JPH0642981A - Optical encoder - Google Patents

Optical encoder

Info

Publication number
JPH0642981A
JPH0642981A JP19727192A JP19727192A JPH0642981A JP H0642981 A JPH0642981 A JP H0642981A JP 19727192 A JP19727192 A JP 19727192A JP 19727192 A JP19727192 A JP 19727192A JP H0642981 A JPH0642981 A JP H0642981A
Authority
JP
Japan
Prior art keywords
plate
light
moving
fixed
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19727192A
Other languages
Japanese (ja)
Other versions
JP3108203B2 (en
Inventor
Noboru Nomura
登 野村
Makoto Kato
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04197271A priority Critical patent/JP3108203B2/en
Publication of JPH0642981A publication Critical patent/JPH0642981A/en
Application granted granted Critical
Publication of JP3108203B2 publication Critical patent/JP3108203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To obtain an optical encoder which has a simple constitution, high light utilization efficiency and high resolution for a grating pitch and enable obtaining output signals with excellent accuracy. CONSTITUTION:The coherent light emitted from a light source 1 is made parallel light by the use of a colimate lens 2 and is then made incident on a fixed diffraction plate 3A perpendicularly. The +1st order diffraction light 11 having passed the fixed diffraction plate 3A passes a moving diffraction plate 4A as a -1st order diffraction light 21 and is converged on a photodetector 6 with a condenser lens 5 and the -1st order diffraction light 12 having passed the moving diffraction plate 3A passes a moving diffraction plate 4A as a +1st order diffraction light 22 and is converged on a photodetector 6 with a focus lens 5. If the + or -1st order diffraction light 21 and 22 interface each other, sine wave output having two times frequency of a sine wave obtained by the interference between the 0th order diffraction light having passed the fixed diffraction plate 3A and the moving diffraction plate 4A and + or -1st order diffraction light 21 and 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学式エンコーダに関
し、特に移動物体例えば回転物体に取り付けられた回折
格子に可干渉性光束を入射させ、該回折格子を通過した
回折光を互いに干渉させ、干渉した光の強度を測定する
ことにより、回折格子の移動状態例えば回転状態を観測
する光学式エンコーダに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical encoder, and more particularly to a coherent light beam incident on a diffraction grating attached to a moving object such as a rotating object, and diffracted light beams passing through the diffraction grating interfere with each other to cause interference. The present invention relates to an optical encoder for observing a moving state, for example, a rotating state of a diffraction grating by measuring the intensity of the light.

【0002】[0002]

【従来の技術】機械装置において位置決めをする際には
光学式エンコーダ例えば光電式のエンコーダが広く利用
されている。この光電式エンコータは、回転ディスク及
び該回転ディスクと所定の間隔をおいて設けられた固定
マスクにそれぞれスリットを設け、両スリットを通過し
た光を光検出器により電気信号に変えて出力することに
よって、直線的な長さや回転角を測定するものである。
この光電式エンコーダにおいては、スリットのピッチを
細かくすることにより、検出精度を高めることができ
る。
2. Description of the Related Art Optical encoders such as photoelectric encoders are widely used for positioning in mechanical devices. In this photoelectric encoder, slits are provided on a rotating disk and a fixed mask provided at a predetermined distance from the rotating disk, and light passing through both slits is converted into an electric signal by a photodetector and output. It measures linear length and rotation angle.
In this photoelectric encoder, the detection accuracy can be improved by making the pitch of the slits fine.

【0003】ところが、この光電式エンコーダによる
と、回転ディスク及び固定マスクに設けられたスリット
のピッチを余り細かくすると、回折光の影響により光検
出器からの出力信号の信号対雑音の比であるS/N比が
低下し、検出精度が低下するという問題があった。
However, according to this photoelectric encoder, if the pitches of the slits provided on the rotating disk and the fixed mask are made too small, the signal-to-noise ratio S of the output signal from the photodetector is affected by the diffracted light. There is a problem that the / N ratio is lowered and the detection accuracy is lowered.

【0004】また、光検出器からの出力信号が回折光の
影響を受けない程度にまでスリットの間隔を拡大しよう
とすると、回転ディスクの径が大きくならざるを得ず、
そのために装置全体が大型化するので、回転ディスクを
回転駆動させる駆動体への負荷が大きくなる等の問題点
があった。
Further, if the slit spacing is enlarged to such an extent that the output signal from the photodetector is not affected by the diffracted light, the diameter of the rotating disk must be increased,
As a result, the size of the entire apparatus becomes large, and there is a problem that the load on the driving body that rotationally drives the rotating disk becomes large.

【0005】一方、光学式エンコーダとしては、回折格
子を通過した回折光を用いる干渉縞検出方式のエンコー
ダも知られている。この干渉縞検出方式のエンコーダ
は、光軸に対して略垂直に配設された固定回折板及び移
動回折板を通過した光の回折及び干渉によって生じる干
渉縞を光検出器により電気信号に変えて取り出すもので
ある。
On the other hand, as an optical encoder, an interference fringe detection type encoder using diffracted light that has passed through a diffraction grating is also known. This interference fringe detection type encoder converts an interference fringe generated by diffraction and interference of light passing through a fixed diffraction plate and a moving diffraction plate, which are arranged substantially perpendicular to the optical axis, into an electric signal by a photodetector. It is something to take out.

【0006】ところが、この干渉縞検出式エンコーダに
おいては、移動回折板及び固定回折板から複数の次数の
回折光が出射するため、測定に必要な特定次数の回折光
の強度が低下し、検出感度が低下するという問題があっ
た。
However, in this interference fringe detection type encoder, since the diffracted light of a plurality of orders is emitted from the moving diffraction plate and the fixed diffraction plate, the intensity of the diffracted light of a specific order required for measurement is lowered and the detection sensitivity is lowered. There was a problem that it decreased.

【0007】また、測定に不要な次数の回折光がフレア
となったり或いはゴースト光発生の原因になったりする
ので、干渉縞検出時のS/N比が低下するという問題も
あった。
There is also a problem that the S / N ratio at the time of detecting the interference fringes decreases because diffracted light of an unnecessary order for measurement becomes flare or causes generation of ghost light.

【0008】さらに、移動回折板及び固定回折板を通過
した回折光による干渉縞を光検出器により読み取る場
合、0次の回折光を含む多数の異なる次数の回折光が互
いに干渉するので、移動回折板と固定回折板との間のギ
ャップの変動によって光強度が変動するという問題もあ
った。このギャップ変動が許容される範囲は高々2p2
/λ(ただし、pは格子のピッチ、λは測定している光
の波長)として与えられている(Optics and Laser Tec
hnology,(1985)p89-95参照)。
Furthermore, when the interference fringes due to the diffracted light that has passed through the moving diffracting plate and the fixed diffracting plate are read by the photodetector, a large number of different diffracted lights including the 0 th diffracted light interfere with each other, so that the moving diffraction There is also a problem that the light intensity fluctuates due to fluctuations in the gap between the plate and the fixed diffraction plate. The range in which this gap variation is allowed is at most 2p 2
/ Λ (where p is the pitch of the grating and λ is the wavelength of the light being measured) (Optics and Laser Tec
hnology, (1985) p89-95).

【0009】そこで、光源の波長変動及び移動回折板と
固定回折板との間のギャップ変動に対して安定した信号
を検出できるようにするため、特開平3−279812
に記載され、本件の図10に示すような光学式エンコー
ダが提案されている。すなわち、コヒーレント光源30
と、該コヒーレント光源30から出射した光を平行光に
するコリメートレンズ32と、該コリメートレンズ32
を通過した光の光軸に対してほぼ垂直に且つ適当な間隔
をおいて配設され互いに等しい周期的なピッチの回折格
子を有する固定回折板34及び反射型移動回折板36と
を備え、光源30から出射されコリメートレンズ32を
通過した後、固定回折板34の第1の回折格子34aを
通過した0次及び±1次の回折光を、移動回折板36の
第2の回折格子36a,36a,36aによって回折、
反射させた後、再度、固定回折板34の第3の回折格子
34b,34cを通過させ、該第3の回折格子34b,
34cにおいて交差する回折光成分のうち、コリメート
レンズ32を通過した光と平行な方向へ回折して干渉す
る光を光検出器38A,38Bによって検出するもので
ある。
Therefore, in order to detect a stable signal with respect to the wavelength fluctuation of the light source and the fluctuation of the gap between the moving diffraction plate and the fixed diffraction plate, Japanese Patent Laid-Open Publication No. 3-279812.
And an optical encoder as shown in FIG. 10 of the present application is proposed. That is, the coherent light source 30
A collimator lens 32 for collimating the light emitted from the coherent light source 30, and a collimator lens 32.
A fixed diffractive plate 34 and a reflective moving diffractive plate 36, which are arranged substantially perpendicular to the optical axis of the light that has passed through and at appropriate intervals and have diffraction gratings of equal periodic pitch. The 0th and ± 1st order diffracted lights, which are emitted from 30 and passed through the collimating lens 32 and then passed through the first diffraction grating 34a of the fixed diffraction plate 34, are converted into the second diffraction gratings 36a and 36a of the moving diffraction plate 36. , 36a,
After being reflected, the third diffraction gratings 34b and 34c of the fixed diffraction plate 34 are passed again, and the third diffraction gratings 34b and 34c are passed.
Of the diffracted light components that intersect at 34c, the light that is diffracted and interferes in the direction parallel to the light that has passed through the collimator lens 32 is detected by the photodetectors 38A and 38B.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記の場
合、回折格子による回折回数は合計3回となり、光の利
用効率が低下するという問題がある。
However, in the above case, the number of diffractions by the diffraction grating is 3 times in total, and there is a problem that the utilization efficiency of light is reduced.

【0011】また、0次及び±1次の回折光をすべて用
いるため、各次数の回折光について回折効率を等しくす
る必要がある。このため、例えば回折効率を20%程度
とすると、トータルの光利用効率は(0.2)3 =0.
008すなわち略0.01となり、1%弱の光量しか利
用できない。このため出力信号のS/Nを向上させよう
とすると、コヒーレント光源30の出力を大きくする必
要があるという問題がある。
Further, since the 0th-order and ± 1st-order diffracted lights are all used, it is necessary to make the diffraction efficiency equal for the diffracted lights of the respective orders. Therefore, for example, assuming that the diffraction efficiency is about 20%, the total light utilization efficiency is (0.2) 3 = 0.
008, that is, about 0.01, and only a light amount of less than 1% can be used. Therefore, there is a problem that the output of the coherent light source 30 needs to be increased in order to improve the S / N of the output signal.

【0012】さらに、前述したように、測定に不要な次
数の回折光がフレア或いはゴースト光発生の原因となる
という不都合も回避されない。
Further, as described above, the inconvenience that diffracted light of an unnecessary order for measurement causes flare or ghost light cannot be avoided.

【0013】上記に鑑み、本発明は、簡素な構成であり
ながら、光利用効率が高く且つ格子ピッチに対して分解
性能が高い、精度の良い信号を得ることができる光学式
エンコーダを提供することを目的とする。
In view of the above, the present invention provides an optical encoder having a simple structure, high light utilization efficiency, high resolution performance with respect to a grating pitch, and capable of obtaining an accurate signal. With the goal.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1の発明は、固定格子板及び移動格子板を通
過する回折光のうち±1次の回折光のみを空間フィルタ
リングして干渉させ、0次の回折光と±1次の回折光と
が干渉することにより形成される正弦波に対して2倍の
周波数を有する正弦波を出力せしめるものである。
To achieve the above object, the invention of claim 1 spatially filters only the ± 1st order diffracted light of the diffracted light passing through the fixed grating plate and the moving grating plate. The sine wave having a frequency twice that of the sine wave formed by the interference of the 0th-order diffracted light and the ± 1st-order diffracted light is output.

【0015】具体的に請求項1の発明が講じた解決手段
は、光学式エンコーダを、コヒーレントな光を出射する
光源と、該光源から出射された光の光軸に対して略垂直
で且つ互いに平行に設けられており主として±1次の回
折光のみを通過させる位相格子を有する固定回折板及び
移動回折板と、該固定回折板及び移動回折板を通過した
光を受光する光検出器と、上記固定回折板及び移動回折
板を通過した±1次の回折光を上記光検出器の光検出部
に集光させる集光レンズとを備えている構成とするもの
である。
[0015] Specifically, the means for solving the problems according to the invention of claim 1 is to provide an optical encoder, a light source which emits coherent light, and a light source which is substantially perpendicular to the optical axis of the light emitted from the light source. A fixed diffractive plate and a moving diffractive plate which are provided in parallel and have a phase grating that mainly passes only the ± 1st-order diffracted light; and a photodetector that receives light passing through the fixed diffractive plate and the movable diffractive plate, A configuration is provided including a condenser lens that condenses the ± 1st-order diffracted light that has passed through the fixed diffraction plate and the moving diffraction plate on the photodetection unit of the photodetector.

【0016】請求項2の発明は、位相格子が矩形波状に
形成し、矩形状波の形状を固定格子板及び移動格子板を
通過する0次の回折光の光量比を無視できる形状にする
ものであって、具体的には、請求項1の構成に、上記固
定回折板及び移動回折板は共に矩形波状の位相格子を有
しており、該位相格子の矩形波の山と谷とは対称な形状
を有し且つ山と谷との段差dは、d=(1/2)×λ×
(1+2m)×(1/|n−n0 |)(ただしm=0,
±1,…、λ=光源から出射される光の波長,n=固定
回折板及び移動回折板を構成する材料の屈折率、n0
固定回折板と移動回折板との間の媒体の屈折率)に設定
されているという構成を付加するものである。
According to a second aspect of the present invention, the phase grating is formed in a rectangular wave shape, and the rectangular wave is shaped so that the light quantity ratio of the 0th order diffracted light passing through the fixed grating plate and the moving grating plate can be ignored. Specifically, in the structure of claim 1, both the fixed diffraction plate and the moving diffraction plate have a rectangular wave-shaped phase grating, and the peaks and valleys of the rectangular wave of the phase grating are symmetrical. And a step d between the peak and the valley is d = (1/2) × λ ×
(1 + 2m) × (1 / | n−n 0 |) (where m = 0,
± 1, ..., λ = wavelength of light emitted from the light source, n = refractive index of materials forming the fixed diffraction plate and the moving diffraction plate, n 0 =
The configuration in which the refractive index of the medium between the fixed diffraction plate and the moving diffraction plate is set) is added.

【0017】請求項3の発明は、位相格子を正弦波状に
形成し、正弦波の形状を固定格子板及び移動格子板を通
過する0次の回折光の光量比を無視できる形状にするも
のであって、具体的には、請求項1の構成に、上記固定
回折板及び移動回折板は共に正弦波状の位相格子を有し
ており、該位相格子の正弦波の山と谷との段差dは、d
=(1/2)×λ×(1/|n−n0 |)÷(1−2/
π)(ただしm=0,±1,…、λ=光源から出射され
る光の波長,n=固定回折板及び移動回折板を構成する
材料の屈折率、n0 =固定回折板と移動回折板との間の
媒体の屈折率)に設定されている構成を付加するもので
ある。
According to the third aspect of the present invention, the phase grating is formed in a sine wave shape, and the shape of the sine wave is such that the light quantity ratio of the 0th-order diffracted light passing through the fixed grating plate and the moving grating plate can be ignored. Therefore, specifically, in the structure of claim 1, the fixed diffractive plate and the moving diffractive plate both have a sinusoidal phase grating, and a step d between a peak and a valley of the sinusoidal wave of the phase grating is provided. Is d
= (1/2) × λ × (1 / | n−n 0 |) ÷ (1-2 /
π) (where m = 0, ± 1, ..., λ = wavelength of light emitted from the light source, n = refractive index of the material forming the fixed diffraction plate and the moving diffraction plate, n 0 = fixed diffraction plate and moving diffraction The refractive index of the medium between the plate and the medium is added.

【0018】請求項4の発明は、位相格子を三角形波状
に形成されている場合において、三角波の形状を固定格
子板及び移動格子板を通過する0次の回折光の光量比を
無視できる形状にするものであって、具体的には、請求
項1の構成に、上記固定回折板及び移動回折板は共に三
角形波状の位相格子を有しており、該位相格子の三角波
の山と谷とは対称な形状を有し且つ山と谷との段差d
は、d=λ×(1/|n−n0 |)(ただしm=0,±
1,…、λ=光源から出射される光の波長,n=固定回
折板及び移動回折板を構成する材料の屈折率、n0 =固
定回折板と移動回折板との間の媒体の屈折率)に設定さ
れている構成を付加するものである。
According to a fourth aspect of the present invention, when the phase grating is formed in a triangular wave shape, the triangular wave is shaped so that the light quantity ratio of the 0th-order diffracted light passing through the fixed grating plate and the moving grating plate can be ignored. Specifically, in the structure of claim 1, both the fixed diffraction plate and the moving diffraction plate have a triangular wave-shaped phase grating, and the peaks and valleys of the triangular wave of the phase grating are It has a symmetrical shape and the step d between the peak and the valley
Is d = λ × (1 / | n−n 0 |) (where m = 0, ±
1, ..., λ = wavelength of light emitted from the light source, n = refractive index of the material forming the fixed diffraction plate and the moving diffraction plate, n 0 = refractive index of the medium between the fixed diffraction plate and the moving diffraction plate ) Is added to the configuration set in.

【0019】[0019]

【作用】請求項1の構成により、光源から出射されたコ
ヒーレント光のうち主として±1次の回折光のみを通過
させる位相格子を有する固定回折板及び移動回折板と、
該固定回折板及び移動回折板を通過した±1次の回折光
を光検出器の光検出部に集光させる集光レンズとを備え
ているため、0次の回折光と±1次の回折光とが干渉し
たときに形成される正弦波に対して2倍の周波数を有す
る2倍周波の正弦波出力波形を得ることができる。
According to the structure of claim 1, a fixed diffractive plate and a moving diffractive plate having a phase grating that mainly passes only ± 1st order diffracted light of the coherent light emitted from the light source,
Since a ± 1st-order diffracted light beam that has passed through the fixed diffractive plate and the moving diffractive plate is provided on the photodetector of the photodetector, a 0-th order diffracted light beam and a ± 1st-order diffracted light beam are provided. A double frequency sine wave output waveform having a frequency twice that of the sine wave formed when light interferes can be obtained.

【0020】請求項2〜4の構成により、位相格子が矩
形波状、正弦波状或いは三角形波状の場合にそれぞれ山
と谷との段差寸法を特定しているため、実施例の項でそ
れぞれ説明するように、固定格子板及び移動格子板を通
過する0次の回折光の光量比を無視できる程度に抑制す
ることができる。
According to the second to fourth aspects, when the phase grating has a rectangular wave shape, a sinusoidal wave shape, or a triangular wave shape, the step size between the peak and the valley is specified. In addition, the light quantity ratio of the 0th-order diffracted light passing through the fixed grating plate and the moving grating plate can be suppressed to a negligible level.

【0021】[0021]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1は本発明の第1実施例に係る光学式エ
ンコーダの概略構成を示し、図2は第1実施例に係る光
学式エンコーダの要部の構成を示しており、同図におい
て、1は半導体レーザ若しくは比較的可干渉性の高いL
ED(発光ダイオード)よりなる光源、2は光源1から
出射された光を平行光にするコリメートレンズ、3Aは
矩形波状断面の位相格子を有し光軸に対して垂直に配置
された固定回折板、4Aは矩形波状断面の位相格子を有
し光軸に対して垂直に配置され且つ垂直方向に移動可能
な移動回折板であって、固定回折板3Aの位相格子と移
動回折板4Aの位相格子とは互いに同じ周期を有してい
る。また、同図において、5は移動回折板3Aを通過し
た光を集光する集光レンズ、6は集光レンズ5により集
光され光検出部7において結像した回折像を電気信号に
変えて出力する光検出器、8は周波数弁別フィルターで
ある。
FIG. 1 shows a schematic structure of an optical encoder according to a first embodiment of the present invention, and FIG. 2 shows a structure of a main part of the optical encoder according to the first embodiment. In FIG. 1 is a semiconductor laser or L having a relatively high coherence
A light source made up of an ED (light emitting diode), 2 is a collimating lens for collimating the light emitted from the light source 1, and 3A is a fixed diffraction plate which has a phase grating with a rectangular wave cross section and is arranged perpendicular to the optical axis. Reference numeral 4A denotes a moving diffraction plate which has a phase grating with a rectangular wave section and is arranged perpendicular to the optical axis and is movable in the vertical direction. The phase grating of the fixed diffraction plate 3A and the phase grating of the moving diffraction plate 4A are denoted by 4A. And have the same cycle as each other. Further, in the figure, 5 is a condenser lens for condensing the light that has passed through the moving diffraction plate 3A, and 6 is an electric signal for converting the diffraction image condensed by the condenser lens 5 and formed in the photodetector 7 into an electric signal. The photodetector for outputting 8 is a frequency discriminating filter.

【0023】第1実施例に係る光学式エンコーダにおい
ては、光源1から出射された光は、コリメートレンズ2
により平行光にされた後、固定回折板3Aに該固定回折
板3Aに対して略垂直の方向から入射される。固定回折
板3Aに入射した光は、該固定回折板3Aによって回折
され、0次の回折光10,+1次の回折光11,−1次
の回折光12,……として出射される。これらの回折光
10,11,12は、移動回折板4Aに入射した後、さ
らに回折光として出射される。この移動回折板4Aから
出射された回折光を(n,m)(但し、nは固定回折板
3Aによる回折次数,mは移動回折板3Bによる回折次
数をそれぞれ示す。)として表すと、移動回折板3Bを
通過する回折光としては、図2に示すように、(0,
0)の回折光20、(+1,−1)の回折光21、(−
1,+1)の回折光22、(−2,+2)の回折光,
(+2,−2)の回折光,……,がある。ただし図2に
おいては、図示の都合上、(−2,+2)の回折光、
(+2,−2)の回折光及び2次の回折光よりも高次の
回折光は省略している。
In the optical encoder according to the first embodiment, the light emitted from the light source 1 is generated by the collimator lens 2
After being made into parallel light by, the light is incident on the fixed diffraction plate 3A from a direction substantially perpendicular to the fixed diffraction plate 3A. The light incident on the fixed diffractive plate 3A is diffracted by the fixed diffractive plate 3A and is emitted as 0th-order diffracted light 10, + 1st-order diffracted light 11, −1st-order diffracted light 12, .... These diffracted lights 10, 11 and 12 are incident on the moving diffractive plate 4A and then further emitted as diffracted lights. If the diffracted light emitted from the moving diffraction plate 4A is expressed as (n, m) (where n is the diffraction order of the fixed diffraction plate 3A and m is the diffraction order of the moving diffraction plate 3B, respectively), the moving diffraction is obtained. As the diffracted light passing through the plate 3B, as shown in FIG.
0) diffracted light 20, (+1, -1) diffracted light 21, (-)
1, + 1) diffracted light 22, (-2, + 2) diffracted light,
There is (+2, -2) diffracted light, .... However, in FIG. 2, for the convenience of illustration, the diffracted light of (-2, +2),
The (+2, -2) diffracted light and the diffracted light of a higher order than the diffracted light of the second order are omitted.

【0024】移動回折板4Aを光軸に対して垂直方向
(図1及び図2における上下方向)に一定速度で移動さ
せると、移動に伴って0次よりも高次の回折光の位相は
0次の回折光の位相に対して変化するので、例えば(+
1,−1)の回折光21と(−1,+1)の回折光22
とが干渉して得られる干渉波の光強度は正弦波状に変化
する。同様に(+1,−1)の回折光21と(0,0)
の回折光20との干渉波の光強度、或いは(−1,+
1)の回折光22と(0,0)の回折光20との干渉に
よる干渉波の光強度も移動回折板4Aの移動に伴って周
期的に変化する。
When the moving diffractive plate 4A is moved at a constant speed in the vertical direction (vertical direction in FIGS. 1 and 2) with respect to the optical axis, the phase of diffracted light higher than 0th order is 0 due to the movement. Since it changes with respect to the phase of the next diffracted light, for example (+
1, -1) diffracted light 21 and (-1, + 1) diffracted light 22
The light intensity of the interference wave obtained by interference between and changes in a sine wave shape. Similarly, (+1, -1) diffracted light 21 and (0, 0)
Light intensity of the interference wave with the diffracted light 20 of, or (-1, +
The light intensity of the interference wave due to the interference between the diffracted light 22 of 1) and the diffracted light 20 of (0,0) also periodically changes with the movement of the moving diffraction plate 4A.

【0025】ところで、矩形波状の断面を有する移動回
折板4Aの山と谷との段差dは、光源1の波長λに対し
て、 |n−n0 |×d=(λ/2)×(1+2m)……(1) (但し、m=0,±1,±2,…であり、nは固定回折
板3A及び移動回折板4Aを構成する材料の屈折率,N
0 は固定回折板3Aと移動回折板4Aとの間の媒質の屈
折率である。)になるように形成されている。
By the way, the step d between the peak and the valley of the moving diffraction plate 4A having a rectangular wave-shaped cross section is | n−n 0 | × d = (λ / 2) × (with respect to the wavelength λ of the light source 1. 1 + 2m) (1) (where m = 0, ± 1, ± 2, ..., n is the refractive index of the material forming the fixed diffraction plate 3A and the moving diffraction plate 4A, N
0 is the refractive index of the medium between the fixed diffraction plate 3A and the moving diffraction plate 4A. ) Is formed.

【0026】この場合、0次をはじめとする偶数次の回
折光の成分が0になること、及び±1次の回折光に大半
の光エネルギー(各々40%程度)が集中することは衆
知である。もっとも、実際には、固定回折板3A及び移
動回折板4Aの製作誤差によって、偶数次の回折光も若
干発生する。
In this case, it is well known that the components of the even-order diffracted light such as the 0-th order become 0, and most of the light energy (each about 40%) is concentrated in the ± 1st-order diffracted light. is there. In reality, however, some even-order diffracted light is generated due to manufacturing errors of the fixed diffraction plate 3A and the moving diffraction plate 4A.

【0027】上記(1) 式において、固定回折板3A及び
移動回折板4AがSiO2 基板である場合にnは略1.
46となり、光源1がHe−Neガスレーザである場合
にλは633nmとなり、固定回折板3Aと移動回折板
4Aとの間の媒質が空気の場合にn0 は1となる。さら
に、mを0とし、固定回折板3A及び移動回折板4Aの
格子周期pを略10μmとし、リソグラフィーとドライ
エッチングの方法によって製作した段差dが略0.68
8μmである矩形波状の固定回折板3A及び移動回折板
4Aを用いて実験した結果によると、±1次の回折光の
回折効率はそれぞれ37〜40%程度が得られ、0次の
回折光の成分は2%以下、3次の回折光の成分はそれぞ
れ4〜5%程度であった。この場合、固定回折板3A及
び移動回折板4Aの位相格子の矩形波の山と谷の幅の比
(duty ratio)は6:4となっていた。
In the above formula (1), n is approximately 1. when the fixed diffraction plate 3A and the moving diffraction plate 4A are SiO 2 substrates.
46, λ becomes 633 nm when the light source 1 is a He-Ne gas laser, and n 0 becomes 1 when the medium between the fixed diffraction plate 3A and the moving diffraction plate 4A is air. Further, m is set to 0, the grating period p of the fixed diffraction plate 3A and the moving diffraction plate 4A is set to about 10 μm, and the step d produced by the method of lithography and dry etching is about 0.68.
According to the results of experiments using the fixed diffracting plate 3A and the moving diffracting plate 4A having a rectangular wave shape of 8 μm, the diffraction efficiencies of the ± 1st order diffracted light are about 37 to 40%, respectively. The components were 2% or less, and the components of the third-order diffracted light were about 4 to 5%, respectively. In this case, the ratio (duty ratio) of peaks and valleys of the rectangular wave of the phase grating of the fixed diffraction plate 3A and the moving diffraction plate 4A was 6: 4.

【0028】さて、(0,0)の回折光20は、(+
1,−1)の回折光21或いは(−1,+1)の回折光
22と干渉し、固定回折板3A及び移動回折板4Aの矩
形状波の山と谷とが互いに一致したときに光強度が最大
となり且つ矩形状波の山と谷とが半周期p/2だけ互い
にずれたときに光強度が最小となるような正弦波形であ
る基本波(図3(b)を参照)の出力が得られる。一
方、主要光量を占める(+1,−1)の回折光21と
(−1,+1)の回折光22とは互いに干渉し、上記基
本波に対して2倍の周波数を有する正弦波よりなる2倍
周波(図3(b)を参照)の出力が得られる。尚、図1
において、23は(0,+1)の回折光を、24は
(0,−1)の回折光を、25は(+1,0)の回折光
を、26は(+1,+1)の回折光をそれぞれ示してい
る。
Now, the (0, 0) diffracted light 20 is (+
When the crests and troughs of the rectangular waves of the fixed diffractive plate 3A and the moving diffractive plate 4A coincide with each other, the light intensity interferes with the diffracted light 21 of (1, -1) or the diffracted light 22 of (-1, + 1). Is the maximum, and the output of the fundamental wave (see FIG. 3 (b)) is a sine waveform such that the light intensity becomes minimum when the peaks and valleys of the rectangular wave deviate from each other by a half period p / 2. can get. On the other hand, the (+1, −1) diffracted light 21 and the (−1, +1) diffracted light 22 occupying the main light amount interfere with each other and are formed by a sine wave having a frequency twice that of the fundamental wave. A double frequency output (see FIG. 3B) is obtained. Incidentally, FIG.
, 23 is the (0, + 1) diffracted light, 24 is the (0, -1) diffracted light, 25 is the (+1,0) diffracted light, and 26 is the (+ 1, + 1) diffracted light. Shown respectively.

【0029】本発明は、前述した2倍周波の成分を利用
して精度の高い位置検出を可能とするものである。光検
出器6に入射する光量は、(0,0)の回折光20が高
々(2/100)2 =4×10-4であるのに対し、(+
1,−1)の回折光21及び(−1,+1)の回折光2
2はそれぞれ(40/100)2 =0.16である。即
ち、干渉に寄与する光波の振幅比は√(4×10-4):
√(0.16)=2×10-2:0.4=1:20であ
る。従って、図5(a)に示した基本波の信号振幅U0
は、2倍周波の信号振幅U1 に比べて高々(1/20)
×2=1/10に過ぎない。一方、不都合な成分として
最大振幅を与える(+3,−3)の回折光と(−3,+
3)の回折光とが干渉すると6倍周波の出力波形を生じ
るが、6倍周波の振幅U3 と2倍周波の振幅U1 との比
は1:8〜1:10程度である。また、(+3,−3)
の回折光と(+1,−1)の回折光とが干渉した光の成
分、及び(−3,+3)の回折光と(−1,+1)回折
光とが干渉した光の成分も2倍周波を生じるが、これら
の2倍周波の振幅は、他の倍周波の振幅と同様に、(+
1,−1)の回折光21と(−1,+1)の回折光22
とが干渉して生じる2倍周波の振幅U1 に比べて無視で
きる程に小さい。
The present invention enables highly accurate position detection by utilizing the above-mentioned double frequency component. The amount of light incident on the photodetector 6 is (+/− 100) 2 = 4 × 10 −4 while the (0,0) diffracted light 20 is at most (+/−).
1, -1) diffracted light 21 and (-1, + 1) diffracted light 2
2 are (40/100) 2 = 0.16, respectively. That is, the amplitude ratio of light waves contributing to interference is √ (4 × 10 −4 ):
√ (0.16) = 2 × 10 -2 : 0.4 = 1: 20. Therefore, the signal amplitude U 0 of the fundamental wave shown in FIG.
Is at most (1/20) compared to the double-frequency signal amplitude U 1.
X2 = only 1/10. On the other hand, (+3, -3) diffracted light that gives the maximum amplitude as an inconvenient component and (-3, +)
When the diffracted light of 3) interferes with each other, an output waveform of 6 times frequency is generated, but the ratio of the amplitude U 3 of 6 times frequency and the amplitude U 1 of 2 times frequency is about 1: 8 to 1:10. Also, (+3, -3)
The component of the light in which the diffracted light of (1) and the diffracted light of (+1, -1) and the component of the light in which the diffracted light of (-3, +3) and the (-1, +1) diffracted light interfere are doubled. Frequency, but the amplitude of these doubled frequencies, like the amplitudes of other doubled frequencies, is (+
1, -1) diffracted light 21 and (-1, + 1) diffracted light 22
Is smaller than the amplitude U 1 of the double frequency generated due to the interference between and.

【0030】第1実施例の光検出器6の光電変換信号出
力は、誇張して示すと、図3(a)のように歪んだ波形
として得られることになる。この歪んだ波形は、図3
(b)に示すように、基本波の成分、2倍周波の成分及
び6倍周波の成分(6倍周波の成分は図示されていな
い。)等に分解して考えることができるが、2倍周波の
成分以外の成分は、それぞれ微弱であり且つ互いに共役
な回折波の干渉のため変動が小さいので、2倍周波の成
分の検出は十分に可能である。
The photoelectric conversion signal output of the photodetector 6 of the first embodiment is obtained as a distorted waveform as shown in FIG. 3A when exaggeratedly shown. This distorted waveform is shown in Figure 3.
As shown in (b), it can be decomposed into a fundamental wave component, a double frequency component, a sixth frequency component (a sixth frequency component is not shown), etc. The components other than the frequency component are weak and change little due to the interference of the diffracted waves that are conjugate with each other, so that the double frequency component can be sufficiently detected.

【0031】尚、必要ならば、図1に示す周波数弁別フ
ィルター回路10の遮断周波数帯域を狭くして、周波数
弁別フィルター回路8から6倍周波の成分が出力されな
いようにすることもできる。
If necessary, the cutoff frequency band of the frequency discriminating filter circuit 10 shown in FIG. 1 can be narrowed so that the frequency discriminating filter circuit 8 does not output the 6-fold frequency component.

【0032】また、特に2倍周波の成分のみを更に高精
度で得たい場合には、バンドパスフィルター回路を周波
数弁別フィルター回路8に附加することにより容易に目
的を達し得る。
Further, particularly when it is desired to obtain only the double frequency component with higher accuracy, the purpose can be easily achieved by adding a bandpass filter circuit to the frequency discrimination filter circuit 8.

【0033】さらに、微弱ではあるが、前述した干渉光
以外の干渉光の成分として、例えば(+2,−1)の回
折光と(−2,+1)の回折光との干渉光が図1の結像
面9のスポット9aにおいて得られ、同様に(−2,+
1)の回折光と(+1,−2)の回折光との干渉光は結
像面9のスポット9bにおいて得られるが、これらの干
渉光は光検出器6の光検出部7以外の部分に集光するた
め、全く問題にならないことは容易に了解されよう。
Further, although weak, as interference light components other than the above-mentioned interference light, for example, interference light of (+2, -1) diffracted light and (-2, +1) diffracted light is shown in FIG. It is obtained at the spot 9a on the image plane 9 and similarly (-2, +
The interference light of the diffracted light of 1) and the diffracted light of (+1, -2) is obtained at the spot 9b on the image plane 9, but these interference lights are not reflected on the portion other than the photodetector 7 of the photodetector 6. It is easy to understand that it does not matter at all because it collects light.

【0034】図4は本発明の第2実施例に係る光学式エ
ンコーダの主要部の構成を示しており、該第2実施例に
おいては、固定格子板3B及び移動格子板4Bは、第1
実施例と同様に矩形波状の断面の位相格子を有している
が、矩形波の山と谷の幅の比(duty ratio)が略5:5
になるように形成されている。つまり、矩形波の山と谷
とは対称であり、且つ矩形波の山と谷との段差dは、d
=(1/2)×λ×(1+2m)×(1/|n−n
0 |)に設定されている。
FIG. 4 shows the structure of the main part of an optical encoder according to the second embodiment of the present invention. In the second embodiment, the fixed grid plate 3B and the moving grid plate 4B are the first one.
A phase grating having a rectangular wave-shaped cross section is provided as in the embodiment, but the ratio of the width of the peaks and the valleys of the rectangular wave is about 5: 5.
Is formed. That is, the peak and the valley of the rectangular wave are symmetric, and the step d between the peak and the valley of the rectangular wave is d.
= (1/2) × λ × (1 + 2 m) × (1 / | n−n
0 |) is set.

【0035】尚、第2実施例においては、第1実施例と
同様の部材及び回折光については、第1実施例と同様の
符号を付すことにより説明は省略する。
In the second embodiment, the same members and diffracted light as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.

【0036】第1実施例と同様、半導体レーザ若しくは
比較的可干渉性の強いLEDよりなる光源1から出射さ
れた光は、コリメートレンズ2を通過した後、固定格子
板3Bに対して略垂直な方向から平行に入射する。固定
格子板3Bに入射した光は、該固定格子板3Bを通過し
た後、約80%の光量が±1次の回折光となり、約10
%の光量が±3次の回折光となり、残りの光量は±5次
以上の奇数次の回折光に各々数%以下の比率で分布す
る。
Similar to the first embodiment, the light emitted from the light source 1 made of a semiconductor laser or an LED having a relatively strong coherence passes through the collimating lens 2 and then is substantially perpendicular to the fixed grating plate 3B. It is incident parallel from the direction. After passing through the fixed grating plate 3B, about 80% of the light incident on the fixed grating plate 3B becomes a ± 1st order diffracted light, which is about 10%.
% Light amount becomes ± 3rd order diffracted light, and the remaining light amount is distributed to ± 5th order or higher and odd order diffracted light at a ratio of several% or less.

【0037】本第2実施例においては、矩形波の山と谷
の幅の比を略5:5に形成しているため、0次の回折光
の光量比を無視できる程に抑圧できるので、特別のフィ
ルター回路を要することなく、2倍周波の成分の出力の
みを光検出器6から取り出すことができる。また、本第
2実施例においては、光検出器6の光検出部8の手前側
には、充分に小さい開口9cが設けられ、不要光が光検
出器6の光検出部7に入射するのを防いでいる。
In the second embodiment, since the ratio of the width of the peak to the width of the valley of the rectangular wave is set to about 5: 5, the light quantity ratio of the 0th order diffracted light can be suppressed to a negligible level. Only the output of the double frequency component can be taken out from the photodetector 6 without requiring a special filter circuit. Further, in the second embodiment, a sufficiently small opening 9c is provided on the front side of the photodetector 8 of the photodetector 6 so that unnecessary light enters the photodetector 7 of the photodetector 6. Is preventing.

【0038】このように構成することにより、図5に示
すように、基本波の成分(図5(a)を参照)の信号の
振幅はU0 は略0となり、2倍周波の成分の信号出力の
みが得られた(図5(b)を参照)。この場合、6倍周
波の成分は第1実施例と略同等の光電変換出力を生じる
が、この出力は周波数弁別フィルター回路8の帯域を制
限することによって遮断できる。
With this configuration, as shown in FIG. 5, the amplitude of the signal of the fundamental wave component (see FIG. 5A) is U 0 substantially 0, and the signal of the double frequency component is Only the output was obtained (see FIG. 5 (b)). In this case, the sixth frequency component produces a photoelectric conversion output that is substantially the same as that of the first embodiment, but this output can be blocked by limiting the band of the frequency discrimination filter circuit 8.

【0039】図6は本発明の第3実施例に係る光学式エ
ンコーダの主要部の構成を示しており、該第3実施例に
おいては、固定格子板3C及び移動格子板4Cはそれぞ
れ正弦波状断面の位相格子を有している。
FIG. 6 shows the structure of the main part of an optical encoder according to a third embodiment of the present invention. In the third embodiment, the fixed grid plate 3C and the moving grid plate 4C are each sinusoidal in cross section. It has a phase grating of.

【0040】尚、第3実施例においては、第1実施例と
同様の部材及び回折光については、第1実施例と同様の
符号を付すことにより説明は省略する。
In the third embodiment, the same members and diffracted light as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.

【0041】固定格子板3Cに入射された光は該固定格
子板3Cによって数次の回折光に分かれて回折される。
0次の回折光の強度を0とする条件は、格子の形状、格
子を構成する物質の屈折率及び格子の深さで決まり、便
宜的には回折光の位相の「重心」で計算することができ
る。例えば、第2実施例の固定回折板3B及び移動回折
板3Cでは図8(a)に示すように位相の重心G及び
G′は矩形状波の表面にあり、位相を進ませる格子の重
心Gと位相を遅らせる格子の重心G′との間の位相差が
光源の波長λの1/2になると0次光は出射しなくなる
と考えられる。この格子の段差dの条件が(1) 式に示す
ようになったわけである。
The light incident on the fixed grating plate 3C is divided into diffracted light of several orders by the fixed grating plate 3C and diffracted.
The condition for setting the intensity of the 0th-order diffracted light to 0 is determined by the shape of the grating, the refractive index of the material forming the grating, and the depth of the grating. For convenience, it should be calculated by the "center of gravity" of the phase of the diffracted light. You can For example, in the fixed diffraction plate 3B and the moving diffraction plate 3C of the second embodiment, as shown in FIG. 8A, the center of gravity G and G'of the phase are on the surface of the rectangular wave, and the center of gravity G of the grating for advancing the phase. When the phase difference between the center of gravity of the grating and the center of gravity G ′ of the grating which delays the phase becomes 1/2 of the wavelength λ of the light source, it is considered that 0th-order light is not emitted. The condition of the step d of this lattice is as shown in equation (1).

【0042】次に、図8(b)に示す正弦波格子では位
相の重心は、正弦波の位相を平均化するとG及びG′の
高さが求まって、
Next, in the sine wave grating shown in FIG. 8 (b), the center of gravity of the phases is obtained by averaging the phases of the sine waves to find the heights of G and G '.

【数1】 [Equation 1]

【0043】となる。そして、このG及びG′の高さを
それぞれλ/4に等しくすると、d=(1/2)×λ×
(1/|n−n0 |)÷(1−2/π)となる。
It becomes When the heights of G and G'are equal to λ / 4, d = (1/2) × λ ×
(1 / | n−n 0 |) / (1-2 / π).

【0044】正弦波の山と谷との段差dを上記のように
すると、固定回折板3C及び移動回折板3Cを通過した
0次の回折光の成分は、正弦波の谷と山とから出る光が
0.5λ分位相がずれて互いに打ち消し合い0となる。
一方、1次の回折光は1λ分だけ位相が異なるので、正
弦波の谷と山とから出る光が互いに強め合い、1次の回
折光の強度が大きくなると考えられる。
When the step d between the peak and the valley of the sine wave is set as described above, the 0th-order diffracted light component that has passed through the fixed diffraction plate 3C and the moving diffraction plate 3C exits from the valley and the peak of the sine wave. The lights are out of phase with each other by 0.5λ and cancel each other out to be 0.
On the other hand, since the phase of the 1st-order diffracted light is different by 1λ, it is considered that the lights emitted from the troughs and the peaks of the sine wave strengthen each other and the intensity of the 1st-order diffracted light increases.

【0045】図9は本発明の第4実施例に係る光学式エ
ンコーダの主要部の構成を示しており、該第4実施例に
おいては、固定格子板3D及び移動格子板4Dはそれぞ
れ三角波状断面の位相格子を有している。
FIG. 9 shows the structure of the main part of an optical encoder according to a fourth embodiment of the present invention. In the fourth embodiment, the fixed grating plate 3D and the moving grating plate 4D have triangular wave-shaped cross sections, respectively. It has a phase grating of.

【0046】尚、第4実施例においても、第1実施例と
同様の部材及び回折光については、第1実施例と同様の
符号を付すことにより説明は省略する。
Also in the fourth embodiment, the same members and diffracted lights as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.

【0047】本第4実施例においては、第2実施例と同
様、固定格子板3Dに入射された光は該固定格子板3D
によって数次の回折光に分かれて回折される。図8
(c)に示す三角波状の位相の重心Gを求める作図から
Gの高さはλ/4となるので、三角波の山と谷との段差
dは、d=λ×(1/|n−n0 |)となる。
In the fourth embodiment, as in the second embodiment, the light incident on the fixed grating plate 3D is the fixed grating plate 3D.
Is diffracted into several orders of diffracted light. Figure 8
From the drawing for obtaining the center of gravity G of the triangular wave phase shown in (c), the height of G is λ / 4, so the step d between the peak and the valley of the triangular wave is d = λ × (1 / | n−n 0 |).

【0048】三角波の段差dを上記のように形成する
と、固定回折板3D及び移動回折板3Dを通過した0次
の回折光の成分は、三角波状の格子の谷と山とから出る
光が0.5λ分だけ位相がずれて打ち消し合い0とな
る。一方、1次の回折光は1λ分だけ位相が異なるの
で、三角波状の格子の谷と山とから出る光が互いに強め
合い、1次の回折光の強度が大きくなると考えられる。
特に、三角波状の傾斜を1次の回折光の回折角に合うよ
うに三角波のピッチ並びに固定格子板3D及び移動格子
板4Dの屈折率nを適当に設定すると1次の回折光の強
度を極大化できる。
When the step d of the triangular wave is formed as described above, the 0th-order diffracted light component that has passed through the fixed diffractive plate 3D and the moving diffractive plate 3D is the light emitted from the troughs and peaks of the triangular wave-shaped grating. The phases are offset by 0.5λ and cancel each other out to 0. On the other hand, since the 1st-order diffracted light has a phase difference of 1λ, it is considered that the light emitted from the troughs and the peaks of the triangular wave grating strengthens each other and the intensity of the 1st-order diffracted light increases.
In particular, if the triangular wave pitch and the refractive index n of the fixed grating plate 3D and the moving grating plate 4D are set appropriately so that the triangular wave-shaped inclination matches the diffraction angle of the first-order diffracted light, the intensity of the first-order diffracted light is maximized. Can be converted.

【0049】次に、第2実施例と同様、固定格子板3D
を通過した±1次の回折光を移動回折板4Dに導びき、
該移動回折板4Dを通過させることにより、該移動回折
板4Dに垂直方向な(+1,−1)の回折光及び(−
1,+1)の回折光を得ることができる。そして移動回
折板4Dが図9の上下方向に移動すると、その移動に伴
って図7(c)に示すような基本波に対して2倍の周波
数を有する2倍周波の正弦波の信号を得ることができ
る。
Next, as in the second embodiment, the fixed grid plate 3D is used.
Guide the ± 1st order diffracted light passing through to the moving diffraction plate 4D,
By passing through the moving diffraction plate 4D, the (+1, −1) diffracted light in the direction perpendicular to the moving diffraction plate 4D and the (−)
1, + 1) diffracted light can be obtained. Then, when the moving diffraction plate 4D moves in the vertical direction in FIG. 9, a double-frequency sine wave signal having a frequency twice that of the fundamental wave is obtained as shown in FIG. 7C with the movement. be able to.

【0050】尚、上記各実施例においては、固定回折板
3A,3B,3C,3Dが光源1側に、移動回折板4
A,4B,4C,4Dが光検出器6側にそれぞれ配置さ
れていたが、これに代えて、移動回折板4A,4B,4
C,4Dを光源1側に、固定回折板3A,3B,3C,
3Dを光検出器6側にそれぞれ配置してもよい。
In each of the above embodiments, the fixed diffraction plates 3A, 3B, 3C and 3D are arranged on the light source 1 side and the movable diffraction plate 4 is formed.
Although A, 4B, 4C, and 4D were arranged on the photodetector 6 side, respectively, instead of this, the moving diffraction plates 4A, 4B, and 4 were used.
C, 4D on the light source 1 side, fixed diffraction plates 3A, 3B, 3C,
3D may be arranged on the photodetector 6 side.

【0051】[0051]

【発明の効果】請求項1の発明に係る光学式エンコーダ
によると、光源から出射されたコヒーレント光のうち主
として±1次の回折光のみを通過させる位相格子を有す
る固定回折板及び移動回折板と、該固定回折板及び移動
回折板を通過した±1次の回折光を光検出器の光検出部
に集光させる集光レンズとを備えているため、0次の回
折光と±1次の回折光とが干渉したときに形成される正
弦波に対して2倍の周波数を有する出力波形を得ること
ができるので、精度の高い正弦波出力信号を得ることが
できる。
According to the optical encoder of the first aspect of the present invention, a fixed diffractive plate and a moving diffractive plate having a phase grating that mainly passes only the ± 1st order diffracted light of the coherent light emitted from the light source are provided. Since it has a condenser lens for condensing the ± 1st-order diffracted light that has passed through the fixed diffracting plate and the moving diffractive plate on the photodetector of the photodetector, the 0th-order diffracted light and the ± 1st-order diffracted light Since it is possible to obtain an output waveform having a frequency twice that of the sine wave formed when the diffracted light interferes with each other, it is possible to obtain a highly accurate sine wave output signal.

【0052】また、固定回折板及び移動回折板を通過し
光軸に対して対称で且つ互いに共役な±1次の回折光
(conjugate wave)を主として用いるため、光源の波長
変動や波長の広がり、固定回折板と移動回折板基板との
間のギャップ変動、或いはフレア、ゴースト光などをキ
ャンセルできるので、SN比の高い出力信号を得ること
ができる。
Further, since ± 1st-order diffracted light (conjugate wave) that passes through the fixed diffractive plate and the movable diffractive plate and is symmetric with respect to the optical axis and conjugate with each other is mainly used, the wavelength variation of the light source and the spread of the wavelength, Since it is possible to cancel the gap variation between the fixed diffraction plate and the moving diffraction plate substrate, flare, ghost light, etc., it is possible to obtain an output signal with a high SN ratio.

【0053】また、構成部品の点数が少ないので安価に
光学式エンコーダを製造することができると共に、湿度
や温度上昇によって固定回折板或いは移動回折板に膨張
が生じても左右対称な光学系であるため出力に影響がな
く、工業的な価値が高い。
Further, since the number of constituent parts is small, the optical encoder can be manufactured at a low cost, and the optical system is bilaterally symmetrical even if the fixed diffractive plate or the movable diffractive plate expands due to humidity or temperature rise. Therefore, the output is not affected and the industrial value is high.

【0054】さらに、固定回折板及び移動回折板を樹脂
により形成すると、複製が容易なために安価に製造する
ことができる。
Further, when the fixed diffractive plate and the movable diffractive plate are formed of resin, they can be easily manufactured at low cost because they are easily duplicated.

【0055】請求項2の発明に係る光学式エンコーダに
よると、固定回折板及び移動回折板は、山と谷とが対称
な形状を有し且つ山と谷との段差dがd=(1/2)×
λ×(1+2m)×(1/|n−n0 |)である矩形状
波の位相格子を有しているため、0次の回折光の光量を
略0にすることができるので、歪みがない、より精度の
高い正弦波出力信号を得ることができる。
According to the optical encoder of the second aspect of the present invention, the fixed diffractive plate and the moving diffractive plate have a shape in which peaks and valleys are symmetrical, and a step d between peaks and valleys is d = (1 / 2) ×
Since it has a rectangular wave phase grating of λ × (1 + 2m) × (1 / | n−n 0 |), the light quantity of the 0th-order diffracted light can be made substantially zero, so that the distortion is A more accurate sine wave output signal can be obtained.

【0056】請求項3の発明に係る光学式エンコーダに
よると、固定回折板及び移動回折板は、山と谷との段差
dがd=(1/2)×λ×(1/|n−n0 |)÷(1
−2/π)である正弦波の位相格子を有しているため、
0次の回折光の光量を略0にすることができるので、請
求項2の発明と同様、歪みがない、より精度の高い正弦
波出力信号を得ることができる。
According to the optical encoder of the third aspect of the present invention, in the fixed diffractive plate and the movable diffractive plate, the step d between peaks and valleys is d = (1/2) × λ × (1 / | n−n 0 |) ÷ (1
Since it has a sine wave phase grating that is −2 / π),
Since the light quantity of the 0th-order diffracted light can be made substantially zero, it is possible to obtain a more accurate sine wave output signal with no distortion, as in the second aspect of the invention.

【0057】請求項4の発明に係る光学式エンコーダに
よると、固定回折板及び移動回折板は、山と谷とが対称
な形状を有し且つ山と谷との段差dがd=λ×(1/|
n−n0 |)である三角形波の位相格子を有しているた
め、0次の回折光の光量を略0にすることができるの
で、請求項2の発明と同様、歪みがない、より精度の高
い正弦波出力信号を得ることができる。
According to the optical encoder of the fourth aspect of the present invention, the fixed diffractive plate and the moving diffractive plate have a shape in which peaks and valleys are symmetrical and the step d between peaks and valleys is d = λ × ( 1 / |
(n−n 0 |) has a triangular wave phase grating, so that the light quantity of the 0th-order diffracted light can be made approximately 0. Therefore, as in the invention of claim 2, there is no distortion, and A highly accurate sine wave output signal can be obtained.

【0058】また、請求項2〜4の発明に係る光学式エ
ンコーダによると、固定回折板及び移動回折板の位相格
子が単純な形状であるため、高精度であるにも拘らず、
安価に製造することができる。
Further, according to the optical encoders of the second to fourth aspects of the invention, since the phase gratings of the fixed diffractive plate and the moving diffractive plate have a simple shape, they are highly accurate, but
It can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る光学式エンコーダの
概略構成図である。
FIG. 1 is a schematic configuration diagram of an optical encoder according to a first embodiment of the present invention.

【図2】上記第1実施例に係る光学式エンコーダの要部
の概略構成図である。
FIG. 2 is a schematic configuration diagram of a main part of the optical encoder according to the first embodiment.

【図3】上記第1実施例の光学式エンコーダの固定回折
板及び移動回折板を通過した回折光の波形であって、
(a)は基本波と2倍周波とが干渉した波の波形を示
し、(b)は基本波の波形及び2倍周波の波形を示す。
FIG. 3 is a waveform of diffracted light that has passed through a fixed diffraction plate and a moving diffraction plate of the optical encoder of the first embodiment,
(A) shows the waveform of a wave in which the fundamental wave and the double frequency interfere with each other, and (b) shows the waveform of the fundamental wave and the waveform of the double frequency.

【図4】本発明の第2実施例に係る光学式エンコーダの
概略構成図である。
FIG. 4 is a schematic configuration diagram of an optical encoder according to a second embodiment of the present invention.

【図5】上記第2実施例の光学式エンコーダの固定回折
板及び移動回折板を通過した回折光の波形であって、
(a)は振幅が0である基本波の波形を示し、(b)は
2倍周波の波形を示す。
FIG. 5 is a waveform of diffracted light that has passed through the fixed diffractive plate and the moving diffractive plate of the optical encoder of the second embodiment.
(A) shows the waveform of the fundamental wave whose amplitude is 0, (b) shows the double frequency waveform.

【図6】本発明の第3実施例に係る光学式エンコーダの
概略構成図である。
FIG. 6 is a schematic configuration diagram of an optical encoder according to a third embodiment of the present invention.

【図7】上記第3実施例の光学式エンコーダの固定回折
板及び移動回折板を通過した回折光の波形であって、
(a)は振幅が0である基本波の波形を示し、(b)は
2倍周波の波形を示す。
FIG. 7 is a waveform of diffracted light that has passed through a fixed diffraction plate and a moving diffraction plate of the optical encoder of the third embodiment,
(A) shows the waveform of the fundamental wave whose amplitude is 0, (b) shows the double frequency waveform.

【図8】本発明の第2実施例〜第4実施例における位相
格子の形状を決定するための計算の基準となる重心を説
明する説明図である。
FIG. 8 is an explanatory diagram illustrating a center of gravity serving as a calculation reference for determining the shape of the phase grating in the second to fourth embodiments of the present invention.

【図9】本発明の第4実施例に係る光学式エンコーダの
概略構成図である。
FIG. 9 is a schematic configuration diagram of an optical encoder according to a fourth embodiment of the present invention.

【図10】従来例の光学式エンコーダの概略構成図であ
る。
FIG. 10 is a schematic configuration diagram of a conventional optical encoder.

【符号の説明】[Explanation of symbols]

1 光源 2 コリメートレンズ 3A,3B,3C,3D 固定格子板 4A,4b,4c,4d 移動格子板 5 集合レンズ 6 光検出器 7 光検出部 8 周波数弁別フィルター 1 Light Source 2 Collimating Lens 3A, 3B, 3C, 3D Fixed Lattice Plate 4A, 4b, 4c, 4d Moving Lattice Plate 5 Collective Lens 6 Photodetector 7 Photodetector 8 Frequency Discrimination Filter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コヒーレントな光を出射する光源と、該
光源から出射された光の光軸に対して略垂直で且つ互い
に平行に設けられており主として±1次の回折光のみを
通過させる位相格子を有する固定回折板及び移動回折板
と、該固定回折板及び移動回折板を通過した光を受光す
る光検出器と、上記固定回折板及び移動回折板を通過し
た±1次の回折光を上記光検出器の光検出部に集光させ
る集光レンズとを備えていることを特徴とする光学式エ
ンコーダ。
1. A light source that emits coherent light and a phase that is provided substantially perpendicular to and parallel to the optical axis of the light emitted from the light source and that mainly passes only ± 1st-order diffracted light. A fixed diffractive plate and a moving diffractive plate having a grating, a photodetector for receiving the light passing through the fixed diffractive plate and the moving diffractive plate, and ± 1st order diffracted light passing through the fixed diffractive plate and the moving diffractive plate. An optical encoder, comprising: a condenser lens for condensing the light on the photodetection section of the photodetector.
【請求項2】 上記固定回折板及び移動回折板は共に矩
形波状の位相格子を有しており、該位相格子の矩形波の
山と谷とは対称な形状を有し且つ山と谷との段差dは、 d=(1/2)×λ×(1+2m)×(1/|n−n0
|) (ただしm=0,±1,…、λ=光源から出射される光
の波長,n=固定回折板及び移動回折板を構成する材料
の屈折率、n0 =固定回折板と移動回折板との間の媒体
の屈折率)になるように設定されていることを特徴とす
る請求項1に記載の光学式エンコーダ。
2. The fixed diffractive plate and the movable diffractive plate both have a rectangular wave-shaped phase grating, and the peaks and valleys of the rectangular wave of the phase grating have a symmetrical shape and the peaks and valleys. The step d is d = (1/2) × λ × (1 + 2m) × (1 / | n−n 0
│) (where m = 0, ± 1, ..., λ = wavelength of light emitted from the light source, n = refractive index of the material forming the fixed diffraction plate and the moving diffraction plate, n 0 = fixed diffraction plate and moving diffraction plate The optical encoder according to claim 1, wherein the optical encoder is set to have a refractive index of a medium between the plate and the plate.
【請求項3】 上記固定回折板及び移動回折板は共に正
弦波状の位相格子を有しており、該位相格子の正弦波の
山と谷との段差dは、 d=(1/2)×λ×(1/|n−n0 |)÷(1−2
/π) (ただしm=0,±1,…、λ=光源から出射される光
の波長,n=固定回折板及び移動回折板を構成する材料
の屈折率、n0 =固定回折板と移動回折板との間の媒体
の屈折率)になるように設定されていることを特徴とす
る請求項1に記載の光学式エンコーダ。
3. The fixed diffractive plate and the moving diffractive plate both have a sinusoidal phase grating, and the step d between the peak and the valley of the sinusoidal wave of the phase grating is d = (1/2) × λ × (1 / | n−n 0 |) ÷ (1-2
/ Π) (where m = 0, ± 1, ..., λ = wavelength of light emitted from the light source, n = refractive index of the material forming the fixed diffraction plate and the moving diffraction plate, n 0 = moving with the fixed diffraction plate The optical encoder according to claim 1, wherein the optical encoder is set to have a refractive index of a medium between the diffractive plate and the medium.
【請求項4】 上記固定回折板及び移動回折板は共に三
角形波状の位相格子を有しており、該位相格子の三角波
の山と谷とは対称な形状を有し且つ山と谷との段差d
は、 d=λ×(1/|n−n0 |) (ただしm=0,±1,…、λ=光源から出射される光
の波長,n=固定回折板及び移動回折板を構成する材料
の屈折率、n0 =固定回折板と移動回折板との間の媒体
の屈折率)になるように設定されていることを特徴とす
る請求項1に記載の光学式エンコーダ。
4. The fixed diffractive plate and the moving diffractive plate both have a triangular wave phase grating, and the peaks and valleys of the triangular wave of the phase grating have a symmetrical shape and the step between the peaks and valleys. d
Is d = λ × (1 / | n−n 0 |) (where m = 0, ± 1, ..., λ = wavelength of light emitted from the light source, n = constitutes a fixed diffraction plate and a moving diffraction plate The optical encoder according to claim 1, wherein the refractive index of the material is set to n 0 = the refractive index of the medium between the fixed diffraction plate and the moving diffraction plate).
JP04197271A 1992-07-23 1992-07-23 Optical encoder Expired - Fee Related JP3108203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04197271A JP3108203B2 (en) 1992-07-23 1992-07-23 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04197271A JP3108203B2 (en) 1992-07-23 1992-07-23 Optical encoder

Publications (2)

Publication Number Publication Date
JPH0642981A true JPH0642981A (en) 1994-02-18
JP3108203B2 JP3108203B2 (en) 2000-11-13

Family

ID=16371696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04197271A Expired - Fee Related JP3108203B2 (en) 1992-07-23 1992-07-23 Optical encoder

Country Status (1)

Country Link
JP (1) JP3108203B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113316A (en) * 1995-05-08 1997-05-02 Matsushita Electric Ind Co Ltd Optical encoder
US6703601B2 (en) 1997-02-21 2004-03-09 Fanuc, Ltd. Motion detection of an optical encoder by converging emitted light beams
WO2005085767A1 (en) * 2004-03-03 2005-09-15 Mitsubishi Denki Kabushiki Kaisha Optical encoder
JP2015055532A (en) * 2013-09-11 2015-03-23 株式会社オプトニクス精密 Reflection encoder device
US9857458B2 (en) 2012-12-18 2018-01-02 Philips Lighting Holding B.V. Controlling transmission of pulses from a sensor
CN112118890A (en) * 2018-05-16 2020-12-22 博放医疗有限公司 Apparatus and method for directing energy from a multi-element source

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113316A (en) * 1995-05-08 1997-05-02 Matsushita Electric Ind Co Ltd Optical encoder
US6703601B2 (en) 1997-02-21 2004-03-09 Fanuc, Ltd. Motion detection of an optical encoder by converging emitted light beams
WO2005085767A1 (en) * 2004-03-03 2005-09-15 Mitsubishi Denki Kabushiki Kaisha Optical encoder
CN100445698C (en) * 2004-03-03 2008-12-24 三菱电机株式会社 Optical encoder
US7470892B2 (en) 2004-03-03 2008-12-30 Mitsubishi Denki Kabushiki Kaisha Optical encoder
US9857458B2 (en) 2012-12-18 2018-01-02 Philips Lighting Holding B.V. Controlling transmission of pulses from a sensor
JP2015055532A (en) * 2013-09-11 2015-03-23 株式会社オプトニクス精密 Reflection encoder device
CN112118890A (en) * 2018-05-16 2020-12-22 博放医疗有限公司 Apparatus and method for directing energy from a multi-element source
CN112118890B (en) * 2018-05-16 2023-12-26 博放医疗有限公司 Apparatus and method for directing energy from a multi-element source

Also Published As

Publication number Publication date
JP3108203B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
JP3407477B2 (en) Phase grating, manufacturing method thereof, and optical encoder
JP2501714B2 (en) Interference position measuring device
JPH0697171B2 (en) Displacement measuring device
JP3158878B2 (en) Optical encoder
JP3254737B2 (en) encoder
JPH08261724A (en) Length or angle measuring instrument
JP3641316B2 (en) Optical encoder
JP3108203B2 (en) Optical encoder
JP3312086B2 (en) Encoder device
JPS59224515A (en) Optical encoder
JP3198789B2 (en) Optical encoder
JP2018096807A (en) Photoelectric encoder
JP3247791B2 (en) Encoder device
JP3199549B2 (en) Encoder device
JP3256628B2 (en) Encoder device
JPS5999219A (en) Encoder using diffraction grating
JPH0521485B2 (en)
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
JPH0151926B2 (en)
JPH0521486B2 (en)
JPS6210641Y2 (en)
JP2822225B2 (en) Optical displacement detector
JPH0638048B2 (en) Reflective encoder
JP2002188942A (en) Optical encoder
JPH03113316A (en) Optical displacement detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

LAPS Cancellation because of no payment of annual fees