JPH0641214A - Method of plasma-initiated polymerization - Google Patents

Method of plasma-initiated polymerization

Info

Publication number
JPH0641214A
JPH0641214A JP21973292A JP21973292A JPH0641214A JP H0641214 A JPH0641214 A JP H0641214A JP 21973292 A JP21973292 A JP 21973292A JP 21973292 A JP21973292 A JP 21973292A JP H0641214 A JPH0641214 A JP H0641214A
Authority
JP
Japan
Prior art keywords
plasma
monomer
polymerization
polymn
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21973292A
Other languages
Japanese (ja)
Inventor
Satsuki Teshigahara
五月 勅使川原
Masahito Yoshikawa
雅人 吉川
Itsuo Tanuma
逸夫 田沼
Toshio Naito
壽夫 内藤
Yukihiro Kusano
行弘 草野
Setsuo Akiyama
節夫 秋山
Sachiko Okazaki
幸子 岡崎
Masuhiro Kokoma
益弘 小駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP21973292A priority Critical patent/JPH0641214A/en
Publication of JPH0641214A publication Critical patent/JPH0641214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-molecular polymer at a low cost by causing a monomer vapor to generate an ionized gas plasma under a pressure of about 1-atm, causing the plasma to initiate the polymn. of a monomer, and carrying out most part of the polymn. in the absence of the plasma. CONSTITUTION:A monomer (or an aq. soln. or emulsion of the monomer) (e.g. a 50% aq. soln. of acrylamide) 2 is put into a treating chamber 1 where a plasma of the atmospheric pressure is generated; while a gas (e.g. helium) is being supplied through a gas supply pipe 3, voltage from an a.c. supply 4 is applied to a conductive pipe electrode 5 to form a discharge zone between electrodes 5 and 6 to thereby initiate the polymn. in a similar way to the conventional plasma-initiated polymn.; after a plasma is generated for a predetermined time, the gas supply pipe 3 and an exhaust pipe 7 are closed; and while the temp. of the treating chamber 1 is kept constant, the polymn. is conducted. In the above process, an ionized gas plasma is generated under a pressure of 0.2-3atm, pref, about 1atm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モノマーの重合開始を
大気圧プラズマにより行うプラズマ開始重合法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma-initiated polymerization method in which the initiation of polymerization of a monomer is initiated by atmospheric pressure plasma.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来の
プラズマ開始重合法は、液体、固体モノマー又はその水
溶液もしくは乳化液の蒸気に、減圧(0.01〜100
mmHg程度の圧力下)で10〜500Wの電圧を印加
することによってイオン化ガスプラズマを発生させ、こ
のイオン化ガスプラズマによって重合活性種を生成さ
せ、このプラズマ中に発生した重合活性種を液体表面又
は固体表面に接触せしめることにより、液体又は固体モ
ノマー中で重合の成長反応が開始し、所定時間経過後、
最終分子量に達する前の部分重合モノマーに対するイオ
ン化ガスプラズマの接触を停止せしめ、部分重合モノマ
ーをイオン化ガスプラズマの不存在下に後重合せしめる
ものである。即ち、重合の開始反応のみを気相中で行
い、その後の成長及び停止反応を凝縮相(液相又は固
相)内で行うものである。
2. Description of the Related Art The conventional plasma-initiated polymerization method involves reducing the pressure (0.01 to 100) to a vapor of a liquid, a solid monomer or an aqueous solution or emulsion thereof.
An ionized gas plasma is generated by applying a voltage of 10 to 500 W under a pressure of about mmHg), and a polymerization active species is generated by the ionized gas plasma. By bringing it into contact with the surface, the growth reaction of polymerization starts in the liquid or solid monomer, and after a lapse of a predetermined time,
The contact of the ionized gas plasma with the partially polymerized monomer before reaching the final molecular weight is stopped, and the partially polymerized monomer is post-polymerized in the absence of the ionized gas plasma. That is, only the polymerization initiation reaction is carried out in the gas phase, and the subsequent growth and termination reactions are carried out in the condensed phase (liquid phase or solid phase).

【0003】このプラズマ開始重合法は、例えば「長田
ら;J.Polym.Sci,Polym.Lett.
Ed.,16,p309(1978)」、「D.ジョン
ソンら;マクロモレキュール,14,p118(198
1)、特公昭59−25807,同54−118483
号公報に記載されているように、プラズマを短時間接触
させた後、後重合がリビング的に起こることから、重合
反応のすべてがプラズマ中又はプラズマと接触しながら
進む一般的なプラズマ重合とは異なり、出発モノマーの
化学構造を維持したままで可溶性高分子重合体を得るこ
とができるため、反応解析が容易である。また、ラジカ
ル開始剤、無機塩などの不純物を含まない無触媒重合で
あるなどの特徴を有しているため、各種機能性高分子化
合物の開発が期待されている。
This plasma-initiated polymerization method is described, for example, in "Nagata et al .; J. Polym. Sci, Polym. Lett.
Ed. , 16, p309 (1978) "," D. Johnson et al .; Macromolecule, 14, p118 (198).
1), JP-B-59-25807, 54-118483
As described in Japanese Patent Laid-Open Publication No. JP-A No. 2003-242242, after the plasma is contacted for a short time, post-polymerization occurs in a living manner. Differently, a soluble polymer can be obtained while maintaining the chemical structure of the starting monomer, which facilitates reaction analysis. Further, since it has a feature that it is a catalyst-free polymerization that does not contain impurities such as a radical initiator and an inorganic salt, development of various functional polymer compounds is expected.

【0004】上記従来のプラズマ重合法では、重合活性
種を生成するために低温プラズマ(非平衡プラズマ)を
用いているが、低温プラズマは通常10Torr以下の
減圧下で発生するので、従来のプラズマ重合法を工業的
に実施する場合、大型の真空装置が必要となり、このた
め設備費、処理コストが大きくなる。また、重合しよう
とするモノマーの溶液等に減圧下でプラズマを接触させ
るため、モノマー溶液等が蒸発してしまい、このため溶
液の組成に変化が起こり、目的とする重合体が得られな
くなる場合がある。そこで、上記溶液の変化を防止する
ため、液体窒素等を用いてモノマー溶液を凍結するなど
の操作が必要であり、製造工程が繁雑なものであった。
In the above-mentioned conventional plasma polymerization method, low-temperature plasma (non-equilibrium plasma) is used to generate polymerization active species. However, since low-temperature plasma is usually generated under a reduced pressure of 10 Torr or less, the conventional plasma polymerization method is used. When the legal process is carried out industrially, a large vacuum device is required, which increases equipment costs and processing costs. In addition, since plasma is brought into contact with a solution of a monomer to be polymerized under reduced pressure, the monomer solution or the like is evaporated, which causes a change in the composition of the solution, and a target polymer may not be obtained. is there. Therefore, in order to prevent the change in the solution, it is necessary to freeze the monomer solution using liquid nitrogen or the like, and the manufacturing process is complicated.

【0005】本発明は、上記事情に鑑みなされたもの
で、製造が容易で、目的とする重合体を安価にかつ確実
に得ることができるプラズマ開始重合法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma-initiated polymerization method which is easy to produce and which can obtain a desired polymer inexpensively and reliably.

【0006】[0006]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、モノマーを
含む蒸気にイオン化ガスプラズマを発生させることによ
り該モノマーの重合を開始させ、かつプラズマの非存在
下で重合の大部分を完結させるプラズマ開始重合法にお
いて、前記イオン化ガスプラズマの発生を0.2〜3気
圧の圧力、好ましくは1気圧程度の圧力で行うことによ
り、溶媒に可溶な超高分子量重合体を安全に、大量にか
つ効率的、経済的に省エネルギーで製造することができ
ることを知見し、本発明をなすに至った。
Means for Solving the Problems and Actions The inventors of the present invention have conducted extensive studies in order to achieve the above object, and as a result, start the polymerization of the monomer by generating an ionized gas plasma in the vapor containing the monomer, and In the plasma-initiated polymerization method in which most of the polymerization is completed in the absence of plasma, the generation of the ionized gas plasma is carried out at a pressure of 0.2 to 3 atm, preferably at a pressure of about 1 atm so that the solvent can be dissolved. The inventors have found that a soluble ultra-high molecular weight polymer can be produced safely, in large quantities, efficiently, economically and with energy saving, and have completed the present invention.

【0007】以下、本発明を更に詳しく説明すると、本
発明のプラズマ開始重合法は、モノマーを含む蒸気にイ
オン化ガスプラズマを発生させることにより該モノマー
の重合を開始させ、かつプラズマの非存在下で重合の大
部分を完結させるものである。
The present invention will be described in more detail below. In the plasma-initiated polymerization method of the present invention, the polymerization of the monomer is initiated by generating an ionized gas plasma in the vapor containing the monomer, and in the absence of plasma. It completes most of the polymerization.

【0008】ここで、本発明を適用し得るモノマーとし
ては、1個以上の二重結合又は三重結合を有する不飽和
有機化合物を挙げることができる。また、ジエン類及び
一層二重結合数が多いモノマーに対しても適用すること
ができるが、本発明を適用するモノマーとしてはモノエ
チレン型のモノマーが好ましく、そのなかでも特にビニ
ルモノマーが好ましい。ビニルモノマーとして、具体的
にはアクリル酸メチル,アクリル酸エチル,アクリル酸
ブチル,アクリル酸エチルヘキシル,アクリル酸ラウリ
ル,アクリル酸ドデシル,アクリル酸ステアリル,アク
リル酸シクロヘキシル,アクリル酸ベンジル及び同様の
メタクリル酸エステル等のアクリル酸及びメタクリル酸
のアルキルエステル、アクリル酸、アクリル酸2−ヒド
ロキシエチル,アクリル酸ヒドロキシプロピル,アクリ
ル酸ジメチルアミノエチル,アクリル酸ジエチルアミノ
エチル,アクリル酸グリシジル,アクリル酸テトラヒド
ロフルフリル,ジアクリル酸エチレングリコール,ジア
クリル酸1,3−ブチレングリコール,トリアクリル酸
トリメチロールプロパン,アクリル酸ジメチルアミノエ
チルメチルクロライド塩,アクリル酸アリル,アクリル
アミド,アクリルアミド2メチルプロパンスルホン酸,
イソプロピルアクリルアミド等のアクリル酸誘導体、メ
タクリル酸及びアクリル酸誘導体と同様のメタクリル酸
誘導体、上記モノマー同士の共重合体、上記モノマーと
他のビニルモノマーとの共重合体、上記モノマーと非ビ
ニルモノマーとの共重合体、スチレン及びその誘導体、
エチレン,プロピレン等のエチレン系不飽和モノマーな
どが挙げられる。
Here, examples of the monomer to which the present invention can be applied include unsaturated organic compounds having one or more double bonds or triple bonds. Further, although it can be applied to a diene and a monomer having a larger number of double bonds, the monomer to which the present invention is applied is preferably a monoethylene type monomer, and of these, a vinyl monomer is particularly preferable. Specific examples of vinyl monomers include methyl acrylate, ethyl acrylate, butyl acrylate, ethylhexyl acrylate, lauryl acrylate, dodecyl acrylate, stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, and similar methacrylates. Acrylic acid and methacrylic acid alkyl esters, acrylic acid, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, ethylene glycol diacrylate , Diacrylic acid 1,3-butylene glycol, triacrylic acid trimethylolpropane, acrylic acid dimethylaminoethyl methyl chloride salt, acrylic acid ant , Acrylamide, acrylamido 2-methylpropane sulfonic acid,
Acrylic acid derivatives such as isopropyl acrylamide, methacrylic acid and methacrylic acid derivatives similar to acrylic acid derivatives, copolymers of the above monomers, copolymers of the above monomers with other vinyl monomers, of the above monomers and non-vinyl monomers Copolymer, styrene and its derivatives,
Examples include ethylenically unsaturated monomers such as ethylene and propylene.

【0009】上記モノマーは実質上純粋なモノマーの状
態(固体又は液体)又は溶液状、必要に応じて乳化液状
にして使用することができる。溶媒としてはモノマーを
完全に溶解し得るものであれば有機溶媒、無機溶媒のい
ずれも用いることができる。上記モノマーを溶解する有
機溶媒としてはベンゼン,アセトン等のケトン類、メチ
ルアルコール等のアルコール類を挙げることができる。
無機溶媒としては水、二硫化炭素などを挙げることがで
きる。溶液中のモノマー濃度は0.1〜100%(重量
%、以下同じ)、特に10〜60%とすることが好まし
い。
The above-mentioned monomer can be used in a substantially pure monomer state (solid or liquid) or in the form of a solution, and if necessary, in the form of an emulsified liquid. As the solvent, either an organic solvent or an inorganic solvent can be used as long as it can completely dissolve the monomer. Examples of the organic solvent that dissolves the monomer include ketones such as benzene and acetone, and alcohols such as methyl alcohol.
Examples of the inorganic solvent include water and carbon disulfide. The monomer concentration in the solution is preferably 0.1 to 100% (% by weight, the same applies hereinafter), and particularly preferably 10 to 60%.

【0010】乳化液は、上記のモノマーのうち非水溶性
モノマーに乳化剤を含む水性媒体を混合して乳化させた
ものである。乳化剤としては上記モノマーを水性媒体中
で均一に乳化させ得るものであればよく、特に限定され
るものではないが、アルカリ石ケン、有機アミン石ケ
ン、高級アルコール又は芳香族アルコールの硫酸エステ
ルなどの界面活性剤やポリスチレンスルホン酸ソーダ、
部分ケン化ポリ酢酸ビニル、ポリエーテルなどの高分子
化合物が好ましい。また、メタクリル酸ヒドロキシエチ
ルなどのような1分子中に親水性基、疎水性基を含むモ
ノマーも用いることができる。
The emulsion is prepared by mixing a water-insoluble monomer among the above monomers with an aqueous medium containing an emulsifier and emulsifying the mixture. The emulsifier is not particularly limited as long as it can uniformly emulsify the above monomer in an aqueous medium, but is not particularly limited, such as alkali soap, organic amine soap, sulfate of higher alcohol or aromatic alcohol, and the like. Surfactant or sodium polystyrene sulfonate,
Polymer compounds such as partially saponified polyvinyl acetate and polyether are preferred. Also, a monomer containing a hydrophilic group or a hydrophobic group in one molecule such as hydroxyethyl methacrylate can be used.

【0011】乳化剤の使用量は特に限定されないが、水
性媒体中で非水溶性モノマーを乳化するには、通常、全
仕込量に対し0.1%とすることが好ましい。
The amount of the emulsifier to be used is not particularly limited, but in order to emulsify the water-insoluble monomer in an aqueous medium, it is usually preferable to set it to 0.1% based on the total amount charged.

【0012】水性媒体としては水、水とメタノール,エ
タノール,ブタノール等のアルコール類との混合物、水
とアセトン,メチルエチルケトン等のケトン類などとの
混合物が挙げられるが、水を単独で用いることが好まし
い。水性媒体、特に水を使用した場合、重合速度は著し
く大となる。水性媒体中のモノマー濃度は0.1〜90
%、好ましくは1〜65%、更に好ましくは10〜60
%である。一般に水媒体の場合、モノマー濃度が50%
のとき、重合速度が極大となり、それ以下でもそれ以上
でも低下する傾向が見られる。
Examples of the aqueous medium include water, a mixture of water and alcohols such as methanol, ethanol and butanol, and a mixture of water and ketones such as acetone and methyl ethyl ketone. It is preferable to use water alone. . When an aqueous medium, especially water, is used, the polymerization rate will be significantly higher. The monomer concentration in the aqueous medium is 0.1 to 90.
%, Preferably 1-65%, more preferably 10-60
%. Generally, in the case of aqueous medium, the monomer concentration is 50%
At that time, the polymerization rate is maximized, and there is a tendency that the polymerization rate decreases below or above it.

【0013】本発明はモノマーを含む蒸気に0.2〜3
気圧の圧力、好ましくは1気圧程度の圧力でイオン化ガ
スプラズマを発生させることにより該モノマーの重合を
開始させるものであるが、大気圧プラズマを低電圧で安
定的に得るためには、大気圧で放電しやすいガスを用い
ることが好ましい。このようなガスとして具体的にはヘ
リウム,アルゴン,ネオンのような不活性ガス、窒素,
水素等の非重合性ガス、有機物のガスなどの1種又は2
種以上のガスの混合物を用いることができる。このうち
特にヘリウムが好ましく用いられる。更に必要に応じて
上記のガス以外のガスを混入することも可能である。
The present invention uses a vapor containing a monomer of 0.2 to 3
The polymerization of the monomer is started by generating an ionized gas plasma at a pressure of atmospheric pressure, preferably at a pressure of about 1 atm. However, in order to obtain an atmospheric pressure plasma stably at a low voltage, It is preferable to use a gas that is easily discharged. Specific examples of such a gas include helium, argon, an inert gas such as neon, nitrogen,
One or two of non-polymerizable gas such as hydrogen, organic gas, etc.
Mixtures of more than one gas can be used. Of these, helium is particularly preferably used. Further, it is possible to mix a gas other than the above-mentioned gases as necessary.

【0014】これらのガスは必ずしも常温でガス状であ
る必要はなく、供給の方法は放電領域の温度や、常温で
の状態(固体、液体、気体)などにより、選定される。
即ち、放電領域の温度や常温下においてガス状である場
合は、これをそのまま処理容器内へ流入させることがで
き、また、液状である場合には、蒸気圧が比較的高けれ
ばその蒸気をそのまま流入してもよいし、その液体を不
活性ガス等でバブリングして流入してもよい。一方、ガ
ス状でなく、しかも蒸気圧が比較的低い場合には、加熱
することによりガス状又は蒸気圧が高い状態にして用い
ることができる。
These gases do not necessarily have to be gaseous at room temperature, and the supply method is selected depending on the temperature of the discharge region, the state at room temperature (solid, liquid, gas).
That is, if it is gaseous at the temperature of the discharge region or at room temperature, it can be flowed into the processing container as it is, and if it is liquid, if the vapor pressure is relatively high, the vapor can be left as it is. The liquid may be introduced, or the liquid may be bubbled with an inert gas or the like to be introduced. On the other hand, when it is not in a gaseous state and has a relatively low vapor pressure, it can be used in a state of being in a gaseous state or a high vapor pressure by heating.

【0015】本発明に係る大気圧プラズマの発生方法と
しては、大気圧付近の圧力で放電させ得る方法であれ
ば、いかなる方法も採用することができる。電圧の印加
方法は、大きく分けて直流、交流の2通りある。
As a method of generating atmospheric pressure plasma according to the present invention, any method can be adopted as long as it can discharge at a pressure near atmospheric pressure. The voltage application method can be broadly divided into two types: direct current and alternating current.

【0016】交流放電の装置として内部電極型の装置を
採用した場合、安定した大気圧プラズマを容易に得るた
めに電極の少なくとも一方を絶縁体で被覆することが推
奨される。また、処理室がガラス等の絶縁体からなる場
合には外部電極方式を採用することもできる。また、コ
イル型方式による放電や導波管型方式による放電も可能
である。なお、直流放電の場合、電極からの直接の電子
流入により直流放電を形成、安定化させるため、高電圧
印加側電極及び接地側電極共に絶縁体で被覆しない方が
よい。
When an internal electrode type device is adopted as the AC discharge device, it is recommended to cover at least one of the electrodes with an insulator in order to easily obtain stable atmospheric pressure plasma. Further, when the processing chamber is made of an insulating material such as glass, the external electrode method can be adopted. Further, it is also possible to use a coil type discharge or a waveguide type discharge. In the case of direct current discharge, it is preferable that neither the high voltage application side electrode nor the ground side electrode is covered with an insulator in order to form and stabilize direct current discharge by direct electron inflow from the electrode.

【0017】本発明におけるプラズマ開始重合は、上述
の大気圧プラズマを用いて重合を開始させ、かつプラズ
マの不存在下で重合の大部分を完結させるものである。
この場合、プラズマが発生する系内は酸素が除去されて
いることが好ましく、酸素除去手段としては、系内から
酸素を除去し得る方法であればいかなる方法も採用する
ことができる。例えば凍結、脱気を行う、あるいはA
r,He等の不活性気体、N2等の汎用ガスでバブリン
グを行う方法などを用いることができる。
The plasma-initiated polymerization in the present invention is one in which the above-mentioned atmospheric pressure plasma is used to initiate the polymerization, and most of the polymerization is completed in the absence of plasma.
In this case, it is preferable that oxygen is removed from the system where plasma is generated, and any method can be adopted as the oxygen removing means as long as it is a method capable of removing oxygen from the system. For example, freeze, degas, or A
A method of bubbling with an inert gas such as r or He or a general-purpose gas such as N 2 can be used.

【0018】上記モノマーに上記のイオン化ガスプラズ
マを接触させる際の入力エネルギーは、装置の形態など
により一概にはいえないが、一般に1〜3×104Jで
十分である。後重合は、プラズマに接触させた後に上記
乳化溶液を一定の温度下に数時間放置することにより行
う。プラズマ開始期間の重合率は後重合率に比べて著し
く小さく、通常2%を超えない。後重合時間はモノマー
の種類によって異なるので特に限定されない。また、後
重合温度もモノマーの種類によって異なるので限定され
ないが、通常0〜80℃、特に10〜60℃とすること
が好ましい。0℃未満の温度では前述の入力エネルギー
の範囲で後重合を進めることができない場合がある。
The input energy when the ionized gas plasma is brought into contact with the above-mentioned monomer cannot be said unequivocally depending on the form of the apparatus, but generally 1 to 3 × 10 4 J is sufficient. The post-polymerization is performed by bringing the emulsified solution into contact with plasma and then leaving it at a constant temperature for several hours. The polymerization rate during the plasma initiation period is significantly smaller than the post-polymerization rate, and usually does not exceed 2%. The post-polymerization time varies depending on the type of monomer and is not particularly limited. Further, the post-polymerization temperature is also not limited as it varies depending on the kind of the monomer, but is usually 0 to 80 ° C, and particularly preferably 10 to 60 ° C. If the temperature is lower than 0 ° C, the post-polymerization may not be able to proceed within the above-mentioned input energy range.

【0019】本発明で使用するプラズマ重合装置として
は、特に限定されるものではないが、例えば図1に示す
ような装置を用いることができる。この装置において
は、大気圧プラズマを形成させる処理室1に重合させる
モノマー(又はモノマーの水溶液もしくはモノマーの乳
化液)2を収容し、ガス供給管3から上述のガスを供給
すると共に、交流電源4から導電性のパイプ状の電極5
に電圧を印加し、電極5,6間に放電領域を形成し、従
来のプラズマ開始重合法と同様の方法で重合を開始させ
るものである。電極6は接地されている。なお、電極
5,6は絶縁体で被覆した方が好ましい。所定時間プラ
ズマを発生させた後、ガス供給管3、排出管7を閉じ、
処理室1を恒温槽(不図示)に保持し、後重合を行う。
The plasma polymerization apparatus used in the present invention is not particularly limited, but for example, the apparatus shown in FIG. 1 can be used. In this apparatus, a monomer (or an aqueous solution of a monomer or an emulsion of a monomer) 2 to be polymerized is housed in a processing chamber 1 for forming an atmospheric pressure plasma, the above-mentioned gas is supplied from a gas supply pipe 3, and an AC power supply 4 is provided. To conductive pipe-shaped electrode 5
A voltage is applied to the electrodes to form a discharge region between the electrodes 5 and 6, and the polymerization is initiated by the same method as the conventional plasma initiation polymerization method. The electrode 6 is grounded. The electrodes 5 and 6 are preferably covered with an insulator. After the plasma is generated for a predetermined time, the gas supply pipe 3 and the exhaust pipe 7 are closed,
The processing chamber 1 is held in a constant temperature bath (not shown) to carry out post-polymerization.

【0020】[0020]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0021】[実施例1]図1に示したのと同様の装置
を用いて大気圧プラズマを発生させた。パイレックスガ
ラス製の処理室1にアクリルアミドモノマー(AAM)
の50%水溶液20gを入れ、水溶液をヘリウムガスで
1時間バブリングし、溶存酸素を除去すると共に、処理
室1をガス置換した。
Example 1 Atmospheric pressure plasma was generated using the same apparatus as shown in FIG. Acrylamide monomer (AAM) in processing chamber 1 made of Pyrex glass
20 g of a 50% aqueous solution of was added, and the aqueous solution was bubbled with helium gas for 1 hour to remove dissolved oxygen, and the processing chamber 1 was replaced with gas.

【0022】ヘリウムガスを流したままの状態で直径6
mmの銅管からなる電極5,6間に周波数5kHz、電
圧3kVの交流電圧を印加して処理室1に大気圧プラズ
マを60秒間発生させ(入力エネルギー21J)、AA
M水溶液に接触させた。その後、供給管3、排気管7を
閉じ、処理室1を50℃の恒温水槽中に所定時間振とう
しながら入れ、後重合を2時間行ない、その後、容器を
液体窒素で冷却することにより重合を停止した。
Diameter 6 with helium gas still flowing
An AC plasma having a frequency of 5 kHz and a voltage of 3 kV is applied between the electrodes 5 and 6 made of a copper tube of mm to generate atmospheric pressure plasma for 60 seconds in the processing chamber 1 (input energy 21J), and AA
M aqueous solution was contacted. Then, the supply pipe 3 and the exhaust pipe 7 are closed, the processing chamber 1 is placed in a constant temperature water bath at 50 ° C. for a predetermined time with shaking, and post-polymerization is performed for 2 hours, and then the container is cooled with liquid nitrogen to perform polymerization. Stopped.

【0023】得られた重合体を乾燥させ、重量を測定
し、収率(重合率)を求めた。また、GPC(東ソー
製)を用いて分子量を測定した。結果を表1に示す。な
お、表1においてプラズマ発生時の入力エネルギーは
(電力(W)×(時間(秒))から計算した値である。
また、収率は(得られたポリマーの重量)/(仕込んだ
モノマーの重量)から求めた。
The polymer obtained was dried and weighed to determine the yield (polymerization rate). Moreover, the molecular weight was measured using GPC (made by Tosoh Corporation). The results are shown in Table 1. In Table 1, the input energy when plasma is generated is a value calculated from (power (W) × (time (second))).
The yield was determined from (weight of polymer obtained) / (weight of charged monomer).

【0024】[比較例1]実施例1と同様に準備し、
0.1Torrまで減圧した後、凍結のまま13.56
MHzのコントロールユニット付ラジオ波発振装置によ
り、50Wの出力で印加し、プラズマを30秒間発生さ
せた後、実施例1と同様の後重合を行い、同様の測定を
行った。結果を表1に示す。なお、実施例1と入力エネ
ルギーが異なるのは、放電方法が異なるために重合効率
も異なることによる。
Comparative Example 1 Prepared in the same manner as in Example 1,
After reducing the pressure to 0.1 Torr, it remains frozen at 13.56
A radio frequency oscillator with a control unit of MHz was applied at an output of 50 W to generate plasma for 30 seconds, after which the same post-polymerization as in Example 1 was performed and the same measurement was performed. The results are shown in Table 1. Note that the input energy differs from that in Example 1 because the discharge efficiency is different and therefore the polymerization efficiency is also different.

【0025】[実施例2]実施例1と同様の装置を用い
て処理室1にスチレン乳化液(スチレン22.%、DB
S3.8%)20gを入れ、実施例1と同様に操作し
た。周波数5kHz、電圧2.5kVの交流電圧を印加
し、処理室1に大気圧プラズマを300秒間発生させ
(入力エネルギー21J)、AAM水溶液に接触させ
た。その後、実施例1と同様の後重合を50℃で7時間
行い、同様の測定を行った。結果を表1に併記する。
[Embodiment 2] Using a device similar to that of Embodiment 1, styrene emulsion (styrene 22.%, DB
S3.8%) 20 g was added and the same operation as in Example 1 was performed. An AC voltage having a frequency of 5 kHz and a voltage of 2.5 kV was applied, atmospheric pressure plasma was generated in the processing chamber 1 for 300 seconds (input energy 21 J), and brought into contact with the AAM aqueous solution. Then, the same post-polymerization as in Example 1 was performed at 50 ° C. for 7 hours, and the same measurement was performed. The results are also shown in Table 1.

【0026】[比較例2]スチレン乳化液は実施例2と
同様に準備し、プラズマ発生は比較例1と同様の方法で
用い、プラズマを50Wで30秒間発生させ、後重合を
50℃で7時間行ってスチレンを重合し、同様の測定を
行った。結果を表1に併記する。
[Comparative Example 2] A styrene emulsion was prepared in the same manner as in Example 2, plasma was used in the same manner as in Comparative Example 1, plasma was generated at 50 W for 30 seconds, and post-polymerization was performed at 50 ° C for 7 seconds. Styrene was polymerized for a period of time and the same measurement was performed. The results are also shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、出発モノマーの化学構
造を崩すことなく、かつ無触媒である等のプラズマ開始
重合法の諸特徴を損なうことなく高分子量重合体を得る
ことができ、また、減圧操作の必要がないのでモノマー
溶液の蒸発により組成変化を防ぐことができ、凍結操作
等の必要がなくなるためモノマー溶液の蒸発により組成
変化を防ぐことができ、凍結操作の必要もなくなり、工
業化の際にも処理コスト、設備費が安くなるという利点
を有する。
According to the present invention, a high molecular weight polymer can be obtained without destroying the chemical structure of the starting monomer and without impairing the characteristics of the plasma-initiated polymerization method such as no catalyst. Since there is no need for depressurization, composition change can be prevented by evaporation of the monomer solution, and composition change can be prevented by evaporation of the monomer solution because there is no need for freezing operation. Also in this case, there is an advantage that the processing cost and the equipment cost are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる大気圧プラズマ重合装置の断面
図である。
FIG. 1 is a sectional view of an atmospheric pressure plasma polymerization apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 処理室 2 モノマー 3 ガス供給管 4 交流電源 5 電極 6 電極 7 排出管 1 Processing Room 2 Monomer 3 Gas Supply Pipe 4 AC Power Supply 5 Electrode 6 Electrode 7 Discharge Pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 雅人 東京都小平市小川東町3−5−9 (72)発明者 田沼 逸夫 埼玉県狭山市柏原3405−181 (72)発明者 内藤 壽夫 神奈川県川崎市宮前区馬絹969−1 (72)発明者 草野 行弘 東京都国分寺市西恋ヶ窪1−50−15 (72)発明者 秋山 節夫 神奈川県相模原市宮下本町2の28の5 (72)発明者 岡崎 幸子 東京都杉並区高井戸東2−20−11 (72)発明者 小駒 益弘 埼玉県和光市下新倉843−15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Yoshikawa 3-5-9 Ogawa Higashi-cho, Kodaira-shi, Tokyo (72) Inventor Itsuo Tanuma 3405-181 Kashihara, Sayama-shi, Saitama Prefecture (72) Inventor Toshio Naito Kawasaki, Kanagawa 969-1 Makinagi, Miyamae-ku, Ichi (72) Inventor Yukihiro Kusano 1-50-15 Nishikoigakubo, Kokubunji, Tokyo (72) Inventor Setsuo Akiyama 28-5, 72, Miyashitahonmachi, Sagamihara-shi, Kanagawa (72) Inventor Sachiko Okazaki 2-20-11 Takaido Higashi, Suginami-ku, Tokyo (72) Inventor Masuhiro Ogoma 843-15 Shimoshinkura, Wako City, Saitama Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モノマーを含む蒸気にイオン化ガスプラ
ズマを発生させることにより該モノマーの重合を開始さ
せ、かつプラズマの非存在下で重合の大部分を完結させ
るプラズマ開始重合法において、前記イオン化ガスプラ
ズマの発生を0.2〜3気圧の圧力で行うことを特徴と
するプラズマ開始重合法。
1. A plasma-initiated polymerization process in which ionized gas plasma is generated in a vapor containing a monomer to initiate polymerization of the monomer, and most of the polymerization is completed in the absence of plasma. Is initiated at a pressure of 0.2 to 3 atmospheres, a plasma-initiated polymerization method.
JP21973292A 1992-07-27 1992-07-27 Method of plasma-initiated polymerization Pending JPH0641214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21973292A JPH0641214A (en) 1992-07-27 1992-07-27 Method of plasma-initiated polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21973292A JPH0641214A (en) 1992-07-27 1992-07-27 Method of plasma-initiated polymerization

Publications (1)

Publication Number Publication Date
JPH0641214A true JPH0641214A (en) 1994-02-15

Family

ID=16740116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21973292A Pending JPH0641214A (en) 1992-07-27 1992-07-27 Method of plasma-initiated polymerization

Country Status (1)

Country Link
JP (1) JPH0641214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066823A1 (en) * 2000-03-06 2001-09-13 Lg Electronics Inc. Supplying and exhausting system in plasma polymerizing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066823A1 (en) * 2000-03-06 2001-09-13 Lg Electronics Inc. Supplying and exhausting system in plasma polymerizing apparatus
US6833120B2 (en) 2000-03-06 2004-12-21 Lg Electronics Inc. Supplying and exhausting system in plasma polymerizing apparatus

Similar Documents

Publication Publication Date Title
US4098977A (en) Method for preparing polymers from water soluble vinyl monomers
JP4601113B2 (en) Anisotropic etching method for substrates
KR960702674A (en) Plasma processing method
Osada et al. Effects and role of the solvents on the plasma-initiated solution polymerization of vinyl monomers
JPH0959777A (en) Discharge plasma treatment and discharge plasma treating device
JP2002110397A (en) Generating method of normal pressure pulse plasma
JPH0641214A (en) Method of plasma-initiated polymerization
US4020032A (en) Continuous process for the removal of monomeric impurities from aqueous dispersions of homo- and copolymers of vinyl chloride
Sparapany Ion-Molecule Reactions in Liquid Hydrocarbons via Photoionization with Vacuum Ultraviolet Radiation. The Polymerization of Isobutene
JP3203765B2 (en) Polymerization of styrene and its derivatives
JP3288228B2 (en) Discharge plasma treatment method
US2510426A (en) Polymerization of monomeric mixtures comprising a chloroethylene and another copolymerizable unsaturated compound in aqueous medium in the presence of an ionizable silver compound
JPH05310812A (en) Method of plasma-initiated polymerization
Van Doremaele et al. Effect of composition drift on emulsion copolymerization rate
JP3333110B2 (en) Surface treatment method using discharge plasma
Kuzuya et al. Mechanism of plasma‐initiated polymerization: Concerning the nature of solvent effects on the lifelike polymerization of water‐soluble vinyl monomers
KR960037702A (en) Aqueous polymer emulsion
JPH0415805B2 (en)
JPS587653B2 (en) Method for treating the inner surface of plastic tubes
JP3333109B2 (en) Surface treatment method using discharge plasma
Akovali et al. Studies on the effect of electrode type and substrate temperature on plasma polymerization of two model compounds: Acrylonitrile and hexamethyldisiloxane
JPH0753764B2 (en) Polymerization method of vinyl monomer
JP2002316039A (en) Discharge plasma processing method
JPH0417204B2 (en)
JP3285764B2 (en) Surface treatment method using discharge plasma