JPH0640998A - Production of acetic acid - Google Patents

Production of acetic acid

Info

Publication number
JPH0640998A
JPH0640998A JP4201464A JP20146492A JPH0640998A JP H0640998 A JPH0640998 A JP H0640998A JP 4201464 A JP4201464 A JP 4201464A JP 20146492 A JP20146492 A JP 20146492A JP H0640998 A JPH0640998 A JP H0640998A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
acetic acid
rhodium
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4201464A
Other languages
Japanese (ja)
Other versions
JP3213392B2 (en
Inventor
Hidetaka Kojima
秀▲隆▼ 小島
Masahiro Komoritani
昌宏 籠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP20146492A priority Critical patent/JP3213392B2/en
Publication of JPH0640998A publication Critical patent/JPH0640998A/en
Application granted granted Critical
Publication of JP3213392B2 publication Critical patent/JP3213392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain acetic acid while retaining catalytic activity in the reactor and also suppressing formation of hydrogenated by-products such as formic acid, propionic acid and/or hydrocarbons. CONSTITUTION:In producing acetic acid by reaction between methanol and carbon monoxide in the presence of a rhodium catalyst and methyl iodide, continuous reaction is made under such a condition as to be <=10wt.% in the water content of the reaction liquor, and the resultant reaction liquor is continuously drawn and introduced into an evaporation process lower in pressure than the reaction process, where the liquor is separated into an evaporable component and non-evaporable component containing the rhodium. In this evaporation process, (a) hydrogen gas is introduced and the evaporation is made under a partial hydrogen pressure of >=0.1atm and/or (b) the non-evaporable component is treated with hydrogen gas >=0.1atm in partial pressure and carbon monoxide >=0.1atm in partial pressure and then returned to the reactor, thus putting the component to circulatory use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタノールと一酸化炭素
から酢酸を製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing acetic acid from methanol and carbon monoxide.

【0002】[0002]

【従来の技術】酢酸は基礎化学品の一つであり、石油化
学工業、高分子化学工業、有機化学工業、医薬農薬製造
工業において、重要な化学品である。酢酸の製造方法と
しては様々な方法があるが、それらの中でも、メタノー
ルと一酸化炭素から酢酸を製造する方法は工業的には最
も優秀な方法である。
2. Description of the Related Art Acetic acid is one of the basic chemicals and is an important chemical in the petrochemical industry, polymer chemistry industry, organic chemistry industry, pharmaceutical and agrochemical manufacturing industry. There are various methods for producing acetic acid, and among them, the method for producing acetic acid from methanol and carbon monoxide is the most excellent method industrially.

【0003】近年、この方法の改良法として、反応液中
の水分濃度を下げることが提案(特開昭60-54334、特開
昭60-239434、特開昭60-155147)されている。即ち、反
応液中の水分濃度を下げることにより、酢酸の生産性を
上げ、且つ、副生物の発生量が低下する技術が開示され
ている。これらの技術では、水分濃度が10wt%以下では
ロジウム触媒の安定性が低下するため、アルカリ金属ヨ
ウ化物、4級化アンモニウム塩、4級化フォスホニウム
塩などのヨウ化物を添加することが有効であることも開
示されている。更に、反応液中の水分濃度が5wt%以下
では反応速度が有意に低下するため、5〜30wt%のヨウ
化リチウムを添加し、反応速度を増大する技術も開示さ
れている。
In recent years, as an improved method of this method, it has been proposed to reduce the water concentration in the reaction solution (JP-A-60-54334, JP-A-60-239434, JP-A-60-155147). That is, a technique is disclosed in which the productivity of acetic acid is increased and the amount of by-products generated is reduced by reducing the water concentration in the reaction solution. In these techniques, when the water concentration is 10 wt% or less, the stability of the rhodium catalyst decreases, so it is effective to add an iodide such as an alkali metal iodide, a quaternized ammonium salt, or a quaternized phosphonium salt. It is also disclosed. Furthermore, since the reaction rate significantly decreases when the water concentration in the reaction solution is 5 wt% or less, a technique for increasing the reaction rate by adding 5 to 30 wt% lithium iodide is also disclosed.

【0004】[0004]

【発明が解決しようとする課題】通常、メタノールと一
酸化炭素から酢酸を製造する工業的な方法においては、
メタノールと一酸化炭素を反応液を含む反応器に連続的
に導入して反応させ、その反応液を連続的に反応器から
取り出し、反応器よりも圧力の低い蒸発槽で蒸発する成
分と蒸発しない成分に分離する。蒸発する成分には主触
媒の一つであるヨウ化メチル、原料のメタノールから発
生する酢酸メチル、反応液に含まれる水、生成物であり
反応溶媒である酢酸が主に含まれる。蒸発しない成分に
は、蒸発する成分に含まれる成分の蒸発し残ったヨウ化
メチル、酢酸メチル、水、酢酸の他に、触媒であるロジ
ウム錯体、ロジウムの安定化剤であるヨウ化リチウムな
どが含まれる。
Generally, in the industrial method for producing acetic acid from methanol and carbon monoxide,
Methanol and carbon monoxide are continuously introduced into the reaction vessel containing the reaction solution to react, and the reaction solution is continuously taken out from the reaction vessel and does not evaporate with the component that evaporates in the evaporation tank whose pressure is lower than that of the reaction vessel. Separate into components. The components to be evaporated mainly include methyl iodide, which is one of the main catalysts, methyl acetate generated from methanol as a raw material, water contained in the reaction solution, and acetic acid which is a product and a reaction solvent. Components that do not evaporate include methyl iodide, methyl acetate, water, and acetic acid remaining in the components that evaporate, as well as rhodium complexes that are catalysts and lithium iodide that is a stabilizer of rhodium. included.

【0005】この蒸発操作は、断熱蒸発で行うとエネル
ギーの使用上最も好ましいが、断熱蒸発では蒸発する量
が限られるため、より多くの酢酸を蒸発するためには、
酢酸以外の成分の蒸発量を少なくすることが好ましい。
即ち、ヨウ化メチル、酢酸メチル、水の量を少なくすれ
ば良い。これらの化合物のうち水が最も蒸発潜熱が大き
く、水の量を少なくすることが最も効果的である。即
ち、反応液中の水分濃度を下げることで酢酸の生産性を
高く出来るのはこのためである。
This evaporation operation is most preferable in terms of energy use if it is carried out by adiabatic evaporation, but in adiabatic evaporation the amount of evaporation is limited, so in order to evaporate more acetic acid,
It is preferable to reduce the evaporation amount of components other than acetic acid.
That is, the amounts of methyl iodide, methyl acetate and water should be reduced. Of these compounds, water has the highest latent heat of vaporization, and it is most effective to reduce the amount of water. That is, it is for this reason that the acetic acid productivity can be increased by decreasing the water concentration in the reaction solution.

【0006】しかしながら、水分を5wt%以下に減少さ
せた時には、上記の障害の他に、工業的に行われる連続
反応の場合に反応活性が徐々に低下する弊害があること
がわかった。これは、主触媒であるロジウムが活性な1
価の錯体から不活性な3価の錯体に変化するために起こ
るものである。水分が多く含まれる反応条件下では原料
である一酸化炭素と水とのシフト反応が起こり、水素と
二酸化炭素が発生する。ここで発生する水素は3価のロ
ジウムを錯体を1価に変換する作用を有している。
However, it has been found that when the water content is reduced to 5 wt% or less, in addition to the above-mentioned obstacles, there is an adverse effect that the reaction activity gradually decreases in the case of a continuous reaction carried out industrially. This is because the main catalyst, rhodium, is active.
This is caused by the change from a valent complex to an inactive trivalent complex. Under a reaction condition containing a large amount of water, a shift reaction between carbon monoxide as a raw material and water occurs to generate hydrogen and carbon dioxide. Hydrogen generated here has a function of converting trivalent rhodium into a monovalent complex.

【0007】即ち、水素の発生量が多いと不活性な3価
のロジウム錯体が速やかに1価に変換されるため触媒活
性が保たれる。一方、水分が少ない反応条件下では水素
の発生量が少なく、そのため3価のロジウム錯体が速や
かに1価に変換される度合が小さくなり、触媒活性と共
に反応活性が徐々に低下してしまう。水分を低下するこ
とによるこのような弊害に対して、反応系に水素を仕込
み、反応系における水素分圧をある一定圧力以上に保つ
ことによりロジウムの3価を1価に変換する速さを保
ち、反応活性を維持することが出来ることが開示されて
いる(特開昭60-298549)。
That is, when a large amount of hydrogen is generated, an inactive trivalent rhodium complex is rapidly converted into a monovalent one, so that the catalytic activity is maintained. On the other hand, under a reaction condition in which the water content is low, the amount of hydrogen generated is small, so that the degree of rapid conversion of the trivalent rhodium complex into a monovalent compound becomes small, and the catalytic activity and the reaction activity gradually decrease. To prevent such adverse effects caused by lowering the water content, hydrogen is charged into the reaction system and the hydrogen partial pressure in the reaction system is maintained at a certain level or higher to maintain the speed of converting trivalent rhodium to monovalent. It has been disclosed that the reaction activity can be maintained (JP-A-60-298549).

【0008】しかしながら、反応器に水素を仕込み水素
分圧を高く保つことは、反応液中の水分濃度を下げるこ
とによって得られるメリットの一つである副生成物減少
の効果をなくしてしまう。即ち、反応液中の水分を減ら
すことで、一酸化炭素と水のシフト反応が抑制され、水
素分圧が低下し、それによって、プロピオン酸や蟻酸、
ハイドロカーボンといった酢酸の水素化反応によって生
成する副生成物が減少する効果がなくなってしまう。即
ち、水分が5wt%以下の反応条件下でロジウムの活性を
維持しようとして水素分圧を一定圧力以上に保つために
水素を反応器に添加すると、水素分圧に比例的に蟻酸、
プロピオン酸、ハイドロカーボンなどの副生成物が増加
する。本発明は、特に反応液中の水分濃度が10%以下、
特に5wt%以下の場合、即ち、ヨウ化リチウムを添加し
て反応速度を増大しなければならない場合の技術の改良
に関する。
However, charging hydrogen into the reactor and keeping the hydrogen partial pressure high eliminates the effect of reducing by-products, which is one of the merits obtained by lowering the water concentration in the reaction solution. That is, by reducing the water content in the reaction solution, the shift reaction of carbon monoxide and water is suppressed and the hydrogen partial pressure is reduced, whereby propionic acid and formic acid,
The effect of reducing by-products generated by the hydrogenation reaction of acetic acid such as hydrocarbon is lost. That is, if hydrogen is added to the reactor in order to maintain the hydrogen partial pressure above a certain pressure in order to maintain the activity of rhodium under a reaction condition of water content of 5 wt% or less, formic acid is proportional to the hydrogen partial pressure.
By-products such as propionic acid and hydrocarbon increase. The present invention particularly has a water concentration of 10% or less in the reaction solution,
Particularly, it relates to the improvement of the technique in the case of 5 wt% or less, that is, when the reaction rate must be increased by adding lithium iodide.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記の如
き欠点を有しない酢酸の製造方法について鋭意検討の結
果、ロジウムが不活性な3価になるのは反応器ではな
く、一酸化炭素の分圧が低く反応が起こらない蒸発槽又
はロジウムを含む触媒液が蒸発缶から反応器に戻される
間においてであることを見出した。そこで、蒸発槽もし
くは蒸発槽から反応器に戻る間で水素を存在させること
により、ロジウムが3価になるのを防ぐか又は/及び3
価になったロジウムを1価に変換することにより、反応
器の水素分圧を一定圧力以上に高くすることなく、反応
器での触媒の活性は保たれ、且つ、蟻酸、プロピオン
酸、ハイドロカーボンなどの水素化副生物の発生を抑制
し得ることを見出し本発明を完成するに到った。
Means for Solving the Problems As a result of diligent studies on the method for producing acetic acid which does not have the above-mentioned drawbacks, the present inventors have found that rhodium becomes an inactive trivalent compound not in the reactor but in the monoxide. It has been found that the carbon dioxide partial pressure is low and the reaction does not occur while the catalyst liquid containing rhodium is being returned from the evaporator to the reactor. Therefore, the presence of hydrogen in the evaporation tank or during the return from the evaporation tank to the reactor prevents rhodium from becoming trivalent and / or
By converting the converted rhodium to monovalent, the catalyst activity in the reactor is maintained and the formic acid, propionic acid, and hydrocarbon are maintained without increasing the hydrogen partial pressure in the reactor above a certain pressure. The inventors have found that hydrogenated by-products such as the above can be suppressed, and have completed the present invention.

【0010】即ち、本発明は、ロジウム触媒とヨウ化メ
チルの存在下、メタノールと一酸化炭素を反応させ酢酸
を製造する方法において、反応液中の水分濃度が10wt%
以下での連続反応を行い、その反応液を連続的に抜き出
して反応条件よりも圧力の低い蒸発工程に導入し、蒸発
する成分とロジウムを含む蒸発しない成分に分離する工
程において、(a)水素を導入し、水素分圧が少なくと
も0.1気圧以上の条件で蒸発を行うこと、又は/及び
(b)分離したロジウムを含む蒸発しない成分を少なく
とも水素分圧0.1気圧以上の水素及 び0.1気圧以上の一
酸化炭素で処理した後、反応器に戻し、循環使用するこ
とを 特徴とする酢酸の製造方法に関する。
That is, the present invention is a method for producing acetic acid by reacting methanol with carbon monoxide in the presence of a rhodium catalyst and methyl iodide, wherein the water concentration in the reaction solution is 10 wt%.
In the step of performing the following continuous reaction, continuously extracting the reaction solution and introducing it into an evaporation step at a pressure lower than the reaction conditions, and separating into a component that evaporates and a component that does not evaporate containing rhodium, (a) hydrogen Is introduced and vaporization is carried out under the condition that the hydrogen partial pressure is at least 0.1 atm or more, or (b) the separated non-evaporable components including rhodium are at least hydrogen partial pressure of 0.1 atm or more and hydrogen at 0.1 atm or more. The present invention relates to a method for producing acetic acid, which comprises treating with carbon monoxide and then returning to the reactor for reuse.

【0011】反応は連続反応方式によって行われ、原料
となるメタノールと一酸化炭素はそれぞれ、連続的に反
応器に仕込まれる。反応器は気液混合槽で、攪拌機を有
する攪拌混合槽でも、攪拌を有しない気泡塔形式の反応
器でも良い。反応温度は150〜200℃で、反応圧力は全圧
で20〜50気圧の範囲で行われる。
The reaction is carried out by a continuous reaction system, and the raw materials methanol and carbon monoxide are continuously charged into the reactor. The reactor is a gas-liquid mixing tank, and may be a stirring mixing tank having a stirrer or a bubble column type reactor having no stirring. The reaction temperature is 150 to 200 ° C., and the reaction pressure is 20 to 50 atm in total pressure.

【0012】主触媒としては、ロジウム錯体とヨウ化メ
チルが用いられる。反応液中のロジウムの濃度は200〜2
000ppmが用いられるが、ロジウムの濃度が高すぎるとヨ
ウ化ロジウムの沈降が起こるので、反応液の組成にもよ
るが、好ましくは300〜750ppmの範囲で用いられる。ロ
ジウムが反応液組成、反応条件下で溶解するものであれ
ば、ヨウ化メチルは、どのような化合物の形で反応器に
仕込まれても構わず、反応液中の濃度で10〜20wt%の範
囲で使用することが好ましい。ヨウ化メチルの濃度が高
いと反応は促進されるが、ヨウ化メチルは回収して、反
応器に循環させる必要があり、循環工程の大きさ、エネ
ルギーの使用量から、経済的に最も有利なヨウ化メチル
濃度は10〜20wt%の範囲である。
As the main catalyst, rhodium complex and methyl iodide are used. The concentration of rhodium in the reaction solution is 200-2
000 ppm is used, but if the rhodium concentration is too high, rhodium iodide will precipitate, so it is preferably used in the range of 300 to 750 ppm, although it depends on the composition of the reaction solution. As long as rhodium is soluble in the reaction solution composition and reaction conditions, methyl iodide may be charged in the reactor in the form of any compound, and the concentration in the reaction solution may be 10 to 20 wt%. It is preferably used in the range. The reaction is promoted when the concentration of methyl iodide is high, but methyl iodide needs to be recovered and recycled to the reactor, which is economically most advantageous due to the size of the circulation process and the amount of energy used. The methyl iodide concentration is in the range of 10 to 20 wt%.

【0013】反応液中には原料のメタノールと酢酸の平
衡により0.5〜10wt%の酢酸メチルが存在している。
0.5 to 10 wt% of methyl acetate is present in the reaction solution due to the equilibrium between the starting materials methanol and acetic acid.

【0014】本発明の方法に於いては、反応器中の水分
は0.1〜10wt%、好ましくは0.1〜5wt%の範囲で制御さ
れる。水分濃度が低い程、シフト反応による水素の発生
量は少なくなり、蟻酸、プロピオン酸、ハイドロカーボ
ンなどの副生物発生量が減少し有利であるが、反応速度
の低下やロジウムの不安定化を招く。これに対しては、
反応促進とロジウムの安定化のために4級化アンモニウ
ムヨウ化物塩、4級化フォスホニウムヨウ化物塩、ヨウ
化リチウムもしくは酢酸リチウムなどのリチウム塩を添
加することが出来る。その添加量は反応液中の濃度で5
〜30wt%の範囲で用いることが出来る。溶媒としては生
成物でもある酢酸を用いるのが適当である。
In the process of the present invention, the water content in the reactor is controlled in the range of 0.1-10 wt%, preferably 0.1-5 wt%. The lower the water concentration, the less the amount of hydrogen generated by the shift reaction, which is advantageous because the amount of by-products such as formic acid, propionic acid, and hydrocarbons decreases, but this leads to a decrease in the reaction rate and instability of rhodium. . For this,
To accelerate the reaction and stabilize rhodium, a quaternized ammonium iodide salt, a quaternized phosphonium iodide salt, a lithium salt such as lithium iodide or lithium acetate can be added. The amount added is 5 depending on the concentration in the reaction solution.
It can be used in the range of up to 30 wt%. It is suitable to use acetic acid, which is also the product, as the solvent.

【0015】反応液は連続的に抜き取られ、バルブを通
じて、1〜3気圧に制御された蒸発槽に導入される。こ
こで、抜き出された反応液の蒸発する成分、即ち、触媒
であるヨウ化メチルの一部、未反応メタノール由来の酢
酸メチル一部、水の一部、反応溶媒でもあり生成物でも
ある酢酸の一部が蒸気として取り出され、低沸分回収工
程、酢酸精製工程へと誘導される。低沸分回収塔でヨウ
化メチル、酢酸メチル及び水が分離され、それぞれ、ポ
ンプを通して反応器に循環される。蒸発槽で蒸発しなか
った、触媒であるロジウムを含む反応液成分(触媒循環
液)はポンプを通して反応器に循環される。
The reaction liquid is continuously withdrawn and introduced into an evaporation tank controlled to 1 to 3 atm through a valve. Here, the evaporated component of the reaction liquid extracted, that is, a part of methyl iodide as a catalyst, a part of methyl acetate derived from unreacted methanol, a part of water, acetic acid as a reaction solvent and a product. Part of is extracted as vapor and is guided to the low boiling point recovery step and acetic acid refining step. Methyl iodide, methyl acetate and water are separated in the low boiling point recovery column and circulated through the pump to the reactor. A reaction liquid component (catalyst circulating liquid) containing rhodium which is a catalyst that has not evaporated in the evaporation tank is circulated to the reactor through a pump.

【0016】本発明に於いて蒸発槽に水素を仕込む場合
は、蒸発槽での水素分圧が少なくとも0.1気圧以上に保
たれる様に水素が導入される。この水素によりロジウム
が3価に変化することが防がれ、反応器の水素分圧を高
くすることなく反応器内での活性が維持される。
When hydrogen is charged into the evaporation tank in the present invention, hydrogen is introduced so that the partial pressure of hydrogen in the evaporation tank is maintained at least 0.1 atm or higher. This hydrogen prevents the rhodium from changing to trivalent, and the activity in the reactor is maintained without increasing the hydrogen partial pressure in the reactor.

【0017】又、触媒循環液を水素処理する場合は、反
応器に戻される前に処理槽で水素処理をすることにより
効果的にロジウム3価がロジウム1価に変換される。水
素処理槽で触媒循環液は、100〜150℃の温度、少なくと
も0.1気圧以上の水素分圧、少なくとも0.1気圧以上の一
酸化炭素分圧の存在下で処理される。水素処理は連続的
に行われても良く、バッチ的に行われても良いが連続処
理の方が生成性が高く、好ましい。触媒循環液の水素処
理は蒸発槽から反応器に触媒循環液を戻す配管に水素及
び一酸化炭素を仕込んでも行うことが出来る。
When the catalyst circulating liquid is subjected to hydrogen treatment, rhodium trivalent is effectively converted into rhodium monovalent by hydrogen treating in the treatment tank before returning to the reactor. In the hydrotreating tank, the catalyst circulating liquid is treated in the presence of a temperature of 100 to 150 ° C., a hydrogen partial pressure of at least 0.1 atm or higher, and a carbon monoxide partial pressure of at least 0.1 atm or higher. The hydrogen treatment may be carried out continuously or batchwise, but the continuous treatment is preferred because of higher productivity. The hydrogen treatment of the catalyst circulating liquid can also be performed by charging hydrogen and carbon monoxide into a pipe for returning the catalyst circulating liquid from the evaporation tank to the reactor.

【0018】[0018]

【実施例】以下、本発明を実施例により具体的に詳述す
るが、本発明はこれらの実施例に限定されるものではな
い。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 (1)触媒循環液の調製 内容量500ccのハステロイB−2製のオートクレーブに
塩化ロジウム三水和物(RhCl3・3H2O)0.1g、ヨ
ウ化リチウム(LiI)40g、ヨウ化メチル24g、水4
g、酢酸118g、メタノール14gを入れ、内部の空気を一
酸化炭素で置換後、一酸化炭素で40g/cm2Gになるまで
加圧した。次いでオートクレーブを昇温させ185℃で100
分間反応させた。適当な時点で反応液をサンプリング
し、反応器内の水分濃度が約4wt%に相当する時点での
反応速度を一酸化炭素の吸収速度、即ち圧力の減少速度
で測定したところ、4.5mol/hrであった。
Example 1 (1) Preparation of circulating fluid of catalyst In an autoclave made of Hastelloy B-2 having an internal capacity of 500 cc, 0.1 g of rhodium chloride trihydrate (RhCl 3 .3H 2 O) and 40 g of lithium iodide (LiI) were added. , Methyl iodide 24g, water 4
g, acetic acid (118 g) and methanol (14 g) were added, and the air inside was replaced with carbon monoxide, and then the pressure was increased to 40 g / cm 2 G with carbon monoxide. Then raise the temperature of the autoclave to 100 at 185 ° C.
Let react for minutes. The reaction solution was sampled at an appropriate time, and the reaction rate at the time when the water concentration in the reactor corresponded to about 4 wt% was measured by the carbon monoxide absorption rate, that is, the pressure decrease rate, and found to be 4.5 mol / hr. Met.

【0020】反応終了後、冷却し、残った一酸化炭素を
放出した後、オートクレーブの内容物を窒素気流下にフ
ラッシュ蒸発器に移した。反応液のガスクロマトグラフ
ィーの分析から、プロピオン酸の生成量は30ppm以下で
あった。(30ppmがこのガスクロマトグラフィーの定量限
界である。)この反応液は缶液温度120〜138℃でフラッ
シュ蒸留を行い液量を二分の一にした。濃縮された液の
組成はヨウ化メチル0.5wt%、酢酸メチル0.2wt%、酢酸
6.1wt%、水1.2wt%であった。
After completion of the reaction, the autoclave was cooled and the remaining carbon monoxide was discharged, and then the contents of the autoclave were transferred to a flash evaporator under a nitrogen stream. From the analysis of the reaction liquid by gas chromatography, the amount of propionic acid produced was 30 ppm or less. (30 ppm is the quantitative limit of this gas chromatography.) This reaction liquid was subjected to flash distillation at a can temperature of 120 to 138 ° C. to reduce the liquid volume by half. The composition of the concentrated liquid is 0.5 wt% methyl iodide, 0.2 wt% methyl acetate, acetic acid.
It was 6.1 wt% and water 1.2 wt%.

【0021】この触媒循環液相当の液を次の実験に用い
た。
A liquid corresponding to this catalyst circulating liquid was used in the next experiment.

【0022】(2)水素処理 上記の如くして得られた触媒循環液相当液をオートクレ
ーブに入れ、空間を水素4容と一酸化炭素1容の混合ガ
スで置換し、140℃に加熱し、30分間処理した。
(2) Hydrogen treatment The liquid equivalent to the catalyst circulating liquid obtained as described above was placed in an autoclave, the space was replaced with a mixed gas of 4 volumes of hydrogen and 1 volume of carbon monoxide, and the mixture was heated to 140 ° C. It was treated for 30 minutes.

【0023】(3)反応 次いで上記(1)と同様の反応液組成で反応を行うた
め、ヨウ化メチル23.5g、酢酸54g、水2.5g、メタノー
ル14gの混合液を、水素処理した触媒液に追加した後、
(1)と同様の反応条件で反応を行った。即ち(1)と
同様に、適当な時点で反応液をサンプリングし、水分4
wt%の時の反応速度を(1)と同様の方法で測定したと
ころ4.3mol/hrであった。反応終了後、ガスクロマトグ
ラフィーで反応液のプロピオン酸含有量を測定した所、
ガスクロマトグラフィーの定量限界である30ppm以下で
あり、この反応によってプロピオン酸は増加していない
ことがわかった。
(3) Reaction Next, in order to carry out the reaction with the same reaction solution composition as in the above (1), a mixed solution of 23.5 g of methyl iodide, 54 g of acetic acid, 2.5 g of water and 14 g of methanol was added to the catalyst solution which had been treated with hydrogen. After adding
The reaction was carried out under the same reaction conditions as in (1). That is, as in (1), the reaction solution was sampled at an appropriate time to remove water 4
When the reaction rate at wt% was measured by the same method as in (1), it was 4.3 mol / hr. After completion of the reaction, when the propionic acid content of the reaction solution was measured by gas chromatography,
It was found to be 30 ppm or less, which is the limit of quantification by gas chromatography, and it was found that propionic acid was not increased by this reaction.

【0024】比較例1 実施例1の水素処理工程を省いて、実施例1の(1)で
得た触媒液に、実施例1の(3)で行ったと同様にヨウ
化メチル、水、酢酸、メタノールを適当量追加し、実施
例1の(3)と同様の反応を行った。適当な時点で反応
液をサンプリングし、水分約4wt%の時点でのガス吸収
速度から反応速度を求めた所、3.2mol/hrであった。実
施例1に比べて反応活性が低下していることがわかる。
Comparative Example 1 Omitting the hydrogen treatment step of Example 1, the catalyst liquid obtained in (1) of Example 1 was treated with methyl iodide, water and acetic acid in the same manner as in (3) of Example 1. Then, an appropriate amount of methanol was added, and the same reaction as in (3) of Example 1 was performed. The reaction solution was sampled at an appropriate time point, and the reaction rate was determined from the gas absorption rate at a time point when the water content was about 4 wt%. The result was 3.2 mol / hr. It can be seen that the reaction activity is lower than in Example 1.

【0025】比較例2 実施例1の水素処理工程を省いて、実施例1の(1)で
得た触媒液に、ヨウ化メチル、水、酢酸、メタノールを
適当量追加し、実施例1の(3)と同様の反応を行っ
た。ただし、一酸化炭素で40g/cm2Gに加圧する代わり
に、水素を5wt%含む一酸化炭素で40g/cm2Gに加圧し
た。水素分圧は約2気圧である。適当な時点で反応液を
サンプリングし、水分4wt%の時点でのガス吸収速度か
ら反応速度を求めた所、4.5mol/hrであった。反応終了
後、ガスクロマトグラフィーで反応液のプロピオン酸含
有量を測定した所、185ppmであり、この比較例2の反応
によって増加したプロピオン酸の量は約150ppmであるこ
とがわかった。反応活性は復元されているが、実施例1
に比べてプロピオン酸の発生量が増大していることがわ
かる。
Comparative Example 2 The hydrogen treatment step of Example 1 was omitted, and methyl iodide, water, acetic acid, and methanol were added in appropriate amounts to the catalyst solution obtained in (1) of Example 1, and The same reaction as in (3) was performed. However, instead of pressurizing to 40 g / cm 2 G with carbon monoxide, pressurizing to 40 g / cm 2 G with carbon monoxide containing 5 wt% of hydrogen. The hydrogen partial pressure is about 2 atm. The reaction solution was sampled at an appropriate time point, and the reaction rate was determined from the gas absorption rate at a water content of 4 wt% to be 4.5 mol / hr. After the reaction was completed, the propionic acid content of the reaction solution was measured by gas chromatography and found to be 185 ppm, and the amount of propionic acid increased by the reaction of Comparative Example 2 was found to be about 150 ppm. Although the reaction activity has been restored, Example 1
It can be seen that the generation amount of propionic acid is increased as compared with.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ロジウム触媒とヨウ化メチルの存在下、
メタノールと一酸化炭素を反応させ酢酸を製造する方法
において、反応液中の水分濃度が10wt%以下での連続反
応を行い、その反応液を連続的に抜き出して反応条件よ
りも圧力の低い蒸発工程に導入し、蒸発する成分とロジ
ウムを含む蒸発しない成分に分離する工程において、
(a)水素を導入し、水素分圧が少なくとも0.1気圧以
上の条件で蒸発を行うこと、又は/及び(b)分離した
ロジウムを含む蒸発しない成分を少なくとも水素分圧0.
1気圧以上の水素及び0.1気圧以上の一酸化炭素で処理し
た後、反応器に戻し、循環使用することを特徴とする酢
酸の製造方法。
1. In the presence of a rhodium catalyst and methyl iodide,
In the method of producing acetic acid by reacting methanol with carbon monoxide, a continuous reaction with a water concentration in the reaction solution of 10 wt% or less is performed, and the reaction solution is continuously withdrawn so that the pressure is lower than the reaction conditions. In the step of separating into a component that evaporates and a component that does not evaporate containing rhodium,
(A) Hydrogen is introduced and vaporization is performed under the condition that the hydrogen partial pressure is at least 0.1 atm or higher, and / or (b) at least the hydrogen partial pressure of the non-evaporable component containing the separated rhodium is 0.
A process for producing acetic acid, which comprises treating with hydrogen at 1 atm or more and carbon monoxide at 0.1 atm or more, returning to the reactor and recycling.
【請求項2】 反応液中に5〜30wt%のヨウ化物塩を含
有させることを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the reaction solution contains 5 to 30 wt% of iodide salt.
【請求項3】 ヨウ化物塩がヨウ化リチウムである請求
項4記載の方法。
3. The method according to claim 4, wherein the iodide salt is lithium iodide.
【請求項4】 反応液中の水分濃度が0.1〜10wt%であ
る請求項1乃至3の何れかに記載の方法。
4. The method according to claim 1, wherein the water concentration in the reaction solution is 0.1 to 10 wt%.
JP20146492A 1992-07-28 1992-07-28 Acetic acid production method Expired - Lifetime JP3213392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20146492A JP3213392B2 (en) 1992-07-28 1992-07-28 Acetic acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20146492A JP3213392B2 (en) 1992-07-28 1992-07-28 Acetic acid production method

Publications (2)

Publication Number Publication Date
JPH0640998A true JPH0640998A (en) 1994-02-15
JP3213392B2 JP3213392B2 (en) 2001-10-02

Family

ID=16441525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20146492A Expired - Lifetime JP3213392B2 (en) 1992-07-28 1992-07-28 Acetic acid production method

Country Status (1)

Country Link
JP (1) JP3213392B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222070B1 (en) 1999-09-07 2001-04-24 Eastman Chemical Company Method for reducing EDA in acetic anhydride production
WO2007040087A1 (en) * 2005-10-03 2007-04-12 Daicel Chemical Industries, Ltd. Process for production of acetic acid
WO2012081417A1 (en) 2010-12-15 2012-06-21 株式会社ダイセル Acetic acid production method
US8957248B2 (en) 2010-07-26 2015-02-17 Daicel Corporation Process for producing acetic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222070B1 (en) 1999-09-07 2001-04-24 Eastman Chemical Company Method for reducing EDA in acetic anhydride production
WO2007040087A1 (en) * 2005-10-03 2007-04-12 Daicel Chemical Industries, Ltd. Process for production of acetic acid
JPWO2007040087A1 (en) * 2005-10-03 2009-04-16 ダイセル化学工業株式会社 Method for producing acetic acid
US8957248B2 (en) 2010-07-26 2015-02-17 Daicel Corporation Process for producing acetic acid
WO2012081417A1 (en) 2010-12-15 2012-06-21 株式会社ダイセル Acetic acid production method
US9073843B2 (en) 2010-12-15 2015-07-07 Daicel Corporation Process for producing acetic acid

Also Published As

Publication number Publication date
JP3213392B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP3332594B2 (en) Acetic acid purification method
JP3927237B2 (en) Method for producing acetic acid
RU2155183C2 (en) Method of recovering acetic acid from dilute aqueous flows resulting during carbonylation process
JP5078606B2 (en) Removal of permanganate reducing compounds from methanol carbonylation process streams.
RU2102379C1 (en) Method of preparing acetic acid
JP3244385B2 (en) Method for producing high-purity acetic acid
US5648531A (en) Process for producing acetic anhydride alone or acetic anhydride and acetic acid
EP2619160B1 (en) Process for production of allyl acetate
JPH0820555A (en) Production of acetic acid and/or acetic anhydride
JP3244350B2 (en) Method for producing high-purity acetic acid
JPH0629198B2 (en) Chemical dehydration method
JP3035641B2 (en) Method for producing acetic acid by carbonylation of methanol
RU2738842C2 (en) Method of producing acetic acid
JP3213392B2 (en) Acetic acid production method
JP6843866B2 (en) Improved process for preparing alkane halogenated
US4554392A (en) Method of preparing 1,2-dichloroethane from ethylene and chlorine gas
JP3035642B2 (en) Method for producing acetic acid by carbonylation of methanol
US5770768A (en) Method for preparing carboxylic acids by carbonylation in the presence of iridium
JPH0354656B2 (en)
JPH0812612A (en) Separation of acetaldehyde from methyl iodide
US4562285A (en) Process for producing terephthalic acid
JPS6123770B2 (en)
KR20080061390A (en) Process for production of acetic acid
JPH0834757A (en) Purification of acrylic acid
JP3541542B2 (en) Method for producing dimerized aldehyde

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12