JPH0641133Y2 - Heat wire type flow meter - Google Patents

Heat wire type flow meter

Info

Publication number
JPH0641133Y2
JPH0641133Y2 JP6869089U JP6869089U JPH0641133Y2 JP H0641133 Y2 JPH0641133 Y2 JP H0641133Y2 JP 6869089 U JP6869089 U JP 6869089U JP 6869089 U JP6869089 U JP 6869089U JP H0641133 Y2 JPH0641133 Y2 JP H0641133Y2
Authority
JP
Japan
Prior art keywords
resistance
flow rate
resistor
rate adjusting
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6869089U
Other languages
Japanese (ja)
Other versions
JPH038637U (en
Inventor
浩一 藤原
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP6869089U priority Critical patent/JPH0641133Y2/en
Publication of JPH038637U publication Critical patent/JPH038637U/ja
Application granted granted Critical
Publication of JPH0641133Y2 publication Critical patent/JPH0641133Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は例えば自動車用エンジン等の吸入空気流量を検
出するのに好適に用いられる熱線式流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a hot wire type flow meter suitably used for detecting an intake air flow rate of, for example, an automobile engine.

〔従来の技術〕[Conventional technology]

一般に、自動車用のエンジン等では、吸気通路の途中に
感熱素子等からなる熱線抵抗を配設し、該熱線抵抗を吸
気通路内を流れる吸入空気で冷却することにより吸入空
気流量を検出するようにした熱線式流量計が用いられて
いる。
Generally, in an automobile engine or the like, a heat ray resistance including a heat-sensitive element is disposed in the middle of the intake passage, and the intake air flow rate is detected by cooling the heat ray resistance with intake air flowing in the intake passage. A hot wire type flow meter is used.

そこで、第3図にこの種の従来技術による熱線式流量計
を示す。
Therefore, FIG. 3 shows a conventional hot wire type flow meter of this type.

図において、1は温度変化に対応して抵抗値RHが変化す
る熱線抵抗としての感熱素子を示し、該感熱素子1は温
度補償抵抗2と共にエンジンの吸気通路(図示せず)内
に配設され、この吸気通路内を流れる吸入空気によって
冷却されるようになっている。ここで、該感熱素子1は
温度変化に敏感に反応してその抵抗値が変化する白金等
の材料を用いて形成され、例えばセラミック等の絶縁性
筒体に白金線を巻回したり白金薄膜を蒸着したりして形
成される小形の抵抗素子等によって構成されている。ま
た、温度補償抵抗2はアルミナ等の基板に白金をスパッ
タリング等の手段で蒸着することにより形成され、その
抵抗値はRKとなっている。
In the figure, reference numeral 1 denotes a heat sensitive element as a heat ray resistance whose resistance value R H changes in response to a temperature change, and the heat sensitive element 1 is disposed in an intake passage (not shown) of an engine together with a temperature compensating resistor 2. The intake air flowing through the intake passage is cooled. Here, the thermosensitive element 1 is formed by using a material such as platinum whose resistance value changes sensitively to a temperature change, and for example, a platinum wire is wound around an insulating cylindrical body such as ceramic or a platinum thin film is formed. It is composed of a small resistance element or the like formed by vapor deposition. The temperature compensating resistor 2 is formed by depositing platinum on a substrate such as alumina by a method such as sputtering, and its resistance value is R K.

3,4は吸気通路の外部に配設される流量調整抵抗,基準
抵抗を示し、該流量調整抵抗3,基準抵抗4はR2,R3なる
抵抗値を有し、それぞれ接続点5,6で温度補償抵抗2,感
熱素子1と直列接続されている。そして、感熱素子1,基
準抵抗4からなる直列回路と温度補償抵抗2,流量調整抵
抗3からなる直列回路とは後述のバッテリ11とアースと
の間に接続点7,8で並列接続され、図示の如くブリッジ
回路を構成している。
Reference numerals 3 and 4 denote a flow rate adjusting resistance and a reference resistance arranged outside the intake passage, and the flow rate adjusting resistance 3 and the reference resistance 4 have resistance values R 2 and R 3 , respectively. Is connected in series with the temperature compensation resistor 2 and the heat sensitive element 1. A series circuit including the heat sensitive element 1 and the reference resistor 4 and a series circuit including the temperature compensating resistor 2 and the flow rate adjusting resistor 3 are connected in parallel at a connection point 7 and 8 between a battery 11 and a ground, which will be described later. The bridge circuit is configured as shown in.

9は入力側が前記接続点5,6と接続され、出力側がパワ
ートランジスタ10のベース側に接続された差動増幅器を
示し、該差動増幅器9は接続点5,6間の電位差に基づ
き、直流電源としてのバッテリ11から感熱素子1等に供
給される供給電流をパワートランジスタ10を介して制御
するようになっている。即ち、接続点6の電位が高くな
ったときには差動増幅器9の出力が減少して、パワート
ランジスタ10のコレクタ電流が増大するようになり、こ
れによって感熱素子1等に供給される供給電流が増大す
る。また、接続点6の電位が下がったときには、前記の
場合と逆になって供給電流は減少する。そして、差動増
幅器9およびパワートランジスタ10等は前記流量調整抵
抗3および基準抵抗4と共に前記吸気通路の外部で絶縁
性の基板(図示せず)上に実装されている。
Reference numeral 9 denotes a differential amplifier whose input side is connected to the connection points 5 and 6 and whose output side is connected to the base side of the power transistor 10. The differential amplifier 9 is a direct current based on the potential difference between the connection points 5 and 6. The supply current supplied from the battery 11 as a power source to the thermosensitive element 1 and the like is controlled via the power transistor 10. That is, when the potential of the connection point 6 becomes higher, the output of the differential amplifier 9 decreases and the collector current of the power transistor 10 increases, which increases the supply current supplied to the thermosensitive element 1 and the like. To do. Further, when the potential at the connection point 6 decreases, the supply current decreases in the opposite manner to the above case. The differential amplifier 9, the power transistor 10, and the like are mounted together with the flow rate adjusting resistor 3 and the reference resistor 4 on an insulating substrate (not shown) outside the intake passage.

このように構成される熱線式流量計では、まず、バッテ
リ11からパワートラジスタ10等を介して感熱素子1等に
電流を供給し、例えば240℃程度まで感熱素子1を加熱
する。そして、吸気通路内を流れる吸入空気の流速が速
くなって吸入空気流量が増大すると、感熱素子1がより
大きく冷却されるようになるから、感熱素子1の抵抗値
RHは減少傾向となり、接続点6の電位が上がって接続点
5,6間の電位差により、差動増幅器9がバッテリ11から
の供給電流を増大させるようにパワートランジスタ10を
制御する。これによって、感熱素子1の温度を240℃程
度とし、その抵抗値RHを一定に保つように感熱素子1を
加熱でき、例えば基準抵抗4の両端電圧から吸入空気流
量に対応した電圧信号を取出すことができる。
In the hot-wire type flow meter configured as described above, first, a current is supplied from the battery 11 to the heat-sensitive element 1 or the like via the power transistor 10 or the like to heat the heat-sensitive element 1 to, for example, about 240 ° C. When the flow velocity of the intake air flowing in the intake passage increases and the intake air flow rate increases, the thermosensitive element 1 is cooled more greatly. Therefore, the resistance value of the thermosensitive element 1
R H tends to decrease, the potential of the connection point 6 rises, and the connection point
The differential amplifier 9 controls the power transistor 10 so as to increase the current supplied from the battery 11 by the potential difference between 5 and 6. As a result, the temperature of the heat sensitive element 1 is set to about 240 ° C., and the heat sensitive element 1 can be heated so as to keep its resistance value R H constant. For example, a voltage signal corresponding to the intake air flow rate is extracted from the voltage across the reference resistor 4. be able to.

即ち、差動増幅器9およびパワートランジスタ10等は感
熱素子1の抵抗値RHを一定に保つ定抵抗制御を行ってお
り、この定抵抗制御時には感熱素子1の抵抗値RHが温度
補償抵抗2,流量調整抵抗3および基準抵抗4の抵抗値
RK,R2,R3に対して、 なる関係を満たす制御値となり、感熱素子1は例えば24
0℃程度の所定温度まで加熱される。なお、抵抗値RK,R
2は抵抗値RH,R3に比較して非常に大きな値となってい
る。
That is, the differential amplifier 9 and the power transistor 10 and the like perform constant resistance control for keeping the resistance value R H of the heat sensitive element 1 constant, and during this constant resistance control, the resistance value R H of the heat sensitive element 1 is changed to the temperature compensation resistance 2 , Resistance value of flow rate adjustment resistor 3 and reference resistor 4
For R K , R 2 and R 3 , The control value satisfies the relation
It is heated to a predetermined temperature of about 0 ° C. The resistance values R K , R
2 is a much larger value than the resistances R H and R 3 .

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで、上述した従来技術では、吸入空気流量が増大
するに応じて感熱素子1が冷却されるときに、該感熱素
子1の抵抗値RHを一定に保つべく、該感熱素子1への供
給電流を増大させるようにしているから、例えば感熱素
子1と基準抵抗4との直列回路に供給電流IHが流れた場
合、基準抵抗4には、 H=0.24×IH 2×R3(cal/sec)……(2) なるジュール熱Hが発生し、基準抵抗4は自己発熱を起
こしてしまう。そして、該基準抵抗4はジュール熱Hや
周囲温度の変化に応じて、その抵抗値R3が、 R3′=R3(1+α×ΔT)……(3) ただし、α:温度係数 ΔT:温度変化量 なる抵抗値R3′まで増大してしまう。
By the way, in the above-mentioned prior art, when the thermosensitive element 1 is cooled as the intake air flow rate is increased, the current supplied to the thermosensitive element 1 is kept in order to keep the resistance value R H of the thermosensitive element 1 constant. Therefore, for example, when the supply current I H flows in the series circuit of the heat sensitive element 1 and the reference resistor 4, H = 0.24 × I H 2 × R 3 (cal / cal sec) (2) Joule heat H is generated and the reference resistor 4 self-heats. The resistance value R 3 of the reference resistor 4 is R 3 ′ = R 3 (1 + α 3 × ΔT) according to changes in Joule heat H and ambient temperature (3) where α 3 : temperature coefficient ΔT: Increase in resistance value R 3 ′, which is the amount of temperature change.

このため従来技術では、基準抵抗4の抵抗値R3がR3′へ
と変化するに伴ない、供給電流IHの値が変ってしまうば
かりでなく、前記(1)式で定められる感熱素子1の抵
抗値RHが所定の制御値からずれてしまい、熱線流量計に
よる流量の検出精度が低下するという問題がある。ま
た、基準抵抗4の抵抗値R3がR3′へと変化するのを防止
すべく、前記温度係数αが非常に小さい、例えばマン
ガニン等の特殊材料を用いて巻線抵抗とすることにより
基準抵抗4を形成したものも知られている。しかし、こ
の場合にはマンガニン等の特殊材料を用いて巻線抵抗を
形成しなければならないから、コストアップを招く上に
コンパクトに形成できず、実装作業が面倒になるという
問題がある。
Therefore, in the prior art, as the resistance value R 3 of the reference resistor 4 changes to R 3 ′, not only the value of the supply current I H changes, but also the heat-sensitive element defined by the equation (1). There is a problem in that the resistance value R H of 1 deviates from a predetermined control value, and the accuracy of flow rate detection by the hot-wire flowmeter decreases. Further, in order to prevent the resistance value R 3 of the reference resistor 4 from changing to R 3 ′, the temperature coefficient α 3 is very small, for example, by using a special material such as manganin as a winding resistor, It is also known that the reference resistor 4 is formed. However, in this case, since the winding resistance must be formed by using a special material such as manganin, there is a problem that the cost is increased and the winding cannot be formed compactly, and the mounting work is troublesome.

本考案は上述した従来技術の問題に鑑みなされたもの
で、本考案は熱線抵抗の制御値がずれるのを防止でき、
検出精度を向上できるようにした熱線式流量計を提供す
るものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and the present invention can prevent the control value of the heat wire resistance from shifting.
The present invention provides a hot wire type flow meter capable of improving detection accuracy.

〔課題を解決するための手段〕[Means for Solving the Problems]

上述した課題を解決するために本考案が採用する構成の
特徴は、基準抵抗と流量調整抵抗を、その間に薄い絶縁
層を挟んで対面するように絶縁性の基板に配設し、該基
準抵抗と流量調整抵抗との温度を均一化する構成とした
ことにある。
The feature of the configuration adopted by the present invention to solve the above-mentioned problem is that the reference resistor and the flow rate adjusting resistor are arranged on an insulating substrate so as to face each other with a thin insulating layer interposed therebetween, and the reference resistor The temperature of the flow control resistor and that of the flow control resistor are made uniform.

また、前記基準抵抗と流量調整抵抗とは同一の抵抗体材
料を用いて形成し、前記基板上に積層化して配設するの
が好ましい。
Further, it is preferable that the reference resistor and the flow rate adjusting resistor are formed by using the same resistor material, and are laminated and arranged on the substrate.

〔作用〕[Action]

上記構成により基準抵抗と流量調整抵抗との温度を均一
化することができ、前記(1)式に基づく熱線抵抗(感
熱素子)の制御値が温度変化によりずれるのを抑えるこ
とができる。また、基準抵抗と流量調整抵抗とを同一の
抵抗体材料によって形成すれば、熱線抵抗の制御値のず
れをより効果的に抑えることができる。
With the above configuration, the temperatures of the reference resistance and the flow rate adjustment resistance can be made uniform, and the control value of the heat ray resistance (heat-sensitive element) based on the equation (1) can be prevented from shifting due to temperature change. Further, if the reference resistance and the flow rate adjusting resistance are made of the same resistor material, it is possible to more effectively suppress the deviation of the control value of the heat ray resistance.

〔実施例〕〔Example〕

以下、本考案の実施例を第1図および第2図に基づいて
説明する。なお、実施例では前述した第3図に示す従来
技術と同一の構成要素に同一の符号を付し、その説明を
省略するものとする。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the embodiment, the same components as those of the prior art shown in FIG. 3 described above are designated by the same reference numerals and the description thereof will be omitted.

図中、21は吸気通路の外部に位置して、当該熱線流量計
のケーシング(図示せず)内に設けられる基板を示し、
該基板21はセラミック等の絶縁性材料によって形成さ
れ、該基板21上には所定のプリント配線(図示せず)が
印刷等の手段で設けられている。そして、該基板21上に
はプリント配線の途中に位置して、差動増幅器9およひ
パワートランジスタ10等が配設されている。
In the figure, reference numeral 21 denotes a substrate located outside the intake passage and provided inside a casing (not shown) of the heat ray flow meter,
The substrate 21 is formed of an insulating material such as ceramics, and a predetermined printed wiring (not shown) is provided on the substrate 21 by means of printing or the like. A differential amplifier 9, a power transistor 10 and the like are arranged on the substrate 21 in the middle of the printed wiring.

22はプリント配線の途中に位置して基板21上に配設され
た基準抵抗を示し、該基準抵抗22は、例えば温度係数が
αとなる所定の厚膜抵抗体材料を基板21上に印刷、焼
成することにより長方形の板状に形成され、従来技術で
述べた基準抵抗4と同様に抵抗値R3を有するようになっ
ている。そして、該基準抵抗22はその温度変化量がΔT
のときに、前記(3)式により抵抗値R3からR3′へと変
化するようになっている。23は基準抵抗22を覆うように
基板21上に設けられた絶縁層を示し、該絶縁層23はガラ
ス等の絶縁性材料によって薄膜状に形成され、その薄膜
部23Aが基準抵抗22を被覆するようになっている。
Reference numeral 22 denotes a reference resistance disposed on the substrate 21 in the middle of the printed wiring, and the reference resistance 22 is, for example, a predetermined thick film resistor material having a temperature coefficient of α 3 printed on the substrate 21. By firing, it is formed into a rectangular plate shape, and has a resistance value R 3 like the reference resistance 4 described in the prior art. The reference resistor 22 has a temperature change amount of ΔT
When adapted to vary a resistance value R 3 to R 3 'by the equation (3). Reference numeral 23 denotes an insulating layer provided on the substrate 21 so as to cover the reference resistor 22, the insulating layer 23 is formed in a thin film by an insulating material such as glass, and the thin film portion 23A covers the reference resistor 22. It is like this.

24は薄膜部23Aを挟んで基準抵抗22と大きな接触面積を
もって対面するように基板21上に積層化された流量調整
抵抗を示し、該流量調整抵抗24は薄膜23上に例えば温度
係数αなる所定の厚膜抵抗体材料を印刷、焼成するこ
とにより幅広長方形に形成され、従来技術で述べた流量
調整抵抗3と同様に抵抗値R2を有するようになってい
る。また、該流量調整抵抗24は薄膜23上に配設したプリ
ント配線(図示せず)に接続され、このプリント配線を
介して基板21上の基準抵抗22(抵抗値R3)と第3図に示
す接続点8で接続されている。
Reference numeral 24 denotes a flow rate adjusting resistor stacked on the substrate 21 so as to face the reference resistor 22 with a large contact area across the thin film portion 23A, and the flow rate adjusting resistor 24 has, for example, a temperature coefficient α 2 on the thin film 23. It is formed into a wide rectangle by printing and firing a predetermined thick film resistor material, and has a resistance value R 2 like the flow rate adjusting resistor 3 described in the prior art. Further, the flow rate adjusting resistor 24 is connected to a printed wiring (not shown) arranged on the thin film 23, and is connected to the reference resistor 22 (resistance value R 3 ) on the substrate 21 via this printed wiring as shown in FIG. They are connected at the connection point 8 shown.

ここで、該流量調整抵抗24は基準抵抗22上に薄膜部23A
を介して積層化されているから、基準抵抗22と同様に均
一な温度変化量ΔTを有し、その抵抗値R2は前記(3)
式とほぼ同様に、 R2′=R2(1+αΔT)……(4) なる抵抗値R2′へと変化する。そして、該流量調整抵抗
24を基準抵抗22と同一の厚膜抵抗体材料を用いて形成す
れば、その温度係数αはα=αとなり、前記
(4)式により抵抗値R2′は、 R2′=R2(1+αΔT)……(5) となる。
Here, the flow rate adjusting resistor 24 is a thin film portion 23A on the reference resistor 22.
Since it is laminated through the, the resistance value R 2 has a uniform temperature change amount ΔT like the reference resistance 22, and the resistance value R 2 is the same as in (3) above.
Much like the equation, it changes to R 2 '= R 2 (1 + α 2 ΔT) ...... (4) composed of resistance R 2'. And the flow rate adjustment resistor
If 24 is formed using the same thick film resistor material as the reference resistor 22, the temperature coefficient α 2 is α 2 = α 3 , and the resistance value R 2 ′ is R 2 ′ = R 2 ′ = R 2 (1 + α 3 ΔT) (5)

さらに、25は流量調整抵抗24等を覆うようになった保護
層を示し、該保護層25はガラス等の絶縁性材料によって
形成され、基板21上に実装された差動増幅器9,パワート
ランジスタ10,基準抵抗22および流量調整抵抗24等を絶
縁層23と共に外部に対して絶縁するようになっている。
なお、該保護層25は基板21の上面側をほぼ全面に亘って
覆うように形成する場合には、絶縁層23は少なくとも薄
膜部23Aによって基準抵抗22,流量調整抵抗24間を絶縁で
きるように基板21上に設ければよい。
Further, 25 denotes a protective layer adapted to cover the flow rate adjusting resistor 24 and the like, and the protective layer 25 is made of an insulating material such as glass, and mounted on the substrate 21 for the differential amplifier 9 and the power transistor 10. The reference resistor 22, the flow rate adjusting resistor 24 and the like are insulated from the outside together with the insulating layer 23.
When the protective layer 25 is formed so as to cover the upper surface side of the substrate 21 over almost the entire surface, the insulating layer 23 can insulate at least the reference resistor 22 and the flow rate adjusting resistor 24 by the thin film portion 23A. It may be provided on the substrate 21.

本実施例による熱線式流量計は上述のごとき構成を有す
るもので、その基本的動作については従来技術によるも
のと格別差異はない。
The hot wire type flow meter according to the present embodiment has the above-mentioned configuration, and its basic operation is not particularly different from that according to the prior art.

然るに本実施例では、基板21上に基準抵抗22と流量調整
抵抗24とを薄膜部23Aを介して積層化する構成としたか
ら、基準抵抗22と流量調整抵抗24とを実質的に大きな接
触面積をもって対面させ、両者の温度を常に均一化する
ことができ、その温度変化量ΔTを同一の値とすること
ができる。そして、基準抵抗22と流量調整抵抗24とを同
一の厚膜抵抗体材料によって形成すれば、その温度係数
α,αが同一(α=α)となるから、それぞれ
の抵抗値R3,R2を前記(3)式,(5)式に示す如く抵
抗値R3′,R2′として変化させることができる。
Therefore, in this embodiment, since the reference resistor 22 and the flow rate adjusting resistor 24 are laminated on the substrate 21 via the thin film portion 23A, the reference resistor 22 and the flow rate adjusting resistor 24 have a substantially large contact area. The two can be made to face each other, and the temperatures of both can be made uniform at all times, and the temperature change amount ΔT can be made the same value. If the reference resistor 22 and the flow rate adjusting resistor 24 are made of the same thick film resistor material, the temperature coefficients α 3 and α 2 are the same (α 3 = α 2 ), so that the respective resistance values R 3, wherein the R 2 (3) type, can be changed as (5) the resistance R 3 as shown in the expression ', R 2'.

従って、感熱素子1の抵抗値RHを前記(1)式を満たす
制御値とした場合に、基準抵抗22,流量調整抵抗24の抵
抗値R3,R2がR3′,R2′へと変化したとしても、感熱素
子1の抵抗RHを前記(1)式および(3)式,(5)式
により、 として設定でき、基準抵抗22の抵抗値R3が温度変化によ
り抵抗値R3′に変化しても、前記(1)式の関係を常に
満たすことができ、感熱素子1の制御値としての抵抗値
RHがずれてしまうのを防止でき、当該熱線流量計の検出
精度を向上できる。
Therefore, when the resistance value R H of the thermosensitive element 1 is set to a control value that satisfies the above formula (1), the resistance values R 3 , R 2 of the reference resistor 22 and the flow rate adjusting resistor 24 change to R 3 ′, R 2 ′. Even if it changes as follows, the resistance R H of the heat sensitive element 1 can be calculated by the equations (1), (3), and (5). And the resistance value R 3 of the reference resistor 22 changes to the resistance value R 3 ′ due to a temperature change, the relationship of the above equation (1) can always be satisfied, and the resistance as the control value of the thermosensitive element 1 can be set. value
It is possible to prevent the deviation of R H and improve the detection accuracy of the hot wire flow meter.

また、基準抵抗22と流量調整抵抗24とを同一の抵抗体材
料によって形成しない場合でも、両者の温度係数α
αがほぼ等しい値(α≒α)であれば、両者の抵
抗値R3,R2は温度変化量ΔTによって抵抗値R3′,R2
へと実質的に変化するので、この場合でも前記(1)式
の関係を実質的に満たすことができ、感熱素子1の制御
値としての抵抗値RHがずれるのを効果的に抑えることが
できる。
Even if the reference resistor 22 and the flow rate adjusting resistor 24 are not formed of the same resistor material, the temperature coefficient α 3 ,
If α 2 is a substantially equal value (α 3 ≈α 2 ), the resistance values R 3 and R 2 of the two become resistance values R 3 ′ and R 2 ′ depending on the temperature change amount ΔT.
In this case as well, the relationship of the equation (1) can be substantially satisfied, and the resistance value R H as the control value of the heat-sensitive element 1 can be effectively suppressed from shifting. it can.

そして、基準抵抗22と流量調整抵抗24とを同一の抵抗体
材料または温度係数α,αのほぼ等しい材料によっ
て形成すれば、従来技術で述べた如くマンガニン等の特
殊材料を用いて基準抵抗22を形成する必要がなくなるか
ら、基準抵抗22等を安価な抵抗体材料によってコンパク
トに形成することができ、当該熱線式流量計の温度特性
を低コストで改善できる等、種々の効果を奏する。
If the reference resistor 22 and the flow rate adjusting resistor 24 are made of the same resistor material or a material having substantially the same temperature coefficients α 3 and α 2 , the reference resistor 22 is made of a special material such as manganin as described in the prior art. Since it is not necessary to form 22, the reference resistance 22 and the like can be formed compactly with an inexpensive resistor material, and the temperature characteristics of the hot wire type flow meter can be improved at low cost, and various effects are exhibited.

なお、前記実施例では、基板21上に基準抵抗22を設け、
該基準抵抗22上に絶縁層23を介して流量調整抵抗24を積
層化するものとして述べたが、これに替えて、基板21上
に流量調整抵抗24を設け、この流量調整抵抗24上に薄膜
23を介して基準抵抗22を積層化するようにしてもよい。
また、基準抵抗22と流量調整抵抗とは必ずしも積層化す
る必要はなく、両者が薄い絶縁層を挟んで対面し、両者
の温度を均一化できる構成であれば、どのような配設構
造であってもよいものである。
In the above embodiment, the reference resistor 22 is provided on the substrate 21,
Although it has been described that the flow rate adjusting resistor 24 is laminated on the reference resistor 22 via the insulating layer 23, in place of this, the flow rate adjusting resistor 24 is provided on the substrate 21, and the thin film is formed on the flow rate adjusting resistor 24.
The reference resistor 22 may be laminated via 23.
Further, the reference resistor 22 and the flow rate adjusting resistor do not necessarily have to be laminated, and any arrangement structure can be used as long as they can face each other with a thin insulating layer interposed therebetween and can equalize the temperature of both. It's okay.

〔考案の効果〕[Effect of device]

以上詳述した通り本考案によれば、絶縁性の基板上に基
準抵抗と流量調整抵抗とを薄い絶縁層を挟んで対面させ
るように配設し、両者の温度を均一化する構成としたか
ら、熱線抵抗の制御値としての抵抗値が基準抵抗の抵抗
値の変化によりずれてしまうのを効果的に抑えることが
でき、検出精度を向上できる。また、基準抵抗と流量調
整抵抗とを同一の材料で形成すれば、基準抵抗を安価な
材料でコンパクトに形成でき、温度特性を低コストで改
善できる等、種々の効果を奏する。
As described above in detail, according to the present invention, the reference resistance and the flow rate adjusting resistance are arranged so as to face each other with the thin insulating layer sandwiched therebetween, and the temperature of both is made uniform. Further, it is possible to effectively prevent the resistance value as the control value of the heat wire resistance from being shifted due to the change of the resistance value of the reference resistance, and it is possible to improve the detection accuracy. Further, if the reference resistance and the flow rate adjusting resistance are made of the same material, the reference resistance can be made of an inexpensive material in a compact manner, and the temperature characteristics can be improved at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本考案の実施例を示し、第1図は
基板上に積層化した抵抗等を示す平面図、第2図は第1
図中の矢示II-II方向拡大断面図、第3図は従来技術を
示す熱線式流量計の回路図である。 1……感熱素子(熱線抵抗)、2……温度補償抵抗、9
……差動増幅器、10……パワートランジスタ、11……バ
ッテリ(電源)、21……基板、22……基準抵抗、23……
絶縁層、24……流量調整抵抗、25……保護層。
1 and 2 show an embodiment of the present invention, FIG. 1 is a plan view showing resistors and the like laminated on a substrate, and FIG.
FIG. 3 is an enlarged sectional view taken along the line II-II in the figure, and FIG. 3 is a circuit diagram of a hot wire type flow meter showing a conventional technique. 1 ... Heat sensitive element (heat wire resistance), 2 ... Temperature compensation resistance, 9
...... Differential amplifier, 10 …… Power transistor, 11 …… Battery (power supply), 21 …… Board, 22 …… Reference resistance, 23 ……
Insulating layer, 24 …… Flow rate adjusting resistor, 25 …… Protective layer.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】エンジンの吸気通路内には該吸気通路内を
流れる吸入空気によって冷却される熱線抵抗と温度補償
抵抗とを配設し、前記吸気通路外には基準抵抗と流量調
整抵抗とを配設し、電源とアースとの間には前記熱線抵
抗,基準抵抗からなる直列回路と前記温度補償抵抗,流
量調整抵抗からなる直列回路とを並列に接続して、ブリ
ッジ回路を構成してなる熱線式流量計において、前記基
準抵抗と流量調整抵抗とは、その間に薄い絶縁層を挟ん
で対面するように絶縁性の基板に配設し、該基準抵抗と
流量調整抵抗との温度を均一化する構成としたことを特
徴とする熱線式流量計。
1. A heat wire resistance and a temperature compensation resistance, which are cooled by intake air flowing in the intake passage, are arranged in the intake passage of the engine, and a reference resistance and a flow rate adjustment resistance are provided outside the intake passage. A bridge circuit is formed by connecting a series circuit composed of the heat wire resistance and the reference resistance and a series circuit composed of the temperature compensation resistance and the flow rate adjustment resistance in parallel between the power source and the ground. In the hot-wire type flow meter, the reference resistance and the flow rate adjusting resistance are arranged on an insulating substrate so as to face each other with a thin insulating layer interposed therebetween, and the temperature of the reference resistance and the flow rate adjusting resistance are made uniform. A hot-wire type flow meter characterized by having the above structure.
【請求項2】前記基準抵抗と流量調整抵抗とは同一の抵
抗体材料を用いて形成し、前記基板上に積層化して配設
してなる実用新案登録請求の範囲(1)項記載の熱線式
流量計。
2. The heat wire according to claim 1, wherein the reference resistance and the flow rate adjusting resistance are formed by using the same resistor material, and are laminated and arranged on the substrate. Flow meter.
JP6869089U 1989-06-13 1989-06-13 Heat wire type flow meter Expired - Lifetime JPH0641133Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6869089U JPH0641133Y2 (en) 1989-06-13 1989-06-13 Heat wire type flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6869089U JPH0641133Y2 (en) 1989-06-13 1989-06-13 Heat wire type flow meter

Publications (2)

Publication Number Publication Date
JPH038637U JPH038637U (en) 1991-01-28
JPH0641133Y2 true JPH0641133Y2 (en) 1994-10-26

Family

ID=31603341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6869089U Expired - Lifetime JPH0641133Y2 (en) 1989-06-13 1989-06-13 Heat wire type flow meter

Country Status (1)

Country Link
JP (1) JPH0641133Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135041U (en) * 1977-03-30 1978-10-25
JPS5549959U (en) * 1978-09-28 1980-04-01
JPS5676482U (en) * 1979-11-15 1981-06-22
JP3197770B2 (en) * 1993-12-30 2001-08-13 東京エレクトロン株式会社 Semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JPH038637U (en) 1991-01-28

Similar Documents

Publication Publication Date Title
US4912975A (en) Direct-heated flow measuring apparatus having improved response characteristics
US5369994A (en) Flow sensor
KR960005639B1 (en) Apparatus for determining the mass flow of a flowing medium
US5623097A (en) Thermal-type flow sensor
JPS6365892B2 (en)
JPS59136620A (en) Measuring device for flow rate of fluid
US5351536A (en) Air flow rate detector
JPH063389B2 (en) Fluid flow measuring device
US4735086A (en) Thick film mass airflow meter with minimal thermal radiation loss
JP3133608B2 (en) Thermal air flow detector
US6508117B1 (en) Thermally balanced mass air flow sensor
JPH0641133Y2 (en) Heat wire type flow meter
JPH11118566A (en) Flow sensor
JPS5868618A (en) Flowmeter
JP3668921B2 (en) Flow detection element
JP2908942B2 (en) Thermal flow sensor
JPH0422268Y2 (en)
JP3095322B2 (en) Thermal air flow detector
JPH0438425A (en) Thermal flow sensor
JPH06249864A (en) Wind speed sensor
JP3174234B2 (en) Thermal air flow detector
JP3184402B2 (en) Thermal air flow detector
JPH07198439A (en) Thermal flow velocity sensor
JPH09304147A (en) Measuring element for thermal air flowmeter and thermal air flowmeter containing the same
JP2569733B2 (en) Thermal air flow detector