JPH0642190Y2 - Infrared thermometer - Google Patents

Infrared thermometer

Info

Publication number
JPH0642190Y2
JPH0642190Y2 JP3426485U JP3426485U JPH0642190Y2 JP H0642190 Y2 JPH0642190 Y2 JP H0642190Y2 JP 3426485 U JP3426485 U JP 3426485U JP 3426485 U JP3426485 U JP 3426485U JP H0642190 Y2 JPH0642190 Y2 JP H0642190Y2
Authority
JP
Japan
Prior art keywords
temperature
opening
infrared
cover body
infrared sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3426485U
Other languages
Japanese (ja)
Other versions
JPS61149843U (en
Inventor
大 山野
幸徳 桑野
敏昭 横尾
賢一 柴田
孝介 竹内
敏晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3426485U priority Critical patent/JPH0642190Y2/en
Publication of JPS61149843U publication Critical patent/JPS61149843U/ja
Application granted granted Critical
Publication of JPH0642190Y2 publication Critical patent/JPH0642190Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ)産業上の利用分野 本考案は赤外線測温計に関する。[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to an infrared thermometer.

(ロ)従来の技術 従来のこの種の測温計としては実願昭59−21205号に記
載されているものがある。斯る測温計は被測温部からの
赤外線を受光して被測温部の温度に応じた信号を出力す
る赤外線センサと、該赤外線センサの出力により被測温
部の温度を表示する表示部と、被測温部に対し上記赤外
線センサを離間配置すべき位置を決定するための位置決
定手段とを備え、該位置決定手段を互いに可視光が交叉
する第1、第2光源から構成し、斯る交叉点を被測温部
上に位置せしめるようにして上記赤外線センサを離間配
置すべき位置を決定する構成であり、被測温部の温度を
非接触状態で正確に測定できる位置へ赤外線センサを簡
単に配置することができる。
(B) Conventional technology As a conventional thermometer of this type, there is one described in Japanese Patent Application No. 59-21205. Such a thermometer is an infrared sensor that receives infrared rays from the temperature-measured part and outputs a signal according to the temperature of the temperature-measured part, and a display that displays the temperature of the temperature-measured part by the output of the infrared sensor. And a position determining means for determining a position where the infrared sensor should be spaced apart from the temperature-measured portion, and the position determining means is composed of first and second light sources in which visible light intersects with each other. , A structure for determining the position where the infrared sensor should be spaced apart by arranging such an intersection point on the temperature-measuring part, and to a position where the temperature of the temperature-measuring part can be accurately measured in a non-contact state. The infrared sensor can be easily arranged.

(ハ)考案が解決しようとする問題点 然るに、従来の測温計では発光ダイオード等の光源から
なる光学系を用いて被測温部と赤外線センサとを所定距
離離間配置する構成となっているため装置が大型化する
という欠点があった。
(C) Problems to be Solved by the Invention However, in the conventional thermometer, the optical system including the light source such as the light emitting diode is used to dispose the temperature measured portion and the infrared sensor at a predetermined distance. Therefore, there is a drawback that the device becomes large.

本考案は上記欠点を解決すると共に、被測温部の温度上
昇を抑え短時間で精度の良い測定を行なえるようにする
ことを目的とする。
It is an object of the present invention to solve the above-mentioned drawbacks and to suppress the temperature rise of the temperature-measured part so that accurate measurement can be performed in a short time.

(ニ)問題点を解決するための手段 本考案は一端に開口を有する非透光材料からなる筐体
と、前記筐体内において前記開口に対向配設される赤外
線センサとを備えるものにおいて、一端開口部が前記開
口部に連設され他端開口が赤外線センサから所定距離だ
け離間するカバー体を設け、このカバー体の周面に透孔
を有することで上記問題点を解決したものである。
(D) Means for Solving the Problems The present invention comprises a housing made of a non-translucent material having an opening at one end, and an infrared sensor arranged in the housing so as to face the opening. The above-mentioned problem is solved by providing a cover body in which the opening portion is connected to the opening portion and the other end opening is separated from the infrared sensor by a predetermined distance, and a through hole is provided in the peripheral surface of the cover body.

(ホ)作用 上記手段により、カバー体の他端開口を被測温部に当接
せしめることにより赤外線センサと被測温部とを所定距
離だけ離間配置できると共にカバー体の透孔により空気
の流通が生じ、被測温部の昇温が少なくなり、温度が速
やかに安定する。
(E) Action By the above means, the other end opening of the cover body is brought into contact with the temperature-measuring portion so that the infrared sensor and the temperature-measuring portion can be spaced apart from each other by a predetermined distance, and air can be circulated by the through hole of the cover body. Occurs, the temperature rise in the temperature-measured part is reduced, and the temperature quickly stabilizes.

(ヘ)実施例 本考案の一実施例を第1図〜第8図に従い説明する。(F) Embodiment An embodiment of the present invention will be described with reference to FIGS.

(1)は非透光性材料からなる筐体であり、該筐体は下
面に開口(2)を有している。(3)は一端開口部が上
記開口(2)部に一体的に連設され他端を開口(9)し
たカバー体で、開口(3a)端はゴム等の弾性材からなる
当接部材(8)で被われている。(10)…はカバー体
(3)の側面に形成した透孔で、各透孔はメッシュ状に
形成している。(4)は筐体(1)内に開口(2)より
所定距離L離間して配された赤外線センサであり、該セ
ンサの後述する窓(13)は上記筐体(1)の開口(2)
面と対向する。(5)は例えば液晶表示装置からなる表
示部であり、該表示部は上記筐体(1)の上面に装着さ
れている。(6)は上記筐体(1)内において赤外線セ
ンサ(4)と表示部(5)との間に配された回路基板で
あり、該回路基板には赤外線センサ(4)からの検出信
号に基づいて被測温部の温度を検出すると共にその検出
温度を表示部(5)に表示させるために必要な回路部品
が装着されている。(7)は被測温部の温度測定開始を
指示するスイッチ手段であり、該スイッチの操作部は筐
体(1)の側面から突設される。
(1) is a housing made of a non-translucent material, and the housing has an opening (2) on the lower surface. (3) is a cover body having an opening at one end integrally connected to the opening (2) and an opening (9) at the other end, and an abutting member (at the end of the opening (3a) made of an elastic material such as rubber ( Covered in 8). (10) ... are through holes formed on the side surface of the cover body (3), and each through hole is formed in a mesh shape. Reference numeral (4) is an infrared sensor disposed in the housing (1) at a predetermined distance L from the opening (2), and a window (13) of the sensor, which will be described later, is provided in the opening (2) of the housing (1). )
Face to face. Reference numeral (5) is a display section made of, for example, a liquid crystal display device, and the display section is mounted on the upper surface of the housing (1). (6) is a circuit board disposed between the infrared sensor (4) and the display section (5) in the housing (1), and the circuit board is provided with a detection signal from the infrared sensor (4). Circuit components necessary for detecting the temperature of the temperature-measured portion on the basis of the temperature and displaying the detected temperature on the display portion (5) are mounted. (7) is a switch means for instructing the start of temperature measurement of the temperature-measured part, and the operation part of the switch is provided so as to project from the side surface of the housing (1).

第4図及び第5図は上記赤外線センサ(4)を示し、
(11)は金属製のヘッダ(12)及び窓(13)を有するキ
ャップ(14)とからなるセンサケース、(15)は上記窓
(13)を被うようにキャップ(14)に固着された赤外線
透過フィルタ、(16)は上記窓(13)に対向してセンサ
ケース(11)内に配された焦電型の赤外線検出体であ
り、該検出体は入射赤外線変化量に基づいて電荷を発生
するタンタル酸リチウム(LiTaO3)単結晶からなる。
(17)は上記検出体に入射する赤外線を変化せしめるチ
ョッパ機構であり、該チョッパ機構は1対の圧電振動体
(18)(19)及び該振動体(18)(19)の各々の端部に
固定された一対の対向体(20)(21)からなっている。
また斯る対向体(20)(21)には各々赤外線を通過せし
める複数の同形状、同寸法のスリット(22)(22)…が
形成されている。
4 and 5 show the infrared sensor (4),
(11) is a sensor case consisting of a metal header (12) and a cap (14) having a window (13), and (15) is fixed to the cap (14) so as to cover the window (13). An infrared transmission filter, (16) is a pyroelectric infrared detector disposed inside the sensor case (11) facing the window (13), and the detector generates electric charge based on the incident infrared ray change amount. It consists of the generated lithium tantalate (LiTaO 3 ) single crystal.
(17) is a chopper mechanism for changing the infrared rays incident on the detection body. The chopper mechanism comprises a pair of piezoelectric vibrating bodies (18) (19) and end portions of the vibrating bodies (18) (19). It is composed of a pair of opposed bodies (20) (21) fixed to the.
Further, a plurality of slits (22) (22) ... Having the same shape and the same size for passing infrared rays are formed in the facing members (20) (21).

而して、上記振動体(18)(19)は互いに逆方向(第5
図中A又はB方向)に周期的に振動し、これにより上記
対向体(20)(21)は相対的位置関係が周期的に変化
し、上記対向体(20)(21)の各々のスリット(22)
(22)…が重畳し合って開放する状態と各々のスリット
(22)(22)が重畳し合わず閉塞する状態とが繰返され
る。すると、上記重畳する状態においては被測温部から
の赤外線が筐体(1)の開口(2)を通りセンサケース
(11)の赤外線透過フィルタ(15)及び両対向体(20)
(21)のスリット(22)(22)…を経て上記赤外線検出
体(16)に入射し、一方上記重畳しない状態においては
対向体(20)(21)からの赤外線のみが上記赤外線検出
体(16)に入射し、よって赤外線検出体(16)は入射赤
外線量が周期的に変化し、上記被測温部の温度と上記対
向体(20)(21)の温度との温度差に応じた信号を出力
する。
Thus, the vibrating bodies (18) and (19) are opposite to each other (fifth direction).
It periodically oscillates in the A or B direction in the figure, whereby the relative positional relationship of the facing members (20) (21) changes periodically, and the slits of the facing members (20) (21) are changed. (twenty two)
The state in which (22) ... Are overlapped and opened, and the state in which the slits (22, 22) are closed without being overlapped are repeated. Then, in the superposed state, infrared rays from the temperature-measuring part pass through the opening (2) of the housing (1) and the infrared transmission filter (15) of the sensor case (11) and both opposing bodies (20).
After entering the infrared detector (16) through the slits (22) (22) of (21), only infrared rays from the opposing bodies (20) (21) enter the infrared detector (16) in the non-superimposed state. 16), so that the amount of incident infrared rays of the infrared detector (16) changes periodically, depending on the temperature difference between the temperature of the temperature-measured part and the temperatures of the opposing bodies (20) (21). Output a signal.

第6図は上記センサ(4)を含めた被測温部の温度測定
のための回路(31)を示す。尚、センサ(4)以外の部
分は上記回路基板(6)に装着されている。
FIG. 6 shows a circuit (31) including the sensor (4) for measuring the temperature of the temperature-measured part. The parts other than the sensor (4) are mounted on the circuit board (6).

図中、(32)は赤外線検出体(16)に接続されたインピ
ーダンス変換回路であり、該変換回路は1010〜1011Ωの
高入力抵抗(33)と、FET(34)と、約10KΩの出力抵抗
(35)とからなる。また、上記FET(34)のソースから
被測温部の温度と上記対向体(20)(21)の温度との温
度差に応じた信号が出力され、又ドレインには直流電圧
Vが印加されている。(36)は発振器であり、該発振器
から第7図(a)に示す如きパルス状電圧が発せられ
る。(37)は増幅器であり、該増幅器は上記電圧を増幅
して上記振動体(18)(19)に印加する。これにより、
上記振動体(18)(19)は上述の如くA、B方向に振動
し、よって上記温度差に応じた信号がセンサ(4)より
出力される。また斯る信号は実際は第7図(b)又は
(c)の如き交流eをなし、その振幅が上記温度差に応
じたものとなっている。(38)(39)は夫々フィルタ増
幅器及び同期検波器であり、上記交流信号eはフィルタ
増幅器(38)を介して上記検波器(39)に入力されると
共に斯る検波器(39)は上記交流信号eと上記発振器
(36)の出力との同期をとり、被測温部の温度が対向体
(20)(21)の温度より高い場合はその温度差に応じた
正の直流信号を検波出力し、被測温部の温度が対向体
(20)(21)の温度より低い場合はその温度差に応じた
負の直流信号を検波出力する。即ち、上記交流信号eと
しては、被測温部の温度が対向体(20)(21)の温度よ
り高いと第7図(b)のように正側半サイクルe+が発
振器(36)出力の正側半サイクルV+と一致し、被測温
部の温度が対向体(20)(21)の温度より低いと第7図
(c)のように負側半サイクルe−が発振器(36)出力
の正側半サイクルV+と一致する。そして、上記検波器
(39)からは、前者の一致がとれると被測温部の温度と
対向体(20)(21)の温度との温度差に応じた正の直流
信号が出力され、後者の一致がとれると斯る温度差に応
じた正の直流信号が出力され、後者の一致がとれると斯
る温度差に応じた負の直流信号が出力される。(40)
(41)は直流増幅器及び合成回路であり、上記検波器
(39)からの出力は直流増幅器(40)を介して合成回路
(41)に入力される。また上記合成回路(41)には上記
センサ(4)内に設けられている側温ダイオード(42)
からの出力が直流増幅器(43)を介して入力される。尚
該ダイオードの出力は対向体(20)(21)の温度に応じ
た信号である。そして、上記合成回路(41)はこれら2
つの入力を加算し実際の被測温部の温度に応じた信号を
出力する。(44)(45)は直流増幅器及びA−D変換器
であり、上記合成回路(41)より出力された信号は直流
増幅器(44)を介してA−D変換器(45)に入力され、
斯る変換器(45)にてデジタル信号に変換されて出力さ
れる。(46)は表示駆動回路であり、該回路は上記デジ
タル信号に基づいて上記表示部(5)に測定された温度
を表示する。
In the figure, (32) is an impedance conversion circuit connected to the infrared detector (16), and the conversion circuit has a high input resistance of 10 10 to 10 11 Ω (33), a FET (34), and about 10 KΩ. It consists of an output resistance (35). In addition, a signal corresponding to the temperature difference between the temperature of the temperature-measured part and the temperature of the opposing body (20) (21) is output from the source of the FET (34), and a DC voltage V is applied to the drain. ing. Reference numeral (36) is an oscillator, and a pulsed voltage as shown in FIG. 7 (a) is emitted from the oscillator. (37) is an amplifier, which amplifies the voltage and applies it to the vibrating bodies (18) and (19). This allows
The vibrating bodies (18) and (19) vibrate in the A and B directions as described above, so that a signal corresponding to the temperature difference is output from the sensor (4). Further, such a signal actually forms an alternating current e as shown in FIG. 7 (b) or (c), and its amplitude corresponds to the temperature difference. (38) and (39) are a filter amplifier and a synchronous detector, respectively, and the AC signal e is input to the detector (39) via the filter amplifier (38) and the detector (39) is Synchronizing the AC signal e with the output of the oscillator (36), if the temperature of the temperature-measured part is higher than the temperature of the facing body (20) (21), a positive DC signal corresponding to the temperature difference is detected. When the temperature of the temperature-measured part is lower than the temperature of the opposing body (20) (21), a negative DC signal corresponding to the temperature difference is detected and output. That is, as the AC signal e, when the temperature of the temperature-measured part is higher than the temperature of the opposing body (20) (21), the positive half cycle e + is the output of the oscillator (36) as shown in FIG. 7 (b). If the temperature of the temperature-measured part is lower than the temperature of the opposing body (20) (21), which coincides with the positive half-cycle V +, the negative half-cycle e- is output from the oscillator (36) as shown in Fig. 7 (c). Coincides with the positive half cycle V + of. The detector (39) outputs a positive DC signal corresponding to the temperature difference between the temperature of the temperature-measured part and the temperature of the opposing bodies (20) and (21) when the former coincides with the latter, and the latter. When the two match, the positive DC signal corresponding to the temperature difference is output, and when the latter match, the negative DC signal corresponding to the temperature difference is output. (40)
(41) is a DC amplifier and a synthesis circuit, and the output from the detector (39) is input to the synthesis circuit (41) via the DC amplifier (40). Further, in the synthesizing circuit (41), the side temperature diode (42) provided in the sensor (4) is provided.
The output from is input through the DC amplifier (43). The output of the diode is a signal corresponding to the temperature of the opposing bodies (20) (21). Then, the synthesizing circuit (41) is
The two inputs are added and a signal corresponding to the actual temperature of the temperature-measured part is output. (44) and (45) are a DC amplifier and an A-D converter, and the signal output from the synthesizing circuit (41) is input to the A-D converter (45) via the DC amplifier (44).
The converter (45) converts the digital signal and outputs the digital signal. (46) is a display drive circuit, and the circuit displays the measured temperature on the display section (5) based on the digital signal.

さて、本実施例装置を用いての温度測定を行なうに際し
ては、まず第2図に示す如くカバー体(3)の開口
(9)端の当接部(8)を被測温部(47)に当接せしめ
る。これにより、赤外線センサ(4)と被測温部(47)
とが所定距離Lだけ離間配置できる。そしてスイッチ手
段(7)をオンすると、温度測定回路(31)が動作し、
上記被測温部の正確な温度が測定される。
When measuring the temperature using the apparatus of this embodiment, first, as shown in FIG. 2, the contact portion (8) at the end of the opening (9) of the cover body (3) is connected to the temperature measurement target portion (47). Abut. As a result, the infrared sensor (4) and the temperature measurement part (47)
And can be spaced apart by a predetermined distance L. When the switch means (7) is turned on, the temperature measuring circuit (31) operates,
The accurate temperature of the temperature measured part is measured.

この温度測定において、カバー体(3)に透孔(10)…
を形成していることにより、透孔(10)…を通して外部
と内部との間の空気流通が生じ、被測温部(47)の温度
上昇が減少し、測定温度の安定に要する時間が短くな
る。この安定までの時間はカバー体(3)側面の開孔率
と相関関係があり、これを第8図に示す。
In this temperature measurement, the cover body (3) has through holes (10) ...
Due to the formation of air, air flow occurs between the outside and the inside through the through holes (10), the temperature rise of the temperature-measured part (47) is reduced, and the time required to stabilize the measured temperature is shortened. Become. The time until this stabilization has a correlation with the open area ratio of the side surface of the cover body (3), and this is shown in FIG.

また、上記赤外線センサ(4)の検知範囲(48)は上記
筐体(1)及びカバー体(3)と接しない方が好まし
い。これは筐体(1)を被測温部(47)に当接せしめた
状態では被測温部(47)からの熱伝導により筐体(1)
が加熱され被測温部(47)の正確な温度が測定できない
ためである。
Further, the detection range (48) of the infrared sensor (4) is preferably not in contact with the housing (1) and the cover body (3). This is due to heat conduction from the temperature-measured part (47) when the case (1) is in contact with the temperature-measured part (47).
This is because the temperature is heated and the accurate temperature of the temperature measured part (47) cannot be measured.

尚、本考案は上記実施例に限定されるものではなく、第
9図の如くパイプ(49)…を組むことで透孔(10A)…
を有するカバー体(3A)を構成しても良い。又、筐体
(1)とカバー体(3B)との連設構造は第10図の如くで
あっても良い。
The present invention is not limited to the above embodiment, but the through hole (10A) can be formed by assembling the pipe (49) as shown in FIG.
You may comprise the cover body (3A) which has. Further, the continuous structure of the housing (1) and the cover body (3B) may be as shown in FIG.

(ト)効果 上記の如く構造される本考案に依れば、カバー体によっ
て被測温部と赤外線センサとの所定距離の離間を簡単に
行なえ装置を小型化できると共にカバー体の透孔により
温度の安定を速やかに行なえる等効果が大きい。
(G) Effect According to the present invention constructed as described above, the cover body can easily separate the temperature-measured part and the infrared sensor by a predetermined distance, and the size of the device can be reduced, and the temperature of the cover body can be increased by the through hole. It is very effective in that it can quickly stabilize.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第8図は本考案の実施例を示し、第1図は外観
斜視図、第2図は断面図、第3図は底面図、第4図、第
5図は部品の断面図、上面図、第6図は電気回路図、第
7図は波形図、第8図は特性図、第9図、第10図は互い
に異なる本考案他の実施例の斜視図、断面図である。 (1)……筐体、(2)……開口、(3)……カバー
体、(4)……赤外線センサ、(9)……開口、(10)
……透孔。
1 to 8 show an embodiment of the present invention, FIG. 1 is an external perspective view, FIG. 2 is a sectional view, FIG. 3 is a bottom view, FIG. 4 and FIG. 5 are sectional views of parts. FIG. 6 is an electric circuit diagram, FIG. 7 is a waveform diagram, FIG. 8 is a characteristic diagram, and FIGS. 9 and 10 are perspective views and sectional views of other embodiments of the present invention which are different from each other. . (1) ... Case, (2) ... Aperture, (3) ... Cover, (4) ... Infrared sensor, (9) ... Aperture, (10)
…… Through hole.

フロントページの続き (72)考案者 柴田 賢一 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)考案者 竹内 孝介 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)考案者 田中 敏晴 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continued (72) Kenichi Shibata 2-18 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Kosuke Takeuchi 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Co., Ltd. (72) Creator Toshiharu Tanaka 2-18 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一端に開口を有する非透光材料からなる筐
体と、前記筐体内において前記開口に対向配設される赤
外線センサとを備えるものにおいて、一端開口部が前記
開口部に連設され他端開口が赤外線センサから所定距離
だけ離間するカバー体を設け、このカバー体の周面に透
孔を有したことを特徴とする赤外線測温計。
1. A housing including a housing made of a non-translucent material having an opening at one end, and an infrared sensor arranged to face the opening in the housing, the opening at one end being connected to the opening. An infrared thermometer having a cover body having the other end opening separated from the infrared sensor by a predetermined distance, and having a through hole on the peripheral surface of the cover body.
JP3426485U 1985-03-11 1985-03-11 Infrared thermometer Expired - Lifetime JPH0642190Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3426485U JPH0642190Y2 (en) 1985-03-11 1985-03-11 Infrared thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3426485U JPH0642190Y2 (en) 1985-03-11 1985-03-11 Infrared thermometer

Publications (2)

Publication Number Publication Date
JPS61149843U JPS61149843U (en) 1986-09-16
JPH0642190Y2 true JPH0642190Y2 (en) 1994-11-02

Family

ID=30537471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3426485U Expired - Lifetime JPH0642190Y2 (en) 1985-03-11 1985-03-11 Infrared thermometer

Country Status (1)

Country Link
JP (1) JPH0642190Y2 (en)

Also Published As

Publication number Publication date
JPS61149843U (en) 1986-09-16

Similar Documents

Publication Publication Date Title
US4233512A (en) Thermometer for remotely measuring temperature
JPH01116419A (en) Infrared detector
JPH0642190Y2 (en) Infrared thermometer
JPH0642189Y2 (en) Infrared thermometer
JPH0642187Y2 (en) Infrared thermometer
JPH0642188Y2 (en) Infrared thermometer
US4617438A (en) Apparatus with an infrared ray detecting temperature sensor
JPH0642186Y2 (en) Non-contact thermometer
JPH0642185Y2 (en) Non-contact thermometer
JPS622246B2 (en)
JPH0511775B2 (en)
JPH03186722A (en) Infrared detector
JPH0660850B2 (en) Infrared detector
JPH03186723A (en) Infrared detector
JPH05833Y2 (en)
JPS61205829A (en) Infrared thermometer
JPS6219728A (en) Radiation thermometer
JPS63170710U (en)
JPS6140521A (en) Infrared temperature sensor
JPH0230740Y2 (en)
JPS601389Y2 (en) infrared detection device
JPH08178754A (en) Clinical thermometer
JPH07318432A (en) Light chopper
JPS6017711Y2 (en) small electronic thermometer
JPS61254825A (en) Pyroelectricity sensor