scanning image pickup optical system
JP3162909B2 (en) Light beam scanning device
JP2830670B2 (en) Optical scanning device
US4833489A (en) Electrical f·θ correction system in a laser printer
JPH0132700B2 (en)
JPH0643373A (en) Optical scanner
JP3448137B2 (en) Image forming device
JP2746397B2 (en) Optical scanning device
JP2761723B2 (en) Scanning optical device
US6882404B2 (en) Scanning optical device and image forming apparatus using the same
JPH0588026B2 (en)
JP3937305B2 (en) Optical recording device
JPS61126528A (en) Photoscanning device
JP2001108930A (en) Scanning optical device and its controlling method
JP3334488B2 (en) Optical scanning device
JP2757308B2 (en) Light beam scanning optical device
JPH0497114A (en) Spot diameter adjustment device for laser scanning system
JPH1142813A (en) Scanning optical device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005