JPH0643160Y2 - Internal heat type rapid coal pyrolysis equipment - Google Patents

Internal heat type rapid coal pyrolysis equipment

Info

Publication number
JPH0643160Y2
JPH0643160Y2 JP4050890U JP4050890U JPH0643160Y2 JP H0643160 Y2 JPH0643160 Y2 JP H0643160Y2 JP 4050890 U JP4050890 U JP 4050890U JP 4050890 U JP4050890 U JP 4050890U JP H0643160 Y2 JPH0643160 Y2 JP H0643160Y2
Authority
JP
Japan
Prior art keywords
coal
gas
heat
reaction chamber
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4050890U
Other languages
Japanese (ja)
Other versions
JPH04644U (en
Inventor
健朗 佐藤
啓之 鈴木
広行 小水流
隆文 河村
路晤 ▲榊▼原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4050890U priority Critical patent/JPH0643160Y2/en
Publication of JPH04644U publication Critical patent/JPH04644U/ja
Application granted granted Critical
Publication of JPH0643160Y2 publication Critical patent/JPH0643160Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、石炭を熱分解して石炭ガス、タール、チャー
(コークス)を得るプロセスにおいて、前記石炭粉を熱
分解する内熱式石炭急速熱分解装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an internal heat type coal rapid pyrolysis for pyrolyzing coal powder in the process of pyrolyzing coal to obtain coal gas, tar and char (coke). The present invention relates to a thermal decomposition device.

(従来の技術) 石炭を熱分解して、石炭ガス、タール、チャーを生成す
るプロセスは、古くからコークス炉が知られている。ま
た、最近では塊コークスを必要とせず、タールや石炭ガ
スを必要とする場合の新しい手法が開発されている。例
えばCOEDプロセス(『これからの石炭化学工業』吉田
尚著、282頁参照)やORCプロセス(Final report on DO
E contact No.EX−76−C−01−2244,1979)があり、前
者は石炭を多段(4段)流動床で順次昇温させて熱分解
する方法であって、熱源として高温チャーを酸素で部分
燃焼して提供する方式であり、後者は、微粉炭を噴流床
で熱分解するにあたり、高温チャー(石炭量の10倍必要
とされている。)を反応器へリサイクルして熱源として
いる。これらの石炭分解プロセスでは、設備も大型であ
り運転も複雑となり、熱の供給法に問題がある。
(Prior Art) A coke oven has long been known as a process for thermally decomposing coal to produce coal gas, tar, and char. In addition, recently, a new method has been developed for the case where tar or coal gas is needed without the need for lump coke. For example, COED process ("Future coal chemical industry" Yoshida
(See page 282) and ORC process (Final report on DO
E contact No.EX-76-C-01-2244,1979), the former is a method of sequentially heating coal in a multi-stage (four-stage) fluidized bed to thermally decompose it, and high-temperature char is used as a heat source to generate oxygen. In the latter case, when pyrolyzing pulverized coal in a spouted bed, high temperature char (required 10 times the amount of coal) is recycled to the reactor as a heat source. . In these coal decomposition processes, the equipment is large, the operation is complicated, and there is a problem in the heat supply method.

これを改良するため特開平1−113491号公報には、反応
炉で熱分解した石炭より生成するガス(炭化水素や水素
を主成分)を蓄熱式熱交換炉で加熱し、これを再び反応
炉へ循環供給する方式を提示している。
In order to improve this, Japanese Patent Laid-Open No. 1-113491 discloses that a gas (hydrocarbon or hydrogen as a main component) produced from coal pyrolyzed in a reaction furnace is heated in a heat storage type heat exchange furnace, and this is again used in the reaction furnace. The method of circulating supply to is presented.

(考案が解決しようとする課題) 前記した従来の技術における石炭熱分解に際しての熱の
供給にCOEDプロセスやORCプロセスでは、高温チャーを
大量に使用しているが、この大量の高温チャーをハンド
リングして搬送する点に難点があり、また特開平1−11
3491号公報記載の技術では、リサイクルガスの熱交換時
に炭化水素の分解により煤(カーボン)発生の問題があ
り、この対策が必要となる。
(Problems to be solved by the invention) Although a large amount of high-temperature char is used in the COED process and the ORC process for supplying heat during coal pyrolysis in the above-described conventional technology, this large amount of high-temperature char is handled. There is a problem in that it is conveyed as a whole, and it is also difficult to carry it out.
In the technique described in Japanese Patent No. 3491, there is a problem that soot (carbon) is generated due to decomposition of hydrocarbons during heat exchange of recycled gas, and a countermeasure against this is required.

本考案は反応室に直接分解ガス又はチャー等の熱源を供
給する前記の問題を解決するものであって、間接加熱方
法を採用して極めて簡単な設備で石炭粉を急速に熱分解
する装置を提供することを目的とする。
The present invention solves the above-mentioned problem of directly supplying a heat source such as decomposition gas or char to a reaction chamber, and employs an indirect heating method to rapidly pyrolyze coal powder with a very simple facility. The purpose is to provide.

(課題を解決するための手段) 上記目的を達成するため、本考案の要旨は、 (1)上部に分散ガス供給室を有し、石炭供給管を連通
する熱分解反応室を設けた石炭熱分解装置において、前
記熱分解反応室内に耐熱性加熱管を配設したことを特徴
とする内熱式石炭急速熱分解装置。
(Means for Solving the Problems) In order to achieve the above object, the gist of the present invention is: (1) Coal heat having a dispersion gas supply chamber in the upper part and a pyrolysis reaction chamber communicating with a coal supply pipe. In the decomposing device, a heat resistant heating pipe is provided in the pyrolysis reaction chamber, and an internal heat rapid coal pyrolysis device is provided.

(2)熱分解反応室内に配設した耐熱性加熱管がセラミ
ックスあるいは耐熱鋼よりなることを特徴とする前項1
記載の内熱式石炭急速熱分解装置である。
(2) The heat-resistant heating tube disposed in the pyrolysis reaction chamber is made of ceramics or heat-resistant steel
It is an internal heat type rapid coal pyrolysis apparatus described.

第3図は生成ガス循環方式における在来の石炭を加熱分
解する反応炉を示す。すなわち、熱分解反応室1の上方
に分解加熱ガス供給室2を設けると共に、粉炭流入管3
が前記反応室1に開口している。4は隔壁であり、加熱
ガス噴出口5を設けている。6は分解加熱ガス供給管で
あり、該供給管6には、反応室1より生成した石炭分解
ガスを熱交換器7を通して、顕熱を回収した後タール・
チャー回収系(図示せず)に導き、更にそのガスの一部
を蓄熱式交換炉(図示せず)で再加熱(1000℃近傍)し
て導入される。供給管6からの分解加熱ガスは、供給室
2の隔壁4に設けられた噴出口5より反応室1へ噴出さ
れ、石炭流入管3より供給される粉炭7を加熱分解す
る。発生した生成ガスは前記の通り循環使用される。
FIG. 3 shows a reactor for thermally decomposing conventional coal in a produced gas circulation system. That is, the decomposition heating gas supply chamber 2 is provided above the thermal decomposition reaction chamber 1, and the pulverized coal inflow pipe 3 is provided.
Open to the reaction chamber 1. Reference numeral 4 is a partition wall provided with a heating gas jet port 5. Reference numeral 6 denotes a decomposition heating gas supply pipe through which a coal decomposition gas generated from the reaction chamber 1 is passed through a heat exchanger 7 to recover sensible heat and tar.
It is introduced into a char recovery system (not shown), and part of the gas is reheated (near 1000 ° C.) in a heat storage type exchange furnace (not shown) and introduced. The decomposition heating gas from the supply pipe 6 is ejected into the reaction chamber 1 from the ejection port 5 provided in the partition wall 4 of the supply chamber 2, and thermally decomposes the pulverized coal 7 supplied from the coal inflow pipe 3. The generated product gas is recycled as described above.

本考案は第1図および第2図に示すように、第3図に示
した在来の装置を改良している。すなわち、第1図は石
炭粉加熱分解反応炉の天井8および隔壁4を貫通して、
反応室1へ延びる加熱管9を設けている。加熱管9は、
2重構造としており、内側9−1から流入したガスが外
側9−2を通って排出するようになっており(この逆で
あってもよいことは勿論)、反応炉1の広さに応じ、す
なわち、流入管3より流入する粉炭7に均一に伝達する
ように設備本数が選ばれる。また、該加熱管9は、セラ
ミックスあるいは耐熱鋼で形成される。第2図は、反応
室1の側壁10を一方から他方へ水平に貫通する加熱管11
を設けており、構成材料、設置本数は第1図と同様であ
るが、2重構造とする必要はない。また、反応炉内を転
回あるいは蛇行する方式としてもよい。
The present invention improves upon the conventional device shown in FIG. 3 as shown in FIGS. That is, FIG. 1 penetrates the ceiling 8 and the partition wall 4 of the coal powder thermal decomposition reactor,
A heating tube 9 extending to the reaction chamber 1 is provided. Heating tube 9
It has a double structure in which the gas flowing from the inner side 9-1 is discharged through the outer side 9-2 (or vice versa), depending on the size of the reactor 1. That is, the number of facilities is selected so as to be uniformly transmitted to the pulverized coal 7 flowing in from the inflow pipe 3. The heating tube 9 is made of ceramics or heat resistant steel. FIG. 2 shows a heating pipe 11 that horizontally penetrates the side wall 10 of the reaction chamber 1 from one side to the other side.
The construction material and the number of installation are the same as those in FIG. 1, but it is not necessary to have a double structure. Further, a method of turning or meandering in the reaction furnace may be adopted.

ガス供給室2と反応室1を区切る隔壁には、ガス供給室
2より反応室1へガスを噴出する円形噴出口5が穿設さ
れているが、この噴出口は、第2図に示すようなスリッ
ト状の連続あるいは非連続の通孔であってもよい。また
反応室1への開口は、中心部に向って、しかも、中心部
での噴出ガス焦点が、粉炭供給口よりあまり遠くならな
いような傾斜をもって設けることが好ましい。
A circular jet port 5 for jetting a gas from the gas supply chamber 2 to the reaction chamber 1 is formed in a partition wall separating the gas supply chamber 2 and the reaction chamber 1. The jet port is as shown in FIG. It may be a slit-shaped continuous or discontinuous through hole. Further, it is preferable that the opening to the reaction chamber 1 is provided so as to be directed toward the center and be so inclined that the jet gas focus at the center is not far from the pulverized coal supply port.

本考案の反応炉1内には、石炭粉流入管3より粉炭が供
給され、反応炉内へ分散する。反応炉内での分散は、ガ
ス噴出口5から噴出されるガスによってほぼ均一になさ
れる。噴出ガスは、特別なガスを使用する必要はなく、
粉炭の分解反応に影響を与えなければ、自由に選択でき
るし、比較的低温ガスであってもよい。また粉炭の流入
に際しては、固気比(kg−石炭/kg−輸送ガス)を高く
すると石炭と同伴する輸送(流入)ガス量が少くなり、
加熱の負担が減るので好ましい。
Pulverized coal is supplied from the coal powder inflow pipe 3 into the reaction furnace 1 of the present invention and dispersed into the reaction furnace. Dispersion in the reaction furnace is made substantially uniform by the gas ejected from the gas ejection port 5. It is not necessary to use a special gas as the jet gas,
As long as it does not affect the decomposition reaction of pulverized coal, it can be freely selected and a relatively low temperature gas may be used. In addition, when inflowing pulverized coal, increasing the solid-gas ratio (kg-coal / kg-transport gas) reduces the amount of transport (inflow) gas entrained with coal,
This is preferable because the burden of heating is reduced.

反応室1で分散した粉炭7は、(50メッシュ〔300μ
m〕以下が80%以上であれば問題がないが、1mm程度に
なると生成分に変動が見られるので、あまり粗くしない
方がよい。)700〜900℃に加熱管11で間接加熱され、熱
分解する。
The pulverized coal 7 dispersed in the reaction chamber 1 is (50 mesh [300 μ
There is no problem if m] or less is 80% or more, but fluctuations can be seen in the produced amount at about 1 mm, so it is better not to make it too rough. ) It is indirectly heated to 700 to 900 ℃ by the heating pipe 11 and pyrolyzed.

加熱管11は反応炉で発生した自己発生熱分解ガス、LP
G、LNG、高炉ガス、転炉ガスを単独又は混合したものを
燃料として空気を混合し、燃焼させたガスを供給して前
記雰囲気温度よりやや高めに加熱される。この際反応室
1は高圧で運転される場合があり、ガスのリークが起こ
らないように、加熱管11内の圧力を反応室1と等圧にす
る必要がある。また、反応室内で圧力変動が高くなる
と、加熱管自身の長手方向で燃焼ガスの流れに伴う圧力
分布が存在することにより、両者の間で均圧を保ったと
しても、ガスリークが発生することがある。
The heating pipe 11 is a self-generated pyrolysis gas generated in the reactor, LP
G, LNG, blast furnace gas, or converter gas is used alone or as a fuel, air is mixed, and burned gas is supplied to heat the atmosphere to a temperature slightly higher than the ambient temperature. At this time, the reaction chamber 1 may be operated at a high pressure, and it is necessary to make the pressure inside the heating pipe 11 equal to that of the reaction chamber 1 so that gas leakage does not occur. Further, when the pressure fluctuation in the reaction chamber becomes high, there is a pressure distribution along with the flow of the combustion gas in the longitudinal direction of the heating tube itself, so that a gas leak may occur even if the pressure equalization is maintained between the two. is there.

この場合、加熱管→反応室へのリークは、ある程度許容
されるが、逆のケースは、可燃性の石炭ガスが加熱管内
のへ侵入し、空燃比に影響すること、およびガスリーク
と同時に石炭の微粉が混入することの2つの理由で好ま
しくない。
In this case, a leak from the heating pipe to the reaction chamber is allowed to some extent, but in the opposite case, flammable coal gas enters the heating pipe and affects the air-fuel ratio, and at the same time as gas leak, coal It is not preferable for two reasons that fine powder is mixed.

このために、加熱管側圧力を、反応室内圧に比べて若干
高めて操業し、最高0.05kg/cm2の差をもたせておくこと
が好ましい。このような圧力調整には、反応室、加熱
管、に内部圧力検出手段を設けておくとよい。
For this reason, it is preferable that the pressure on the heating tube side be slightly higher than the pressure in the reaction chamber during the operation so that the maximum difference is 0.05 kg / cm 2 . For such pressure adjustment, it is advisable to provide an internal pressure detecting means in the reaction chamber and the heating tube.

(実施例) 第1図の装置において石炭流100kg/HR(石炭分析値を第
1表に示す)を管3内に窒素ガスをもって気流搬送し炉
1内に吹きこんだ。この時の窒素ガス量は約2kg/HRであ
った。炉内での石炭流の分散を良くするために、ノズル
5よりこの炉で発生した石炭熱分解ガス40Nm3/HRを石炭
流に対して45°の角度で吹きつけた。
(Example) In the apparatus shown in FIG. 1, a coal flow of 100 kg / HR (coal analysis values are shown in Table 1) was carried in a pipe 3 with nitrogen gas and blown into the furnace 1. The amount of nitrogen gas at this time was about 2 kg / HR. To improve the dispersion of the coal flow in the furnace, 40 Nm 3 / HR of coal pyrolysis gas generated in this furnace was blown from the nozzle 5 at an angle of 45 ° to the coal flow.

石炭流は直径50cmの炉内1を降下してゆく中途で、加熱
管11(3本)によって急速加熱され、熱分解を受ける。
加熱管11は外径約10cm、炉内長さ2mの炭化ケイ素を主成
分とするセラミックで製造されたラジアントチューブで
あって、9−1に示した内管を、空気と石炭分解ガス
(5500Kcal/Nm3)の燃焼ガスが通過し、(バーナーは図
示されていない)先端でUターンし外径9−2より排出
される。外管9−2の後には図示されていないレキュペ
レータがあり、燃焼排ガスと燃焼空気とが熱交換され
る。
The coal flow is rapidly heated by the heating pipes 11 (three) while being lowered in the furnace 1 having a diameter of 50 cm, and undergoes thermal decomposition.
The heating tube 11 is a radiant tube having an outer diameter of about 10 cm and a furnace length of 2 m, which is manufactured from a ceramic containing silicon carbide as a main component. The inner tube shown in 9-1 is replaced with air and coal decomposition gas (5500 Kcal). / Nm 3 ) of the combustion gas passes through, makes a U-turn at the tip (burner not shown), and is discharged from the outer diameter 9-2. There is a recuperator (not shown) behind the outer pipe 9-2, and heat exchange is performed between the combustion exhaust gas and the combustion air.

燃焼量は加熱管3本で4.55Nm3/HR(2500Kcal/HR)でこ
の熱量は、石炭を常温から900℃まで昇温する熱量の約
半分であった。
The combustion amount was 4.55 Nm 3 / HR (2500 Kcal / HR) with three heating tubes, and this heat amount was about half of the heat amount for raising coal from normal temperature to 900 ° C.

この加熱管11の表面温度は約1400℃に達していること
が、別の実験によって測定された。しかし炉出側の熱交
換器直上部において、流下するチャーガスの温度は880
℃と検出された。加熱管11表面に石炭チャーの付着はほ
とんど見られなかったが、これは表面温度が高いことに
よるものである。これに反して炉1の内壁は、温度がや
や低いためチャーの成長もある程度見られたが、一定時
間経過後に成長は停止した。
It was measured by another experiment that the surface temperature of the heating tube 11 reached about 1400 ° C. However, the temperature of the char gas flowing down is 880 just above the heat exchanger on the exit side of the furnace.
℃ was detected. Almost no adhesion of coal char was observed on the surface of the heating pipe 11, but this is due to the high surface temperature. On the contrary, the inner wall of the furnace 1 showed some growth of char because the temperature was slightly low, but the growth stopped after a certain period of time.

この加熱管11とバーナー金属部とはセラミック〜金属の
接合でありリークの可能性を皆無にすることはできな
い。そのためチューブ内部は常時炉内圧より200mmAg高
めになるよう、燃焼空気圧、可燃ガス圧を制御した。
The heating tube 11 and the burner metal part are a ceramic-metal joint, and the possibility of leakage cannot be eliminated. Therefore, the combustion air pressure and combustible gas pressure were controlled so that the pressure inside the tube was always higher than the furnace pressure by 200 mmAg.

この結果接合部から燃焼ガスの炉内へのリークは多少発
生したが炉内から加熱管11へのガスリークは防止し得
た。
As a result, some leakage of combustion gas into the furnace from the joint occurred, but gas leakage from the inside of the furnace to the heating pipe 11 could be prevented.

この熱分解の結果の生成ガス、チャー、タールの転換率
およびガスの成分を第2表及び第3表に示した。
Tables 2 and 3 show the conversion rates of the produced gas, char and tar and the gas components as a result of this thermal decomposition.

(考案の効果) 以上説明したように、本考案によれば簡単な設備で石炭
を分解して反応生成物を得ることができ、従来の循環系
に煤発生によるトラブルによる操業の停止等を起こすこ
とがなく、効率よい運転ができる。
(Effect of the Invention) As described above, according to the present invention, the reaction product can be obtained by decomposing coal with simple equipment, and the operation is stopped due to the trouble caused by soot generation in the conventional circulation system. It is possible to operate efficiently.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本考案装置の一部を断面にした実
施例を示す図、第3図は在来の装置を示す図である。 1:熱分解応室,2:加熱ガス供給室,3:粉炭流入管,4:隔壁,
6:加熱ガス噴出口,7:粉炭,8:天井,9:加熱管,10:側壁
1 and 2 are views showing an embodiment in which a part of the device of the present invention is shown in section, and FIG. 3 is a view showing a conventional device. 1: Pyrolysis chamber, 2: Heating gas supply chamber, 3: Pulverized coal inflow pipe, 4: Partition wall,
6: Heating gas outlet, 7: Pulverized coal, 8: Ceiling, 9: Heating tube, 10: Side wall

───────────────────────────────────────────────────── フロントページの続き (72)考案者 河村 隆文 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式会社第三技術研究所内 (72)考案者 ▲榊▼原 路晤 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式会社第三技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takafumi Kawamura Inventor Takafumi Kawamura Kitakyushu City 1-1-1 Edami, Hachimanto-ku, Nippon Steel Co., Ltd. 3rd Technical Research Laboratories, Nippon Steel Co., Ltd. 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu, Japan

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】上部に分散ガス供給室を有し、石炭供給管
を連通する熱分解反応室を設けた石炭熱分解装置におい
て、前記熱分解反応室内に耐熱性加熱管を配設したこと
を特徴とする内熱式石炭急速熱分解装置。
1. A coal pyrolysis apparatus having a dispersion gas supply chamber in the upper part and a pyrolysis reaction chamber communicating with a coal supply pipe, wherein a heat resistant heating pipe is provided in the pyrolysis reaction chamber. The feature is an internal heat type rapid coal pyrolysis system.
【請求項2】熱分解反応室内に配設した耐熱性加熱管が
セラミックスあるいは耐熱鋼よりなることを特徴とする
請求項1記載の内熱式石炭急速熱分解装置。
2. The rapid thermal decomposition apparatus for internal combustion coal according to claim 1, wherein the heat-resistant heating pipe arranged in the pyrolysis reaction chamber is made of ceramics or heat-resistant steel.
JP4050890U 1990-04-16 1990-04-16 Internal heat type rapid coal pyrolysis equipment Expired - Lifetime JPH0643160Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4050890U JPH0643160Y2 (en) 1990-04-16 1990-04-16 Internal heat type rapid coal pyrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4050890U JPH0643160Y2 (en) 1990-04-16 1990-04-16 Internal heat type rapid coal pyrolysis equipment

Publications (2)

Publication Number Publication Date
JPH04644U JPH04644U (en) 1992-01-07
JPH0643160Y2 true JPH0643160Y2 (en) 1994-11-09

Family

ID=31550357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4050890U Expired - Lifetime JPH0643160Y2 (en) 1990-04-16 1990-04-16 Internal heat type rapid coal pyrolysis equipment

Country Status (1)

Country Link
JP (1) JPH0643160Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180734A (en) * 2008-06-11 2015-10-15 コルトゥス アーベー Method and apparatus for producing synthetic gas
JP2018517818A (en) * 2015-06-05 2018-07-05 ウ.テ.イ.ア.−エバリュアシオン テクノロジク,アンジェニリ エ アプリカシオン Cracking furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180734A (en) * 2008-06-11 2015-10-15 コルトゥス アーベー Method and apparatus for producing synthetic gas
JP2018517818A (en) * 2015-06-05 2018-07-05 ウ.テ.イ.ア.−エバリュアシオン テクノロジク,アンジェニリ エ アプリカシオン Cracking furnace
JP2020037711A (en) * 2015-06-05 2020-03-12 ウ.テ.イ.ア.−エバリュアシオン テクノロジク,アンジェニリ エ アプリカシオン Cracking furnace

Also Published As

Publication number Publication date
JPH04644U (en) 1992-01-07

Similar Documents

Publication Publication Date Title
CN101297157B (en) Low-nitrogen oxide combustion technique, device and uses
US4073871A (en) Joint combustion of off-gases and liquid residues containing chlorinated hydrocarbons with hydrochloric acid recovery
US9295961B2 (en) Various methods and apparatuses for internally heated radiant tubes in a chemical reactor
RU2679069C1 (en) METHOD FOR BURNING WITH LOW NOx EMISSION
US4259081A (en) Process of calcining limestone in a rotary kiln
US9458397B2 (en) Method and equipment for producing synthesis gas
JPH0643160Y2 (en) Internal heat type rapid coal pyrolysis equipment
RU2657561C2 (en) Method for combustion of low-grade fuel
US9309464B2 (en) Method and equipment for producing coke during indirectly heated gasification
CN213334398U (en) Hazardous waste pyrolysis incineration system
CN114045373A (en) Gas-based shaft furnace direct reduction method
CN113614049A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment
JPH0114271B2 (en)
JP2774923B2 (en) High-temperature carbonized gas heating method and apparatus in vertical type continuously formed coke manufacturing equipment
JPH03294788A (en) Removal of generated carbon in heat accumulation type heat exchanger for heating gas containing hydrocarbon
CN107338074A (en) A kind of fluidized gasification system for preparing high heating value biological fuel gas and its application
CN105693449A (en) Method and system for generating acetylene and synthesis gas by partial oxidation of methane containing gaseous hydrocarbon
JPH01313590A (en) Apparatus for decomposing and removing tar
CN117757497A (en) External heat vertical continuous coal pyrolysis-gasification device and co-production system
CN113614048A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment and heat exchanger
CN117567051A (en) Zero-emission lime-gas combined preparation method
JPH11293309A (en) Blasting tuyere
JPH03294790A (en) Operation of heat accumulation type heat exchanger for hot heating gas containing hydrocarbon
JPS58167677A (en) Decoking method for pipings through which crude coke oven gas passes
JPH054924B2 (en)