JPH0643150A - Method for determining component in urine - Google Patents

Method for determining component in urine

Info

Publication number
JPH0643150A
JPH0643150A JP3154134A JP15413491A JPH0643150A JP H0643150 A JPH0643150 A JP H0643150A JP 3154134 A JP3154134 A JP 3154134A JP 15413491 A JP15413491 A JP 15413491A JP H0643150 A JPH0643150 A JP H0643150A
Authority
JP
Japan
Prior art keywords
mha
eluent
alcohol
urine
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3154134A
Other languages
Japanese (ja)
Inventor
Hitoshi Uemori
森 仁 志 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP3154134A priority Critical patent/JPH0643150A/en
Publication of JPH0643150A publication Critical patent/JPH0643150A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To determine hippuric acid (HA), 0-methyl hippuric acid (MHA), m-MHA, P-MHA, and mandel acid (MA) in urine rapidly and simply using an aqueous solution containing a specific aqueous solution alcohol as an elutant. CONSTITUTION:The HA, o-MHA, m-MHA, p-MHA, and MA inside urine are determined using an aqueous solution containing an aqueous alcohol with two or more carbons as an elutant by a high-speed liquid chromatography (HPLC) using a column where octadecyl silica gel (ODS) is filled. Examples of aqueous solution alcohol with two or more carbons are ethyl alcohol, isopropyl alcohol etc. The concentration inside the elutant of alcohol is normally 2-20V/V%. Urine which is diluted by water and alcohol is poured into the HPLC device in that the column where ODS is filled and which is balanced by the elutant is fitted, the elutant is allowed to flow at a specific temperature and flow rate, and then the peak of HA, etc., to be exuded is detected by an ultraviolet spectrophotometer, etc. The concentration of HA, etc., inside the specimen is determined by fitting to the concentration of the HA, etc., and the calibration curve of the peak area which are created previously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速液体クロマトグラ
フィ(以下、HPLCと略記する。)を利用した、尿中
の馬尿酸、o-メチル馬尿酸、m-メチル馬尿酸、p-メチル
馬尿酸及びマンデル酸の定量方法に関する。
TECHNICAL FIELD The present invention relates to urinary hippuric acid, o-methylhippuric acid, m-methylhippuric acid, p-methylhippuric acid using high performance liquid chromatography (hereinafter abbreviated as HPLC). And a method for quantifying mandelic acid.

【0002】[0002]

【発明の背景】トルエン、キシレン、スチレン等の有機
溶剤取扱作業に従事する作業者の健康管理を目的とし
て、これら有機溶剤が生体内に吸収された後の代謝産物
である馬尿酸(トルエンの代謝産物、以下、HAと略記
する。)、メチル馬尿酸(キシレンの代謝産物、以下、
MHAと略記する。o-体、m-体及びp-体あり。)及びマ
ンデル酸(スチレンの代謝産物、以下、MAと略記す
る。)の尿中排泄濃度の定量が行われている。
BACKGROUND OF THE INVENTION For the purpose of health management of workers engaged in the work of handling organic solvents such as toluene, xylene and styrene, hippuric acid (metabolism of toluene, which is a metabolite after metabolization of these organic solvents in vivo) Product, hereinafter abbreviated as HA), methylhippuric acid (metabolite of xylene, hereinafter,
Abbreviated as MHA. There are o-body, m-body and p-body. ) And mandelic acid (metabolite of styrene, hereinafter abbreviated as MA) in the urine are quantified.

【0003】このための定量方法としては、m-MHAと
p-MHAとを効率良く分離するためにβ-シクロデキス
トリン(以下、β-CDと略記する。)を添加した溶離
液を用いて、オクタデシルシリカゲル(ODS)を充填
したカラムを装着したHPLC装置を利用して行う方法
が現在の主流となっている(高田ら、第34回液体クロマ
トグラフィ研究会講演要旨集、131頁、1991。)。
As a quantitative method for this, m-MHA and
An HPLC apparatus equipped with a column packed with octadecyl silica gel (ODS) using an eluent to which β-cyclodextrin (hereinafter abbreviated as β-CD) was added in order to efficiently separate p-MHA. The method using the method is the mainstream at present (Takada et al., Proc. Of the 34th Liquid Chromatography Research Society, 131, 1991).

【0004】この方法は、HA、o-MHA、m-MHA、
p-MHA及びMAを同時に定量し得る方法ではあるが、
溶離液中に含有されたβ-CDがカラムの耐久性を低下
させるため同一カラムにより処理し得る検体数が500検
体程度と少ないことや、β-CDの溶解度が低いため溶
離液の調製に手間が掛かること、更には溶離液中の有機
溶媒濃度を高くするとβ-CDが経時的に沈殿する等の
問題点を有しており、必ずしも満足できるものではなか
った。
This method uses HA, o-MHA, m-MHA,
Although it is a method that can simultaneously quantify p-MHA and MA,
The β-CD contained in the eluent decreases the durability of the column, so the number of samples that can be processed by the same column is as small as about 500, and the solubility of β-CD is low, so it is troublesome to prepare the eluent. However, there is a problem that β-CD precipitates over time when the concentration of the organic solvent in the eluent is increased, which is not always satisfactory.

【0005】また、上記した如き問題点を解決するため
に、HPLC用カラムの充填剤としてODSの代りにセ
ラミックカーボンを使用して尿中のHA、o-MHA、m-
MHA、p-MHA及びMAを定量する方法が報告されて
いる(小沢ら、クロマトグラフィ、第11巻、76頁、199
0。)。しかしながら、この方法も、検出感度が低いこ
とやピークの形状が悪いことに起因して定量性がそれほ
ど良好とは言えないこと、HA、o-MHA、m-MHA、
p-MHA及びMAを同時に定量することができないこ
と、ODSを使用した場合に比較してカラムのコストが
高く臨床検査に於いて利用するには経済的ではないこと
等の問題点を有しており、更なる改良が求められている
現状にある。
Further, in order to solve the above-mentioned problems, ceramic carbon is used instead of ODS as a packing material for a column for HPLC, and HA, o-MHA, m- in urine is used.
A method for quantifying MHA, p-MHA and MA has been reported (Ozawa et al., Chromatography, Vol. 11, p. 76, 199).
0. ). However, this method is not so good in quantification due to low detection sensitivity and poor peak shape. HA, o-MHA, m-MHA,
It has the problems that p-MHA and MA cannot be quantified at the same time, the cost of the column is higher than when ODS is used, and it is not economical to use in clinical tests. However, the present situation is that further improvement is required.

【0006】[0006]

【発明の目的】本発明は、上記した如き状況に鑑みなさ
れたもので、HPLCを利用して尿中のHA、o-MH
A、m-MHA、p-MHA及びMAを定量する方法に於い
て、β-CDを使用することなしに、迅速、簡便且つ経
済的に上記した如き尿中成分を定量し得る方法を提供す
ることをその目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and utilizes HA and o-MH in urine by using HPLC.
Provided is a method for quantifying A, m-MHA, p-MHA, and MA, which can rapidly, simply and economically quantify the above-mentioned urinary components without using β-CD. That is the purpose.

【0007】[0007]

【発明の構成】本発明は、ODSを充填したカラムを使
用したHPLCにより尿中のHA、o-MHA、m-MH
A、p-MHA及びMAを定量する方法に於いて、溶離液
として炭素数2以上の水溶性アルコールを含んでなる水
溶液を使用することを特徴とする尿中のHA、o-MH
A、m-MHA、p-MHA及びMAの定量方法である。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, urinary HA, o-MHA, m-MH was analyzed by HPLC using a column packed with ODS.
In the method for quantifying A, p-MHA and MA, HA, o-MH in urine characterized by using an aqueous solution containing a water-soluble alcohol having 2 or more carbon atoms as an eluent
A method for quantifying A, m-MHA, p-MHA and MA.

【0008】即ち、本発明者らは、ODSを充填したカ
ラムを使用したHPLCにより尿中のHA、o-MHA、
m-MHA、p-HMA及びMA(以下、単にHA等と略記
する。)を定量する方法に於いて、β-CDを添加した
溶離液を使用することなく、尿中のHA等を迅速、簡便
且つ経済的に定量し得る方法を求めて鋭意研究を重ねた
結果、アセトニトリルやメチルアルコールと言った通常
HPLC用の溶離液中に添加される有機溶媒の代りに炭
素数2以上の水溶性アルコールを添加した溶離液を使用
してHA等の定量を行った場合には、β-CDを使用し
なくとも尿中のHA等を同時に、迅速に且つ簡便にしか
も再現性良く定量し得ることを見出し本発明を完成する
に至った。
That is, the inventors of the present invention analyzed HA, o-MHA, urinary urine by HPLC using a column packed with ODS.
In a method for quantifying m-MHA, p-HMA and MA (hereinafter simply abbreviated as HA etc.), HA etc. in urine can be rapidly measured without using an eluent containing β-CD. As a result of intensive studies for a method that can be easily and economically quantified, a water-soluble alcohol having 2 or more carbon atoms instead of an organic solvent such as acetonitrile or methyl alcohol which is usually added to an eluent for HPLC. When HA and other substances are quantified using an eluent containing, it is possible to quantify HA and other substances in urine at the same time quickly, easily and with good reproducibility without using β-CD. Heading The present invention has been completed.

【0009】本発明に係る溶離液に使用される炭素数2
以上の水溶性アルコールとしては、炭素数2以上であっ
て、必要な濃度範囲で水中に均一に溶解するアルコール
であれば特に限定することなく挙げられるが、具体的に
は例えばエチルアルコール,n-プロピルアルコール,イ
ソプロピルアルコール,n-ブチルアルコール,tert-ブ
チルアルコール等が好ましく挙げられ、中でもイソプロ
ピルアルコールはUVの領域での吸収が少なく、臭いも
さほど強くなく、更にm-MHAとp-MHAのピークの分
離度も良好であるので特に好ましく挙げられる。
2 carbon atoms used in the eluent according to the present invention
The above water-soluble alcohol is not particularly limited as long as it has 2 or more carbon atoms and can be uniformly dissolved in water in a necessary concentration range. Specific examples include ethyl alcohol and n- Propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol, etc. are preferably mentioned. Among them, isopropyl alcohol has little absorption in the UV region, does not have a strong odor, and has peaks of m-MHA and p-MHA. Since the separation degree of is also good, it is particularly preferable.

【0010】これら本発明に係る上記した如き水溶性ア
ルコールの使用量としては、使用する水溶性アルコール
の種類によって自ずから異なるが、溶離液中の濃度とし
て通常2〜20V/V%、好ましくは5〜15V/V%、より好ま
しくは6〜12V/V%の範囲が挙げられる。また、上記し
た如き本発明に於いて用いられる水溶性アルコールは、
単独で用いても或は適宜組み合わせて用いても何れにて
もよく、組み合わせて用いる場合のこれらの溶離液中の
濃度としてはその合計が上記した如き濃度範囲となるよ
うに適宜選択すればよい。
The amount of the above-mentioned water-soluble alcohol according to the present invention to be used naturally varies depending on the type of the water-soluble alcohol used, but the concentration in the eluent is usually 2 to 20 V / V%, preferably 5 to The range is 15 V / V%, more preferably 6 to 12 V / V%. Further, the water-soluble alcohol used in the present invention as described above,
They may be used alone or may be used in combination as appropriate, and when used in combination, the concentrations in these eluents may be appropriately selected so that the total thereof falls within the concentration range as described above. .

【0011】尚、HA等の分離能という観点から判断す
れば、例えばテトラヒドロフラン,1,4-ジオキサン等の
環状エーテル類、例えばアセトン,メチルエチルケトン
等のケトン類、例えば酢酸エチル等のエステル類等も使
用可能であるが、これらの溶媒はUV領域に比較的強い
吸収を有しているので、HA等の定量に用いるには好ま
しいものとは言い難い。
From the viewpoint of the ability to separate HA and the like, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate are also used. Although possible, these solvents have relatively strong absorption in the UV region, and therefore are not preferable for use in quantitative determination of HA and the like.

【0012】本発明に係る溶離液中には、pHを一定に
保つために緩衝剤が含まれていることが好ましく、この
目的で用いることのできる緩衝剤としては、UV領域に
殆ど吸収を持たず、カルボン酸類のイオン化を抑制する
効果を有するものであれば特に限定されることなく挙げ
られるが、例えばリン酸塩,ホウ酸塩,過塩素酸塩等の
緩衝剤が好ましく挙げられる。また、これらの使用量と
しては、溶離液中の濃度として通常10〜500mM、好まし
くは10〜100mMの範囲が挙げられる。
The eluent according to the present invention preferably contains a buffer in order to keep the pH constant, and a buffer that can be used for this purpose has almost absorption in the UV region. However, it is not particularly limited as long as it has an effect of suppressing the ionization of carboxylic acids, and, for example, a buffering agent such as phosphate, borate, or perchlorate is preferable. The amount of these used is usually in the range of 10 to 500 mM, preferably 10 to 100 mM as the concentration in the eluent.

【0013】また、該溶離液のpHとしては、目的のH
A等の定量に影響を与えない範囲であれば特に限定され
ないが、通常2.0〜4.5の範囲から適宜選択される。但
し、pH3.0付近ではHAとMAとの保持時間がほぼ同一
となってピークが重なるため、好ましくは2.0〜2.8及び
3.6〜4.5の範囲から選択される。
The pH of the eluent is the desired H
It is not particularly limited as long as it does not affect the quantification of A and the like, but is usually appropriately selected from the range of 2.0 to 4.5. However, in the vicinity of pH 3.0, the retention times of HA and MA are almost the same and the peaks overlap, so 2.0 to 2.8 and preferably
It is selected from the range of 3.6 to 4.5.

【0014】本発明に係る溶離液中には、上記した以外
にも通常この分野で用いられる溶離液中に含まれている
例えばドデシル硫酸ナトリウム(SDS),オクタンス
ルホン酸ナトリウム(SOS)等のイオンペア試薬等が
含まれていてもよく、それらの使用濃度としては通常こ
の分野で用いられる溶離液に於ける使用濃度の範囲から
適宜選択すれば足りる。
In the eluent according to the present invention, an ion pair such as sodium dodecylsulfate (SDS), sodium octanesulfonate (SOS), etc., which is usually contained in the eluent used in this field other than the above, is included. Reagents and the like may be contained, and the use concentration thereof may be appropriately selected from the range of the use concentration in the eluent usually used in this field.

【0015】尚、本発明の定量方法を実施する際の標準
としてヒト正常尿中にHA等を適宜添加して調製したも
のを使用する場合には、尿中の共存物質に基づくピーク
が測定対象であるHA等のピークと重なるのを避けるた
めに、溶離液は10〜100mMの範囲のリン酸塩等の緩衝剤
を含み且つ2.4〜2.6のpH範囲としておくことが望まし
い。
When a normal human urine prepared by appropriately adding HA or the like is used as a standard for carrying out the quantification method of the present invention, a peak due to a coexisting substance in urine is to be measured. It is desirable that the eluent contains a buffer such as phosphate in the range of 10 to 100 mM and has a pH range of 2.4 to 2.6 in order to avoid overlapping with the peak of HA and the like.

【0016】また、本発明の方法によりHA等の定量を
行う際にクレアチニンも併せて定量する場合には、クレ
アチニンをカラムに適当に保持させるために、使用する
溶離液中には上記した如きイオンペア試薬を添加する必
要があるが、この場合に使用される溶離液中のイオンペ
ア試薬の濃度としては、通常1〜15W/V%、好ましくは
2〜12W/V%の範囲から適宜選択される。但し、イオン
ペア試薬を添加した溶離液を用いた本発明の定量方法に
於いては、溶離液中のイオンペア試薬濃度並びにその他
の成分の濃度の関係によっては、クレアチニンの保持時
間と、HA等の何れかの保持時間とがほぼ同一となっ
て、HA等とクレアチニンとの同時測定が不可能となる
場合があるので注意が必要である。
When creatinine is also quantified when HA and the like are quantified by the method of the present invention, in order to properly retain creatinine in the column, the ion pair as described above is used in the eluent used. Although it is necessary to add a reagent, the concentration of the ion pair reagent in the eluent used in this case is appropriately selected from the range of usually 1 to 15 W / V%, preferably 2 to 12 W / V%. However, in the quantification method of the present invention using an eluent to which an ion pair reagent is added, depending on the relationship between the ion pair reagent concentration in the eluent and the concentrations of other components, the retention time of creatinine, HA, etc. It should be noted that the retention time may be almost the same and simultaneous measurement of HA and the like and creatinine may be impossible.

【0017】本発明の方法に於いて充填剤として用いら
れるODSとしては、通常この分野に於いて使用される
ものであれば特に限定されることなく使用することがで
きるが、以下のような物性を有するものが特に好ましく
挙げられる。
The ODS used as a filler in the method of the present invention can be used without any particular limitation as long as it is usually used in this field. Those having are particularly preferable.

【0018】即ち、比表面積が通常300〜600m2/g、好ま
しくは450〜600m2/g、細孔容量が通常0.6〜1.2ml/g、好
ましくは0.8〜1.0ml/g、細孔直径が通常50〜200オンク゛ストロ
ーム、好ましくは100オンク゛ストローム前後及び炭素含量が通常12
〜24W/W%、好ましくは20〜24W/W%であるODSが好ま
しい。
That is, the specific surface area is usually 300 to 600 m 2 / g, preferably 450 to 600 m 2 / g, the pore volume is usually 0.6 to 1.2 ml / g, preferably 0.8 to 1.0 ml / g, and the pore diameter is Usually 50 to 200 angstroms, preferably around 100 angstroms and a carbon content of 12
An ODS of -24 W / W%, preferably 20-24 W / W% is preferred.

【0019】本発明に於いて用いられるHPLC装置と
しては、通常この分野で用いられる汎用のものであれば
特に限定することなく挙げられ、その他特別な機能を備
えている必要はない。
The HPLC device used in the present invention is not particularly limited as long as it is a general-purpose device generally used in this field, and it is not necessary to have any other special function.

【0020】本発明の定量方法を実施するには、例えば
以下の如く行えばよい。即ち、上記した如きODSを充
填し、上記した如き組成の溶離液で予め平衡化したカラ
ム[通常、内径(φ)が4.0〜4.6mm、長さが150〜250mm
のステンレス製のものが用いられる。]を装着したHP
LC装置に、例えば水、20%メチルアルコール水溶液等
で50〜200倍に希釈したヒト尿(試料)を通常5〜20μl
注入した後、室温〜50℃で通常0.5〜1.5ml/min、好まし
くは0.8〜1.2ml/minの流速で該溶離液を流し、順次溶出
されるHA等のピークを例えば紫外分光光度計等の検出
装置により検出する。得られたピーク面積を、濃度既知
のHA等を含有する溶液を試料として使用して上記と同
じ試薬及びHPLC装置を用い同様の操作を行って予め
作成したHA等の濃度と得られるピーク面積との関係を
表わす検量線に当てはめることにより、試料中のHA等
の濃度を定量することができる。
To carry out the quantification method of the present invention, for example, the following may be carried out. That is, a column packed with ODS as described above and equilibrated with an eluent having the composition as described above [usually, inner diameter (φ) is 4.0 to 4.6 mm, length is 150 to 250 mm
Stainless steel is used. ] HP
Usually, 5 to 20 μl of human urine (sample) diluted 50 to 200 times with water, 20% methyl alcohol aqueous solution, etc.
After injection, the eluent is flown at room temperature to 50 ° C. at a flow rate of usually 0.5 to 1.5 ml / min, preferably 0.8 to 1.2 ml / min, and the peaks of HA and the like that are sequentially eluted are analyzed by, for example, an ultraviolet spectrophotometer. It is detected by the detection device. The obtained peak area was used as a sample using a solution containing HA or the like of known concentration as the sample, and the same operation was performed using the same reagent and HPLC apparatus as described above to obtain the concentration of HA or the like and the obtained peak area. The concentration of HA or the like in the sample can be quantified by applying it to a calibration curve representing the relationship of

【0021】本発明の方法は、尿中のHA等を同時に、
精度・再現性良く測定し得る方法であるばかりでなく、
溶離液中にβ-CDを含有していないためヒト尿を試料
とする場合であれば1,000検体以上を連続して定量した
場合でもカラムの劣化が殆ど生じないという特徴を有し
ている。
The method of the present invention is a method for simultaneously measuring HA etc. in urine,
Not only is it a method that can be measured with high accuracy and reproducibility,
Since the eluent does not contain β-CD, when human urine is used as a sample, the column is hardly deteriorated even when 1,000 or more samples are continuously quantified.

【0022】以下に実施例、比較例及び実験例を挙げ、
本発明を更に詳細に説明するが、本発明はこれらにより
何ら限定されるものではない。
The following are examples, comparative examples and experimental examples.
The present invention will be described in more detail, but the present invention is not limited thereto.

【0023】[0023]

【実施例】【Example】

実験例1.溶離液中の有機溶媒によるm-MHA及びp-M
HAの分離への影響の検討 β-CD無添加の従来の溶離液を使用してHA等を分析
した場合、m-MHAとp-MHAのピークが重なるため、
HA等を同時に測定することができなかった。そこで、
溶離液中の有機溶媒を種々のものに代えた場合、m-MH
A及びp-MHAの分離へどのような影響があるかについ
て検討を行った。 (溶離液)所定濃度の有機溶媒を含む 20mM リン酸緩衝
液(pH3.0)を溶離液として使用した。 (試料)m-MHA及びp-MHAを夫々10μg/ml含む20%
メチルアルコール水溶液を試料とした。 (操作法)予め所定の溶離液で平衡化したWakosil-II5C
18-100(和光純薬工業(株)製)を充填したカラム(φ4.
6×150mm)を装着したLC-6A型HPLC装置(島津製作所
(株)製)に試料10μlを注入し、流速1.0ml/min、温度40
℃で分析を行った。尚、m-MHA及びp-MHAの検出
は、波長210nmの吸光度の変化を測定することにより行
った。 (結果)得られた結果を図1の(1)〜(6)に示す。尚、図
1に於いて、(1)は15%アセトニトリルを含む溶離液を
使用して得られた結果を、(2)は4%tert-ブチルアルコ
ールを含む溶離液を使用して得られた結果を、(3)は10
%イソプロピルアルコールを含む溶離液を使用して得ら
れた結果を、(4)は8%n-プロピルアルコールを含む溶
離液を使用して得られた結果を、(5)は15%エチルアル
コールを含む溶離液を使用して得られた結果を、(6)は3
0%メチルアルコールを含む溶離液を使用して得られた
結果を夫々示す。また、図1の各図に於ける各番号は夫
々以下のピークを示す。 1:p-MHA、2:m-MHA。 図1の結果から明らかな如く、従来から溶離液中に添加
されていたアセトニトリルやメチルアルコールを添加し
た溶離液を使用した場合にはm-MHA及びp-MHAのピ
ークが重なるが、エチルアルコール、イソプロピルアル
コール、n-プロピルアルコール及びtert-ブチルアルコ
ールを添加した溶離液を使用した場合には、これらのピ
ークは定量が可能な程度に分離することが判る。
Experimental example 1. M-MHA and p-M due to organic solvent in the eluent
Examination of the influence on the separation of HA When HA etc. are analyzed using the conventional eluent without β-CD addition, the peaks of m-MHA and p-MHA overlap,
HA and the like could not be measured at the same time. Therefore,
When various organic solvents are used in the eluent, m-MH
The effect on the separation of A and p-MHA was examined. (Eluent) A 20 mM phosphate buffer solution (pH 3.0) containing a predetermined concentration of an organic solvent was used as an eluent. (Sample) 20% containing 10 μg / ml each of m-MHA and p-MHA
A methyl alcohol aqueous solution was used as a sample. (Procedure) Wakosil-II5C previously equilibrated with the specified eluent
Column (φ4.) Packed with 18-100 (manufactured by Wako Pure Chemical Industries, Ltd.)
LC-6A HPLC system equipped with 6 × 150 mm (Shimadzu Corporation)
(Manufactured by Co., Ltd.) with 10 μl of sample, flow rate 1.0 ml / min, temperature 40
Analysis was performed at ° C. The detection of m-MHA and p-MHA was performed by measuring the change in absorbance at a wavelength of 210 nm. (Results) The obtained results are shown in (1) to (6) of FIG. In addition, in FIG. 1, (1) was obtained using an eluent containing 15% acetonitrile, and (2) was obtained using an eluent containing 4% tert-butyl alcohol. The result is (3) is 10
The results obtained using the eluent containing% isopropyl alcohol, (4) the results obtained using the eluent containing 8% n-propyl alcohol, and (5) the 15% ethyl alcohol. The results obtained using the eluent containing (6) are 3
The results obtained using the eluent containing 0% methyl alcohol are shown respectively. Moreover, each number in each figure of FIG. 1 shows the following peaks, respectively. 1: p-MHA, 2: m-MHA. As is clear from the results shown in FIG. 1, when the eluent containing acetonitrile or methyl alcohol, which has been conventionally added to the eluent, is used, the peaks of m-MHA and p-MHA overlap with each other. It can be seen that when an eluent containing isopropyl alcohol, n-propyl alcohol and tert-butyl alcohol is used, these peaks are separated to the extent that quantification is possible.

【0024】実験例2.溶離液中に於けるイソプロピル
アルコール(以下、IPAと略記する。)の必要濃度に
ついて検討を行った。 (溶離液)所定濃度のIPAを含む 20mM リン酸緩衝液
(pH2.6)を溶離液として使用した。 (試料)HA等及びクレアチニンを夫々10μg/ml含む20
%メチルアルコール水溶液(以下、標準液と略記す
る。)を試料とした。 (操作法)測定時の温度を30℃とした以外は、実験例1
と同じカラムを使用し、実験例1と同様の操作を行っ
た。 (結果)得られた結果を図2の(1)〜(3)に示す。尚、図
2に於いて、(1)は7.5%IPAを含む溶離液を使用して
得られた結果を、(2)は10%IPAを含む溶離液を使用
して得られた結果を、(3)は12.5%IPAを含む溶離液
を使用して得られた結果を夫々示す。また、図2の各図
に於ける各番号は夫々以下のピークを示す。 1:HA、2:MA、3:o-MHA、4:クレアチニ
ン、5:p-MHA、6:m-MHA。 図2の結果から明らかな如く、m-MHA及びp-MHAの
ピークの分離の程度から、溶離液中のIPA濃度として
は、12.5%付近が上限であって、それ以下の濃度である
ことが好ましいことが判る。また、これらの結果から、
IPA濃度が低くなると測定に要する時間が長くなるの
で、溶離液中のIPA濃度は、測定に要する時間も考慮
して設定すべきものであることが判る。
Experimental Example 2. The required concentration of isopropyl alcohol (hereinafter abbreviated as IPA) in the eluent was examined. (Eluent) A 20 mM phosphate buffer solution (pH 2.6) containing a predetermined concentration of IPA was used as an eluent. (Sample) Contains HA etc. and creatinine at 10 μg / ml respectively 20
% Methyl alcohol aqueous solution (hereinafter abbreviated as standard solution) was used as a sample. (Operation method) Experimental example 1 except that the temperature at the time of measurement was 30 ° C
Using the same column as above, the same operation as in Experimental Example 1 was performed. (Results) The obtained results are shown in (1) to (3) of FIG. In FIG. 2, (1) shows the results obtained using the eluent containing 7.5% IPA, and (2) shows the results obtained using the eluent containing 10% IPA. (3) shows the results obtained using the eluent containing 12.5% IPA, respectively. Moreover, each number in each figure of FIG. 2 shows the following peaks, respectively. 1: HA, 2: MA, 3: o-MHA, 4: creatinine, 5: p-MHA, 6: m-MHA. As is clear from the results shown in FIG. 2, the upper limit of the IPA concentration in the eluent is around 12.5%, and the concentration below it can be determined from the degree of separation of the peaks of m-MHA and p-MHA. It turns out to be preferable. Also, from these results,
It can be understood that the IPA concentration in the eluent should be set in consideration of the time required for the measurement, because the lower the IPA concentration, the longer the time required for the measurement.

【0025】実験例3.溶離液のpHが測定へ与える影
響について検討を行った。 (溶離液)8.0V/V%のIPAを含む所定のpHの 20mM
リン酸緩衝液を溶離液として使用した。 (試料)実験例2と同じものを使用した。 (操作法)実験例1と同じカラムを使用し、実験例1と
同様の操作を行った。 (結果)得られた結果を図3に示す。尚、図3は、横軸
の所定のpHに於けるHA等及びクレアチニンの保持時
間を縦軸に沿ってプロットした点を測定対象夫々につい
て結んだものであり、図中、−□−はHAについての結
果を、−+−はMAについての結果を、−◇−はo-MH
Aについての結果を、−△−はm-MHAについての結果
を、−×−はp-MHAについての結果を、−▽−はクレ
アチニンについての結果を夫々示す。図3の結果から明
らかな如く、溶離液のpHが3.0付近では、HA及びMA
のピークが重なるため、目的の定量を行うことができな
いことが判る。また、図3の結果から、pHが低値にな
ると定量に要する時間が長くなり、pHが高値になると
定量に要する時間が短くなることも判る。
Experimental Example 3. The influence of the pH of the eluent on the measurement was examined. (Eluent) 20mM of specified pH containing 8.0V / V% IPA
Phosphate buffer was used as the eluent. (Sample) The same sample as Experimental Example 2 was used. (Operation method) The same operation as in Experimental Example 1 was performed using the same column as in Experimental Example 1. (Results) The obtained results are shown in FIG. Note that FIG. 3 is a graph in which retention times of HA and the like and creatinine at a predetermined pH on the abscissa are plotted along the ordinate for each measurement object, and − □ − in the figure indicates HA. About-,-+-shows about MA,-◇-shows o-MH
The result for A, -Δ- indicates the result for m-MHA, -X- indicates the result for p-MHA, and-▽-indicates the result for creatinine. As is clear from the results of FIG. 3, when the pH of the eluent was around 3.0, HA and MA
It can be seen that the target quantification cannot be performed because the peaks of 1 overlap. Further, from the results of FIG. 3, it can be understood that the time required for the quantification becomes longer when the pH is low and the time required for the quantification is shortened when the pH is high.

【0026】実施例1. (溶離液)7.5V/V%のIPA及び 10mM のSOSを含む
20mM リン酸緩衝液(pH2.6)を溶離液として使用し
た。 (試料)標準液、正常ヒト尿、及び標準液と正常ヒト尿
との混合液を試料とした。 (操作法)実験例1と同じカラムを使用し、実験例2と
同様の操作を行った。 (結果)得られた結果を図4の(1)〜(3)に示す。尚、図
4に於いて、(1)は標準液を試料として得られた結果
を、(2)は正常ヒト尿を試料として得られた結果を、(3)
は標準液と正常ヒト尿との混合液を試料として得られた
結果を夫々示す。また、図4の各図に於ける各番号は夫
々以下のピークを示す。 1:HA、2:MA、3:o-MHA、4:クレアチニ
ン、5:p-MHA、6:m-MHA。 図4の結果から明らかな如く、本発明によれば、尿中成
分の影響を受けることなくHA等及びクレアチニンの定
量を行うことができることが判る。尚、同様の定量を連
続して1000回行ったが、第1000回目の定量で得られたH
A等及びクレアチニンの保持時間及びピーク面積は、第
1回目の定量で得られたそれと同じであった。
Example 1. (Eluent) Contains 7.5V / V% IPA and 10mM SOS
20 mM phosphate buffer (pH 2.6) was used as the eluent. (Sample) A standard solution, normal human urine, and a mixed solution of the standard solution and normal human urine were used as samples. (Operation method) The same operation as in Experimental Example 2 was performed using the same column as in Experimental Example 1. (Results) The obtained results are shown in (1) to (3) of FIG. In FIG. 4, (1) shows the results obtained using the standard solution as a sample, (2) shows the results obtained using the normal human urine as the sample, (3)
Shows the results obtained by using a mixed solution of a standard solution and normal human urine as a sample. Moreover, each number in each figure of FIG. 4 shows the following peaks, respectively. 1: HA, 2: MA, 3: o-MHA, 4: creatinine, 5: p-MHA, 6: m-MHA. As is apparent from the results of FIG. 4, according to the present invention, it is possible to quantify HA and the like and creatinine without being affected by the urinary components. The same quantification was continuously performed 1000 times, but H obtained in the 1000th quantification was determined.
The retention times and peak areas of A and the like and creatinine were the same as those obtained in the first quantification.

【0027】実施例2.検量線の作成 (溶離液)8.0V/V%のIPA及び 10mM のSOSを含む
20mM リン酸緩衝液(pH2.6)を溶離液として使用し
た。 (試料)HA等又はクレアチニンを1μg/ml、5μg/m
l、10μg/ml、50μg/ml又は100μg/ml含む20%メチルア
ルコール水溶液を試料とした。 (操作法)予め所定の溶離液で平衡化したWakosil-II5C
18-100(和光純薬工業(株)製)を充填したカラム(φ4.
0×200mm)を装着したLC-6A型HPLC装置(島津製作所
(株)製)に試料10μlを注入し、流速1.0ml/min、温度40
℃で分析を行った。尚、HA等及びクレアチニンの検出
は、波長210nmの吸光度の変化を測定することにより行
った。 (結果)得られた結果を図5に示す。尚、図5は、横軸
のHA等及びクレアチニンの濃度に対して得られたピー
ク面積値を縦軸に沿ってプロットした点を結んで得られ
た検量線を示す。図中、−□−はHAの検量線を、−+
−はMAの検量線を、−◇−はo-MHAの検量線を、−
△−はm-MHAの検量線を、−×−はp-MHAの検量線
を、−▽−はクレアチニンの検量線を夫々示す。図5の
結果から明らかな如く、本発明によれば、HA等及びク
レアチニンを精度良く定量し得ることが判る。
Example 2. Preparation of calibration curve (eluent) containing 8.0V / V% IPA and 10mM SOS
20 mM phosphate buffer (pH 2.6) was used as the eluent. (Sample) HA etc. or creatinine 1 μg / ml, 5 μg / m
A 20% methyl alcohol aqueous solution containing 1, 10 μg / ml, 50 μg / ml or 100 μg / ml was used as a sample. (Procedure) Wakosil-II5C previously equilibrated with the specified eluent
Column (φ4.) Packed with 18-100 (manufactured by Wako Pure Chemical Industries, Ltd.)
LC-6A HPLC system equipped with 0 × 200mm (Shimadzu Corporation)
(Manufactured by Co., Ltd.) with 10 μl of sample, flow rate 1.0 ml / min, temperature
Analysis was performed at ° C. The HA and the like and creatinine were detected by measuring the change in absorbance at a wavelength of 210 nm. (Results) The obtained results are shown in FIG. Note that FIG. 5 shows a calibration curve obtained by connecting the points plotted along the vertical axis with the peak area values obtained for the concentrations of HA and the like and creatinine on the horizontal axis. In the figure,-□-is the HA calibration curve,-+
− Is the calibration curve of MA, − ◇ − is the calibration curve of o-MHA, −
Δ-indicates a calibration curve for m-MHA, -x-indicates a calibration curve for p-MHA, and-▽ -indicates a calibration curve for creatinine. As is clear from the results of FIG. 5, according to the present invention, HA and the like and creatinine can be accurately quantified.

【0028】実施例3.再現性の検討 (溶離液)実施例2と同じものを使用した。 (試料)HA等又はクレアチンを10μg/mlとなるように
添加した正常ヒト尿を20%メチルアルコール水溶液で10
0倍に希釈したものを試料とした。 (操作法)実施例2と同じカラムを使用し、実験例2と
同様の操作を行った。 (結果)得られた結果を表1に示す。
Example 3. Examination of reproducibility (eluent) The same one as in Example 2 was used. (Sample) Normal human urine to which 10 μg / ml of HA etc. or creatine was added was used as a 10% aqueous solution of methyl alcohol.
The sample was diluted 0-fold. (Procedure) The same column as in Example 2 was used, and the same operation as in Experimental Example 2 was performed. (Results) The results obtained are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から明らかな如く、本発明によ
ればHA等やクレアチニンを再現性良く定量し得ること
が判る。
As is clear from the results in Table 1, it is understood that HA and the like and creatinine can be quantified with good reproducibility according to the present invention.

【0031】実施例4.添加回収試験 (溶離液)実施例3と同じものを使用した。 (試料)HA等又はクレアチニンを夫々1mg/ml添加し
た正常ヒト尿を20%メチルアルコール水溶液で100倍に
希釈したものを試料とした。 (操作法)実施例2と同じカラムを使用し、実験例2と
同様の操作を行った。得られたHA等及びクレアチニン
のピーク面積を実施例3で得られた検量線に当てはめ、
試料中のHA等の濃度を定量した(n=5)。また、試
料を調製するために使用した正常ヒト尿を20%メチルア
ルコール水溶液で100倍に希釈したものを試料として上
記の操作を行い、正常ヒト尿中のHA等及びクレアチニ
ンの濃度を定量した(n=5)。得られた値に基づい
て、添加回収率を求めた結果を表2に示す。
Example 4. Addition recovery test (eluent) The same one as in Example 3 was used. (Sample) Normal human urine to which HA or the like or creatinine was added at 1 mg / ml was diluted 100 times with a 20% aqueous methyl alcohol solution to obtain a sample. (Procedure) The same column as in Example 2 was used, and the same operation as in Experimental Example 2 was performed. Fit the obtained HA etc. and the peak area of creatinine to the calibration curve obtained in Example 3,
The concentration of HA and the like in the sample was quantified (n = 5). In addition, the normal human urine used for preparing the sample was diluted 100 times with a 20% methyl alcohol aqueous solution and used as a sample to perform the above operation, and the concentrations of HA and the like and creatinine in the normal human urine were quantified ( n = 5). Table 2 shows the results of determining the addition recovery rate based on the obtained values.

【0032】[0032]

【表2】 [Table 2]

【0033】表2の結果から明らかな如く、本発明によ
ればHA等やクレアチニンを極めて精度良く定量し得る
ことが判る。
As is clear from the results in Table 2, it is understood that HA and the like and creatinine can be quantified with extremely high accuracy according to the present invention.

【0034】[0034]

【発明の効果】以上述べた如く、本発明は、従来同じ目
的で実施されていた方法に於ける種々の問題点、即ち、
例えばβ-CDを含有する溶離液を使用してHA等の定
量を行う方法に於ける、例えば溶離液中に含有されたβ
-CDがカラムの耐久性を低下させるため同一カラムに
より処理し得る検体数は500検体程度と少ないことや、
β-CDの溶解度が低いため溶離液の調製に手間が掛か
ること、更には溶離液中の有機溶媒濃度を高くするとβ
-CDが経時的に沈殿する等の問題点、或はHPLC用
カラムの充填剤としてODSの代りにセラミックカーボ
ンを利用して尿中のHA等の定量を行う方法に於ける、
例えば検出感度が低いことやピークの形状が悪いため定
量性がそれほど良くないこと、HA等を同時に定量する
ことができないこと、ODSを使用した場合に比較して
カラムのコストが高く臨床検査に於いて利用するには経
済的ではないこと等の問題点、等を全て解決した新規な
尿中のHA等の定量方法を提供するものであり、斯業に
貢献するところ大なる発明である。
As described above, the present invention has various problems in the method which has been conventionally performed for the same purpose, namely,
For example, in a method for quantifying HA etc. using an eluent containing β-CD, for example, β contained in the eluent
-Because CD reduces the durability of the column, the number of samples that can be processed by the same column is as small as about 500 samples.
Since the solubility of β-CD is low, it takes time to prepare the eluent, and if the concentration of the organic solvent in the eluent is increased, β
-In the method of quantifying HA and the like in urine by using ceramic carbon instead of ODS as a packing material for an HPLC column, such as the problem that CD precipitates with time,
For example, the detection sensitivity is low and the peak shape is poor, so the quantification is not very good, HA and the like cannot be quantified at the same time, and the cost of the column is higher than in the case where ODS is used, and in clinical examinations. The present invention provides a novel method for quantifying HA and the like in urine that solves all the problems such as not being economical to use, and it is a great invention to contribute to the art.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実験例1で得られた高速液体クロマト
グラフィ(HPLC)の結果を示す。
FIG. 1 shows the results of high performance liquid chromatography (HPLC) obtained in Experimental Example 1.

【図2】図2は、実験例2で得られたHPLCの結果を
示す。
FIG. 2 shows the results of HPLC obtained in Experimental Example 2.

【図3】図3は、実験例3で得られた、溶離液のpH
と、馬尿酸(以下、HAと略記する。)、o-メチル馬尿
酸(以下、o-MHAと略記する。)、m-メチル馬尿酸酸
(以下、m-MHAと略記する。)、p-メチル馬尿酸(以
下、p-MHAと略記する。)、マンデル酸(以下、MA
と略記する。)及びクレアチニンのピークの保持時間と
の関係を表わすグラフを示す。
FIG. 3 shows the pH of the eluent obtained in Experimental Example 3.
, Hippuric acid (hereinafter abbreviated as HA), o-methyl hippuric acid (hereinafter abbreviated as o-MHA), m-methyl hippuric acid (hereinafter abbreviated as m-MHA), p. -Methyl hippuric acid (hereinafter abbreviated as p-MHA), mandelic acid (hereinafter MA
Is abbreviated. ) And a creatinine peak retention time.

【図4】図4は、実施例1で得られたHPLCの結果を
示す。
FIG. 4 shows the results of HPLC obtained in Example 1.

【図5】図5は、実施例2で得られた、HA、o-MH
A、m-MHA、p-MHA、MA及びクレアチニンの検量
線を示す。
FIG. 5: HA, o-MH obtained in Example 2
The calibration curve of A, m-MHA, p-MHA, MA and creatinine is shown.

【符号の説明】[Explanation of symbols]

図1の各図に於ける各番号は夫々以下のピークを示す。 1:p-MHA、2:m-MHA。 図2及び図4の各図に於ける各番号は夫々以下のピーク
を示す。 1:HA、2:MA、3:o-MHA、4:クレアチニ
ン、5:p-MHA、6:m-MHA。 図3に於いて、−□−はHAについての結果を、−+−
はMAについての結果を、−◇−はo-MHAについての
結果を、−△−はm-MHAについての結果を、−×−は
p-MHAについての結果を、−▽−はクレアチニンにつ
いての結果を夫々示す。 図5に於いて、−□−はHAの検量線を、−+−はMA
の検量線を、−◇−はo-MHAの検量線を、−△−はm-
MHAの検量線を、−×−はp-MHAの検量線を、−▽
−はクレアチニンの検量線を夫々示す。
Each number in each figure of FIG. 1 shows the following peaks, respectively. 1: p-MHA, 2: m-MHA. Each number in each figure of FIG. 2 and FIG. 4 shows the following peaks, respectively. 1: HA, 2: MA, 3: o-MHA, 4: creatinine, 5: p-MHA, 6: m-MHA. In FIG. 3,-□-is the result for HA,-+-
Is the result for MA,-◇-is the result for o-MHA,-△-is the result for m-MHA, and -x- is the result.
The results for p-MHA and-▽-indicate the results for creatinine, respectively. In FIG. 5,-□-is the calibration curve of HA,-+-is MA.
Calibration curve,-◇-is the calibration curve of o-MHA,-△-is m-
The calibration curve of MHA, -x- is the calibration curve of p-MHA,-▽
-Indicates creatinine calibration curves, respectively.

【手続補正書】[Procedure amendment]

【提出日】平成5年6月28日[Submission date] June 28, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図5】 [Figure 5]

【図4】 [Figure 4]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】オクタデシルシリカゲルを充填したカラム
を使用した高速液体クロマトグラフィにより尿中の馬尿
酸、o-メチル馬尿酸、m-メチル馬尿酸、p-メチル馬尿酸
及びマンデル酸を定量する方法に於いて、溶離液として
炭素数2以上の水溶性アルコールを含んでなる水溶液を
使用することを特徴とする尿中の馬尿酸、o-メチル馬尿
酸、m-メチル馬尿酸、p-メチル馬尿酸及びマンデル酸の
定量方法。
1. A method for quantifying hippuric acid, o-methylhippuric acid, m-methylhippuric acid, p-methylhippuric acid and mandelic acid in urine by high performance liquid chromatography using a column packed with octadecyl silica gel. A urinary hippuric acid, o-methylhippuric acid, m-methylhippuric acid, p-methylhippuric acid and an aqueous solution containing a water-soluble alcohol having 2 or more carbon atoms are used as an eluent. Method for quantifying mandelic acid.
【請求項2】炭素数2以上の水溶性アルコールがイソプ
ロピルアルコールである、請求項1に記載の定量方法。
2. The quantitative method according to claim 1, wherein the water-soluble alcohol having 2 or more carbon atoms is isopropyl alcohol.
JP3154134A 1991-05-29 1991-05-29 Method for determining component in urine Withdrawn JPH0643150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154134A JPH0643150A (en) 1991-05-29 1991-05-29 Method for determining component in urine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154134A JPH0643150A (en) 1991-05-29 1991-05-29 Method for determining component in urine

Publications (1)

Publication Number Publication Date
JPH0643150A true JPH0643150A (en) 1994-02-18

Family

ID=15577640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154134A Withdrawn JPH0643150A (en) 1991-05-29 1991-05-29 Method for determining component in urine

Country Status (1)

Country Link
JP (1) JPH0643150A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629091A (en) * 1994-12-09 1997-05-13 Ford Motor Company Agglomerated anti-friction granules for plasma deposition
US5663124A (en) * 1994-12-09 1997-09-02 Ford Global Technologies, Inc. Low alloy steel powder for plasma deposition having solid lubricant properties
US5671532A (en) * 1994-12-09 1997-09-30 Ford Global Technologies, Inc. Method of making an engine block using coated cylinder bore liners
JP2013066390A (en) * 2011-09-20 2013-04-18 Nipro Corp Method for measuring each concentration of hippuric acid and methylhippuric acid in biological sample
JP2013179925A (en) * 2012-03-05 2013-09-12 Nipro Corp Method for measuring concentration of hippuric acid in biological sample
JP2013179923A (en) * 2012-03-05 2013-09-12 Nipro Corp Method for measuring concentrations of hippuric acid and methyl hippurate in biological sample, respectively
JP2013179924A (en) * 2012-03-05 2013-09-12 Nipro Corp Method for measuring total concentration of hippuric acid and methyl hippurate in biological sample
CN103869012A (en) * 2014-03-14 2014-06-18 国家烟草质量监督检验中心 Measuring method for mandelic acid in urine by liquid chromatography-tandem mass spectrometry
CN109342604A (en) * 2018-11-27 2019-02-15 北京市化工职业病防治院 The detection method of diformazan benzene metabolite in urine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629091A (en) * 1994-12-09 1997-05-13 Ford Motor Company Agglomerated anti-friction granules for plasma deposition
US5663124A (en) * 1994-12-09 1997-09-02 Ford Global Technologies, Inc. Low alloy steel powder for plasma deposition having solid lubricant properties
US5671532A (en) * 1994-12-09 1997-09-30 Ford Global Technologies, Inc. Method of making an engine block using coated cylinder bore liners
JP2013066390A (en) * 2011-09-20 2013-04-18 Nipro Corp Method for measuring each concentration of hippuric acid and methylhippuric acid in biological sample
JP2013179925A (en) * 2012-03-05 2013-09-12 Nipro Corp Method for measuring concentration of hippuric acid in biological sample
JP2013179923A (en) * 2012-03-05 2013-09-12 Nipro Corp Method for measuring concentrations of hippuric acid and methyl hippurate in biological sample, respectively
JP2013179924A (en) * 2012-03-05 2013-09-12 Nipro Corp Method for measuring total concentration of hippuric acid and methyl hippurate in biological sample
CN103869012A (en) * 2014-03-14 2014-06-18 国家烟草质量监督检验中心 Measuring method for mandelic acid in urine by liquid chromatography-tandem mass spectrometry
CN109342604A (en) * 2018-11-27 2019-02-15 北京市化工职业病防治院 The detection method of diformazan benzene metabolite in urine

Similar Documents

Publication Publication Date Title
Kumazawa et al. Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry
Abdel-Rehim Recent advances in microextraction by packed sorbent for bioanalysis
Kumazawa et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography–mass spectrometry
Konieczna et al. New 3D-printed sorbent for extraction of steroids from human plasma preceding LC–MS analysis
Ohashi et al. Rapid and sensitive quantification of 8-isoprostaglandin F2α in human plasma and urine by liquid chromatography–electrospray ionization mass spectrometry
Zhu et al. High-performance liquid chromatographic method for the determination of gabapentin in human plasma
Wang et al. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays
Magiera et al. Comparison of different sorbent materials for solid-phase extraction of selected drugs in human urine analyzed by UHPLC–UV
Ferreira et al. In situ derivatization coupled to microextraction by packed sorbent and gas chromatography for the automated determination of haloacetic acids in chlorinated water
Kataoka et al. Determination of the oxidative stress biomarker urinary 8-hydroxy-2⿲-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography⿿ tandem mass spectrometry
Zhang et al. Simultaneous determination of five mercapturic acid derived from volatile organic compounds in human urine by LC–MS/MS and its application to relationship study
Hasegawa et al. Pipette tip solid-phase extraction and gas chromatography–mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood
Mano et al. An accurate quantitative LC/ESI–MS/MS method for sirolimus in human whole blood
Li et al. Development of a method of hollow fiber-based solid-phase microextraction followed by ultra performance liquid chromatography-tandem mass spectrometry for determination of five antipsychotics in human whole blood and urine
Friedrich et al. Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection
JPH0643150A (en) Method for determining component in urine
Kartavenka et al. LC-MS quantification of malondialdehyde-dansylhydrazine derivatives in urine and serum samples
Iqbal UHPLC-MS/MS assay using environment friendly organic solvents: a green approach for fast determination of quetiapine in rat plasma
Ferrone et al. Development and validation of a MEPS-UHPLC-PDA method for determination of ulifloxacin in human plasma and urine of patients with peripheral arterial disease
Kowalski et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol in plasma
Chen et al. Simultaneous determination of selegiline, desmethylselegiline, R/S-methamphetamine, and R/S-amphetamine on dried urine spots by LC/MS/MS: Application to a pharmacokinetic study in urine
Pérez-Alcaraz et al. Cathinones in urine samples: A review of recent advances for their determination by chromatographic and related techniques
Bratinčević et al. Comparison of the solid phase and liquid-liquid extraction methods for methadone determination in human serum and whole blood samples using gas chromatography/mass spectrometry
Huclová et al. Determination of salbutamol using on-line solid-phase extraction and sequential injection analysis. Comparison of chemiluminescence and fluorescence detection
Kumazawa et al. Automated on-line in-tube solid-phase microextraction coupled with HPLC/MS/MS for the determination of butyrophenone derivatives in human plasma

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806